搜索

数数课件

发布时间: 2023.06.25

数数课件(模板15篇)。

教案课件是老师在授课中非常关键的工具之一,当然要保证教案课件内的内容完善。教师应该不断总结经验,加强教案制度的培养。这篇“数数课件”是工作总结之家编辑的绝妙杰作,期待您的赞许。在此友情提醒,请收藏本页,以便随时查阅!

数数课件(篇1)

一、情境导入

谈话:小朋友们,今天这节课老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比3个小组中,哪个小组得星最多,合作得最默契。先来玩第一个游戏,猜猜礼袋里装着什么?

学生有的猜,有的猜......

提问:一定是吗?(不一定)

小结:也就是说,现在你们只能是猜测,可能会是,也可能会是,这就是我们生活中的可能性(板书:可能性)

二、摸球游戏

1.用一定来描述摸球的结果,体验事件发生的确定性。

谈话:那么袋子里究竟是什么呢?

指名学生上台并指导摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来

引导:怎么他每次摸到的都是红球呢?(生猜测:里面都是红球)同意他的猜测吗?我们一起来验证一下吧!(请XXX把里袋拎出来)

小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,那我任意摸一个球,结果会是?(红)一定吗?(板书:一定)

2。谈话:你们也想来玩摸球游戏吗?好,请组长拿出袋子。不过,在摸球之前先讲清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中并做好记录,依次传给其他组员摸,明白了吗?就让我们比一比哪组合作得最好?开始吧!

(让学生分组摸球,教师巡视指导)

汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)

猜一猜,袋子里是什么颜色的球?(黄球和绿球)

组长倒球验证,(师作出摸球的动作)轮到我摸了,我从这个袋里任意摸一个,结果会是?(黄,绿)一定吗?(不一定)那要怎么说?(可能是黄,也可能是绿)(板书:可能)

提问:那能在这个袋子里摸到红球吗?为什么?(板书:不可能)

3。小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。

如果袋子里有黄球和绿球,任意摸一个,可能是黄球,也可能是绿球。但不可能是红球。

三、实践拓展

1.练一练。

(1)(出示装有2个红球和3个黄球的袋子)瞧,在这个口袋里,任意摸一个球,一定黄球吗?那会怎样呢?

(2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?为什么?

(3)(出示装有5个黄球的袋子)这个袋子呢?为什么?

小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊!2.装球游戏。

谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!

安排3次装球活动,依次出示要求:

(1)任意摸一个球,一定是绿球。该怎么放呢?(学生讨论,放球,师巡视)

说说你是怎么放的?放3个5个都可以吗?

师表扬,说的好,只要全部是绿球,那摸到的一定是绿球。

(2)任意摸一个球,不可能是绿球。该怎么放呢?(学生讨论,放球,师巡视)

谁愿意来说一说?这么多放法都对吗?只要怎样?(不放绿球)

交流:任意摸一个,不可能是绿球,应该怎样装?装球时是怎样想的?

小结:任意摸一个,不可能是红球。有很多种装法,可以装一种、两种、三种甚至更多种颜色的球,但是不能装绿色的球。

(3)任意摸一个球,可能是绿球。

(每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励)

3。转盘摇奖活动

1、猜测:(师出示红黄蓝三色转盘)观察转盘,有几种颜色?想一想,转盘停止转动后,指针会指在哪里?能肯定吗?那应该怎么说?(转盘停止转动后,指针可能会指着红色,可能会指着黄色,还可能会指着蓝色。)

2、体验:是不是真的会出现这些情况呢?刚才装球最快的那一小组的小朋友上来,请你们轮流拔动转盘试试看,

4.联系生活。

谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用一定、可能、不可能来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!

小结:我们来看看今天的冠军是哪一组?那下次他们也一定是冠军吗?可能会出现什么情况呢?

四、总结谈话

1、今天,我们一起研究了可能性的问题,你学得开心吗?学到了哪些新知识?

2、回家后把学到的新知识讲给爸爸妈妈听,再调查一下,看看生活中还有哪些事情可能发生,哪些事情不可能发生或一定会发生,一星期后举行一个交流会,比比谁讲得多讲得好!

数数课件(篇2)

一、 教材

1、教学内容:《6的乘法口诀》是义务教育课程标准实验教科书《数学》二年级上册第二单元《表内乘法(一)》的第6课时的内容。

2、教材所处的地位和重、难点:教材内容的呈现是在学生学“2—5的乘法口诀”以后。由于他们已经具有学习2—5的乘法口诀的基础,所以教材的呈现形式没有给出一个完整的乘法算式和一句完整的口诀,意在让学生主动探索归纳出6的乘法口诀。体现了提高学生学习独立性要求的编写意图。

本课的重点应该是让学生理解6的乘法口诀的形成过程;难点是怎样去熟记并利用乘法口诀来解决生活中的实际问题。

3、教学目标:

① 通过观察、探索,使学生知道6的乘法口诀的形成过程。

② 通过教学活动,培养学生观察能力、合作交流和语言表达能力。

③ 让学生体验生活中处处有数学,会用数学知识解决生活中的问题。

二、教法

1、情景教学法。让学生在情景里亲自动手操作、探索,感受知识的形成过程不过如此简单,享受成功的喜悦,激发学生学习数学知识的兴趣。

2、游戏教学法。即是新课改的教学理念“做中学、玩中学”的体现。因为小学生学习活动不再是教师的“说教”,应该更多的时间是在学生自主探索的过程中。

3、以小组合作的形式来组织教学。体现了“自主探索、合作交流、实践创新”的数学学习方式,培养了学生互相合作交流的意识,在共同讨论中完成学习任务。

三、学法

通过这节课的教学,主要培养了学生以下学习方法:

1、指导学生观察图画,共同讨论,在自主探索中把感性认识上升到理性认识。戏中运用学习成果,把数学知识利用到现实生活中。

2、在游戏中运用学习成果,把数学知识利用到现实生活中。

3、培养学生共同合作,相互交流的学习方式。

四、 教学、具准备

课件、写有算式的卡片、苹果;主题图、表格。

五、 教学程序

根据教材内容和学生认知水平,我设计了如下教学过程:

(一) 复习旧知。

让全班同学回忆“1—5的乘法口诀”。这不但是为了检测他们是否掌握并记忆了,还可以为本堂课的教学做一些铺垫。

(二)设置情境,探讨新知。

1、编写口诀。

这是本堂课的重点,主要是通过学生自主地观察图画,探索、归纳出6的乘法口诀的形成过程,并加以记忆。根据教材的主题图,我逐一出示小鱼(1条小鱼由6个全等三角形组成,一共出示6条)。学生观察图画,思考并完成下面的问题:

①、填表。

盘数 1 2 3 4 5 6

个数

②、根据表格写出相应的乘法算式。

③、根据乘法算式归纳出相应的乘法口诀。

④、根据“口诀”还能想出另一道乘法算式吗?

数学就在我们身边,所以我们要把数学知识运用到现实生活中来。如:①61页“做一做”,呈现用6根小棒摆成的六边形直观图,以口答“摆2个六边形用多少根小棒?摆……”巩固6的乘法口诀;②63页第6题,填空题,题目以图文结合形式给出一只蚂蚁6条腿的条件,让学生分别填出3只、6只蚂蚁多少条腿;③怎样很快地算出在上课的学生的人数(每6人一组,共6组)?

(三)小结。

1、结束语(师):同学们,今天这堂课我们学习了什么?[生答。板:6的乘法口诀]这不仅是把课堂交给了学生,让他们概括出本堂课所学的知识,还可以再次唤醒学生对本堂课的记忆,揭示课题。

数数课件(篇3)

一、教学内容。

我今天说课的内容是新人教版教材小学数学六年级上册第一单《分数乘法》例5《小数乘分数》。这部分是教材新增加的内容,用一课时进行教学。

二、说教材。

1、教材分析

本部分的教学是在学生掌握了整数乘法、小数乘法、分数乘法、以及整数和小数混合运算、简便计算的基础之上进行的教学。教学中不仅涉及到分数与小数的互化,假分数与带分数的互化,整数与分数的互化,而且对如何判断一个分数是否能化成有限小数等知识都会涉及。通过教学本例题要使学生经历探究计算方法的过程,运用多样化的解题思路开拓学生的计算思维,提高学生的计算能力。为教学例6、例7的分数混合计算和简便计算奠定基础。

2、学生分析

大部分学生有了一定的运算基础,特别是刚学的分数成分数的计算方法和对算理的分析探究过程都是本节课学习的基础。教学本课主要还是放手让学生自主学习,合作交流,根据学生生成的问题进行再教设计。为了更好的教学效果,我依据学生的认知特点确定了如下教学目标。

3、教学目标

认知目标:在解决问题的过程中学习并掌握小数乘分数计算方法。

技能目标:经历小数乘分数的计算方法的探究过程。培养学生的思维灵活性。

情感目标:体会算法多样化的思想,提高学生的计算能力。

4、教学重点

掌握小数乘分数的计算方法。

5、教学难点

灵活选择不同的计算方法,熟练地进行小数乘分数的计算。

6、教具准备:多媒体课件

三、说教法

“教必有法而教无定法”,只有方法得当,才会有效。根据本课教学内容的特点和学生思维活动的特点,我采用了自主学习教学法、合作探究法和讨论交流汇报法以及比较学习法的教学方法。学生是学习的主体,学生的参与状态、参与度是决定教学效果的重要因素。教学中我特别注重引导学生“观察、对比、总结”等多种方式进行探究性学习活动。

四、说学法

学法的指导要寓于教学的始终,结合学生的认知水平和可能出现的困难,给学生的学习予以一定的指导,根据学生学情实际,重点从以下几方面指导学生的学习:鼓励学生独立思考,引导学生抓住新旧知识之间的练习比较学习,利用已有知识基础和生活经验探究学习,在学习中形成多样性的解题思路。

五、说教学过程

(一)、说教学程序

整个教学按以下6个程序进行教学:复习旧知、情境引领、探究新知、归纳总结、巩固练习、课堂小结。

(二)教学实施策略

1、复习导入

这部分设计了分数乘整数和分数乘分数的算式题和小数与分数的互化,主要是为了巩固已学的知识,同时为新授课的教学做铺垫准备。

2、情境引领

出示形象生动的课件展示,引领学生进入问题情境。通过松鼠欢欢和松鼠乐乐的对话不仅使学生掌握一些科普知识,如松鼠的尾巴长度约占身体长度的,而且激发学生探究的兴趣。通过分析解决问题的方法,学生能根据分数乘法的意义轻松的列出乘法算式2、1×和2、4×接着放学生开始探究算式的特点。

3、探究新知

首先让学生独立思考,尝试计算。指明学生黑板上板书过程。如果学生在计算过程出现困难及时给予指导。接着同桌交流,小组交流计算的方法,分别说说说自己的解题思路。不重复说,尽量抓紧时间。最后每组选出最优学生汇报结果,总结计算方法。

4、归纳总结对于小数成分数方法一:可以都化成小数进行计算;方法二:可以都化成分数进行计算;对于直接约分的方法可能只有提前预习的学生会做,可以让这些学生说说自己的做法,教师随之补充小结。

5、巩固练习

通过让学生完成做一做检测学生的掌握情况并进行再教练习设计,课前准备了阶梯式的习题,根据学生的熟练程度做弹性式处理。

6、课堂小结本节课同学们学到了什么知识?掌握了什么学习方法呢?观察比较小数乘分数的三种计算方法有哪些特点?怎样灵活运用这些方法进行分数乘法计算呢?学生在整理的过程中使自己所学到的知识更加的明了。

总之本节课力求让学生在探究学习中掌握小数乘分数的计算方法,培养学生多样性的数学思想,不断提高学生的计算能力。

六、板书设计

小数乘分数

2、1× 2、4×

= =2、4× 能约分先约分,更简便

=(dm) =1、8(dm)

七、教学反思

本节课的教学中学生自主学习的时间用时过长,课堂显得前松后紧节奏不协调。学生对分数和小数的互化准确度不高也影响了课堂的进度,如把2、1化成假分数,应该先理解小数意义2、1=2+0、1也就是表示2个一和一个十分之一的和,分数单位,写成假分数。对于个别学生对已学知识遗忘,及时回顾旧知的同时又会使课堂练习时间减少,因此预设的练习任务没有全部完成。

八、教学中的启示与思考

1、课前要注重及时唤起学生对新授课内容相联系的相关知识,课前安排对相关知识提前巩固练习,课堂能达到熟练应用。

2、要备好教学内容的同时,别忽视备学生。对于不同的学生要进行因材施教,新知识的学习过程每位学生可以同步进行,但对已学知识的掌握情况学生的差异还是很大的,因此这也是每位老师应下功夫思考的教学环节。

3、不断的思考,不断的学习,不断的改进,在教学与反思中让自己进步是我在今后教学中的奋斗目标。

希望各位老师能对自己的教学环节中的不足给予指正,以利于自己在发现问题,思考问题,改进问题的过程中逐步提升自己的教学能力。

数数课件(篇4)

教学要求:

1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。

2、比较正确地计算小数乘法,提高计算能力。

3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。

教学重点:小数乘法的计算法则。

教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

教学用具:投影、口算小黑板。

教学过程:

一、引入尝试

1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8×1.2)

2、尝试计算

师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?

师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?

如果能,应该怎样做?(指名口答,板书学生的讨论结果。)

示范:

1.2扩大到它的10倍12

×0.8扩大到它的10倍×8

0.96缩小到它的1/10096

3、1.2×0.8,刚才是怎样进行计算的?

引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。

4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?

5、小结小数乘法的计算方法。

师:请做下面一组练习

(1)练习(先口答下列各式积的小数位数,再计算)

(2)引导学生观察思考。

①你是怎样算的?(先整数法则算出积,再给积点上小数点。)

②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)

③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)

通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?

(3)根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

(4)专项练习

①判断,把不对的改正过来。

0.0240.013

×0.14×0.026

9678

2426

0.3360.000338

②根据1056×27=28512,写出下面各题的积。

105.6×2.7=10.56×0.27=0.1056×27=1.056×0.27=

三、应用

1、在下面各式的积中点上小数点。

0.586.252.04

×4.2×0.18×28

11650001632

232625408

2436112505712

2、做一做:先判断积里应该有几位小数,再计算。

67×0.32.14×6.2

3、P.8页5题。

先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。

四、体验

回忆这节课学习了什么知识?

五、作业:P87、9题。P913题。

数数课件(篇5)

一、说课标

“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”这是新的《数学课程标准》对数学教学活动提出的基本理念之一。同时《新课标》还指出:“在学习过程中要初步培养学生的合作精神,通过观察,对比等数学活动,发展学生的各种能力。”因此在教学本节课时,我通过购物的情境创设,让学生更加感受到数学就在身边。

二、说教材

《简单的小数加、减法》是人教版小学数学第六册第七单元第三课时的内容。这部分的内容是在学生掌握了整数加减法以及对小数初步认识的基础上进行教学的。这部分知识在今后的生活及进一步学习中都广泛的应用,所以掌握这部分内容为学生以后学习及解决生活中的简单问题具有十分重要的意义。因此,根据本节课的地位及要求我确定了以下三个方面的教学目标:

1使学生会算一位小数的加减法,并结合生活情境让学生提出问题,能够运用所学知识解决生活中的一些简单的实际问题。

2经历一位小数的加减计算方法的形成过程,体验小数加减法的算理和算法。

3通过让学生试算小数加减法,培养学生的自学能力和尝试精神。

4通过创设生活化的情境,使学生感受到学生与生活的密切联系,培养学生的数学情感和团结合作的良好品质。

教学重点:使学生学会计算一位小数的加减法,并根据所学知识解决生活中的实际问题。

教学难点:如何列竖式计算小数加减法?尤其要注意小数点对齐。

三、说教法、学法

在教学过程中,依据教学内容和学生的年龄特点以及他们的知识现状我采用了多种方法,充分调动学生学习的积性和主动性。学生通过对自己提出的问题,进行分析和解决,从而促了他们的反思能力与自我监控能力。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的生发与形成过程,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否,这样学生对算理与算法用自己的思维方式去理解,既明于心又说于口。再按照“自主探究--讨论--归纳”这样的思路,运用知识迁移让学生发现新知,掌握新知。在自主探究、讨论中让学生主动参与教学活动,学会自学探究,并提供动口,动手、动脑的机会,让学生在体验,感知、讨论、合作、比较中灵活掌握本节教学重点,突破难点。

四、教学程序

(一)、创设情境

师:同学们,你们都买过东西,那你们在买东西的时候都遇到过哪些数学问题呢?

过渡:看来大家买东西的经验很丰富,那今天老师就带同学们到商店逛逛,看看小朋友们遇到什么问题。

(二)、探索交流,解决问题。

1、课件出示主题图。

师:请同学们看屏幕,从这幅图中你发现了哪些数学信息?

师:商店里真热闹,小朋友们正在买东西呢,你们看小丽遇到了什么问题?

课件出示例3

一个卷笔刀和一枝铅笔,一共多少钱?

读题。

师:你们能帮她解决吗?算式怎么列呢?谁来说说。

板书:0.8 0.6=

师:你为什么用加法计算?

师(揭示课题):大家看这个算式中两个加数都是什么数?(小数)那今天我们就来学习简单的小数加减法。(板书课题)

师:0.8 0.6,你们会算吗?那大家在本子上算一算吧。

学生试算,教师巡视。

展示汇报。

师:这位同学是列竖式计算的,我们来听听她的想法。

师:你来说说你是怎样列竖式计算的?

生汇报

师板书:

元 角

0 . 8

0 . 6

1 . 4

答:一共1.4元。

师引导学生观察,思考:在小数加法中,要使相同数位对齐,关键什么要对齐?

师引导学生说说计算过程。

师:谁能完整地把计算过程说一说。(指名说,同桌说)

2、练习。

师:小丽想买的是一个卷笔刀和一枝铅笔,那你想买哪两样东西呢?

师:一共要多少钱呢?你能用算式表示出来吗?那请大家用算式表示出来,并请大家用竖式来计算。

展示,汇报。

3、教学例4

师:你们帮小丽解决了问题,真棒!小明也来了,他又有什么问题呢?我们看看。

课件出示问题:我想买1枝铅笔,哪种便宜些呢?

师:大家帮他看看,买哪种便宜些呢?

师:1枝有橡皮的铅笔比1枝没有橡皮的铅笔贵多少钱呢?(出示例4)

读题。

师:你们能帮他算吗?

算式怎样列呢?

板书:1.2-0.6=

师:你为什么用减法计算?

师:大家能不能也用竖式计算出来呢?

学生尝试:(一人板演,其他同学在本子上做),教师巡视指导。

师:大家来看看她做的对吗?那大家来听听她是怎么想的,和你的想法是不是一样。

生汇报

师:得数前面的0和小数点能不能省略?为什么?

师小结:计算小数减法和小数加法一样,也是要注意把小数点对齐,也就是相同数位对齐,从最低位算起,哪位不够减就从前一位退一。

师:谁能完整地把计算过程说一说。

4、练习。

(1)师:同学们真聪明,又帮小明解决了问题,那你们能提一个用减法计算的问题吗?并能解答出来吗?

学生提问题,解答。

展示,汇报。

(2)师:同学们提的问题这么好,老师也来提一个:(课件出示)小东有2元钱,能买什么东西?

师:请同学们帮小东选商品,能买什么?你有几种买法?

汇报

(三)、小结:

1、师:同学们,刚才我们在帮小朋友解决问题时,计算了不少小数的加减法,那你们想一想,在计算小数加减法时我们应注意些什么呢?

2、师:同学们,我们今天学习的简单的小数加减法与我们以前所学习的整数加减法它们有没有什么相同的地方呢?哪些地方是相同的呢?

师:小数加减法的计算方法与我们以前所学的整数加减法的计算方法其实是一样的,都是相同数位上的数相加减,从最低位算起,在计算小数加法时,满十进一,在计算小数减法时哪位不够减从前一位退一。只是小数加减法注意了要把小数点对齐。

(四)、巩固练习。

师:同学们,你们已经会计算小数的加减法了,下面我们就一块来看看这一组题(出示练习二十二第1题),同学们,你们看,你们能自己计算出这些小数的加减法式题吗?

学生在课本上完成,指名说得数。

师:我们再来看下一道题(出示第2题)

学生独立完成,指名回答。

(五)、全课总结。

师:同学们,今天我们学习了什么内容?通过这节课的学习,你有什么收获?

数数课件(篇6)

(一)、学生分析:

大部分学生已初步了解了乘法的意义,掌握了连加的计算方法,他们已能根据情境列出的乘法算式,并结合情境用数数或连加的方法算出乘法算式的得数,这些知识储备都为学生在本课进行自主编制口诀奠定了一定的基础,而且有一部分学生对乘法口诀已经有了初步的认识,有的甚至可以背出部分的乘法口诀。

(二)、教学目标:

1、经历编制5的乘法口诀的过程,使学生知道5的乘法口诀的来源,理解乘法口诀的含义,使他们产生自觉记忆口诀的欲望。

2、能够归纳学习步骤,掌握乘法口诀的学习方法。

3、掌握5的乘法口诀,会用5的乘法口诀进行计算和解决简单的实际问题。

4、培养学生初步的观察和分析能力。

5、有机地重组教材,以五环旗为整节课的学习情境,在潜移默化中对学生进行人文关怀。

(三)、教学重点难点

教学重点:经历编制5的乘法口诀的过程

教学难点:记忆5的乘法口诀

(四)、教学设想:

教材主要包括数松果、算一算、练一练三大块,根据教材内容主要设计了情境导入、探究性学习、游戏、应用四大部分。重点从导入的处理、探究性学习过程的安排、乘法口诀学习方法的掌握三个方面来说一说。

1、重设情境,激情导入。

新课程在教学中非常注重三维目标的整合,不仅注重培养学生的知识技能,而且非常关注他们在情感、态度、价值观方面的发展,强调了对学生进行人文关怀。于是,我改变教材中数松果的情境,用北京奥运开幕式及运动员夺冠的片段为情境导入,以此为契机,利用多媒体展示了举行北京奥运会时人们各种兴奋欢呼的场面,在一个个精彩的片段和欢呼声中,学生热爱祖国、热爱奥运的激情在不自觉中已被成功激起。然后出示奥运五环旗,由学生说说对它的认识,教师再进行简单介绍。

2、重组教材,自主探究。

①五环旗及算一算两部分的整合。

在新课探究这一环节中,原本教材分数松果和算一算这两大部分,潜意识已经把解决一共有多少个松果?这个问题的解决方法割裂为先用最基础的数数的方法来解决,而后才是采用根据图意列乘法算式的方法。学生对于5的乘法口诀的学习,已有了充分的知识准备,根据学生这一实际情况,我将教材中的数松果这部分换成五环旗的内容,并与算一算这部分进行有机的整合,在导入部分教学完后直接出示9面五环旗,让学生观察并提出问题,在学生自主提问以后,便将一共有多少个环?这一问题抛给学生,大胆地放手让学生自由选择适应于自己知识基础的方法进行解决,而且将这一环节安排小组活动,这样每个学生不仅可以有自己的方法,还能够获取别人的好方法。这样将教材的有效整合,给学生提供了更大的自由选择学习方式的空间,而且更能够适用于各个学习层次的学生。

②、口诀的学习。

在学习口诀这部分内容中,设计时力求将情境图、算式、口诀三部分联系起来,整段教学流程突出简化二字。让学生从理解图意出发,根据图意将具体的图抽象简化成用乘法算式表示,再根据有关5的乘法算式的规律,将5的乘法算式简化成5的乘法口诀,即看算式编口诀。这样学生在自主探索中,便潜移默化地感受到了口诀是由生活实际中逐步抽象、简化成数学知识的,且能充分体会到口诀的作用,自觉产生记忆口诀的欲望。

③口诀的记忆。

在学生记忆口诀时,重点让学生观察口诀说说自己发现了什么?因为发现了规律才能更好更快地记住口诀,然后让学生说说有什么好办法可以很快记住口诀,这样学生自然而然就会利用规律去记忆口诀,即找规律记口诀。另外,在学生利用规律记忆口诀后,安排游戏看手指说口诀和对口令,也是为了加强学生对口诀的记忆,尤其是看手指说口诀这个游戏,更能激发学生记忆口诀的兴趣,由于我们每只手都有5个手指,所以让学生进行小组游戏,根据整个小组伸出手的数量来说出口诀,这样学生更容易也更深刻地记住口诀。

3、归纳步骤,掌握方法。

掌握学习方法是学生知识过程的基础,在新课程课堂教学中,让学生学习知识的过程结构,指导学生掌握学习的步骤,学生才能逐渐地、独立地策划自己的学习活动,在学习同类知识的过程中,真正地发挥主体作用。因此,在整个教学设计中,引导和帮助学生在学的过程中,归纳出乘法口诀的学习步骤:①看算式编口诀;②找规律记口诀;③用口诀做算式。学生在掌握了口诀的学习方法后,在教学其他乘法口诀时,学生就可以进行自主学习了。这样,既有利于学生认知结构的形成,又为学生的主动学习提供了方法上的迁移,便于学生真正的独立学习。

(五)、教学流程:

一、情境导入

1、出示课件:举办奥运时的欢乐场面。

2、介绍五环旗。

二、探究性学习

1、问题的提出与解决

①提出问题:A、你们看这里有这么多面五环旗,观察一下你发现了什么?

B、想一想,根据这幅图你能提出什么问题?(学生自由发言)

②解决问题:

A、师:今天我们就来解决一共有多少个圆环?这个问题,你们想一想有什么好办法可以解决,和小组的同学说一说。

B、小组交流汇报:方法可能有数数(5个5个数)、列乘法算式等。

C、组织学生边数数边列出乘法算式。

2、编制口诀。(看算式、编口诀)

①小组合作,试着编一编。

②交流汇报:你是根据哪个算式遍出了哪个口诀?

3、理解口诀的含义。

举出其中几个乘法口诀让学生说一说表示什么意思?

4、观察口诀找规律。(找规律、记口诀)

师:观察这些口诀,你发现了什么?有什么好办法可以很快记住这些口诀?试着记一记。

三、游戏

1、看手指说口诀。

2、对口令。

四、应用

1、基本联系:练一练第2题(用口诀、做算式)

2、联系实际:练一练第4题。

数数课件(篇7)

【高考要求】:三角函数的有关概念(B).

【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.

【教学重难点】: 终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.

【知识复习与自学质疑】

一、问题.

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与 终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习.

1.给出下列命题:

(1)小于 的角是锐角;(2)若 是第一象限的角,则 必为第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2 与角 的终边不可能相同;

(7)若角 与角 有相同的终边,则角( 的终边必在 轴的非负半轴上。其中正确的命题的序号是

2.设P 点是角终边上一点,且满足 则 的值是

3.一个扇形弧AOB 的面积是1 ,它的周长为4 ,则该扇形的中心角= 弦AB长=

4.若 则角 的终边在 象限。

5.在直角坐标系中,若角 与角 的终边互为反向延长线,则角 与角 之间的关系是

6.若 是第三象限的角,则- , 的终边落在何处?

【交流展示、互动探究与精讲点拨】

例1.如图, 分别是角 的终边.

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在 上所有角的集合;

(3)求始边在OM位置,终边在ON位置的所有角的集合.

例2.(1)已知角的终边在直线 上,求 的值;

(2)已知角的终边上有一点A ,求 的值。

例3.若 ,则 在第 象限.

例4.若一扇形的周长为20 ,则当扇形的圆心角 等于多少弧度时,这个扇形的面积最大?最大面积是多少?

【矫正反馈】

1、若锐角 的终边上一点的坐标为 ,则角 的弧度数为 .

2、若 ,又 是第二,第三象限角,则 的取值范围是 .

3、一个半径为 的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是 弧度或角度,该扇形的面积是 .

4、已知点P 在第三象限,则 角终边在第 象限.

5、设角 的终边过点P ,则 的值为 .

6、已知角 的终边上一点P 且 ,求 和 的值.

【迁移应用】

1、经过3小时35分钟,分针转过的角的弧度是 .时针转过的角的弧度数是 .

2、若点P 在第一象限,则在 内 的取值范围是 .

3、若点P从(1,0)出发,沿单位圆 逆时针方向运动 弧长到达Q点,则Q点坐标为 .

4、如果 为小于360 的正角,且角 的7倍数的角的终边与这个角的终边重合,求角 的值.

数数课件(篇8)

我说课的内容是青岛版小学数学四年级上册第八单元小数乘法第一个信息窗的内容。下面我将从说教材地位及学情分析、说教学目标、说教法、学法、说教学过程等方面进行分析。

一、说教材地位及学情分析

小数乘整数是在学生已经学习了整数乘法、小数加减法的基础上进行教学的,是小数乘法的起始课。在这之前学生已经掌握了小数点位置移动和积的变化规律等知识,这些都是学生理解和探究小数乘整数的算理和计算方法的知识基础。作为起始课,必须沟通小数乘法和整数乘法的联系,在掌握计算方法的同时更要理解算理。理解小数乘整数的算理及计算方法是重点;算理的理解是难点;而关键是充分运用转化思想,引导学生根据因数与积的变化规律进行转化。

在学习本课之前,学生已经学习了小数的意义和性质,会进行小数加、减法计算过程及整数乘法的基础上进行教学的。如果将活生生的学习场景呈现给学生,部分学生完全能通过知识的综合,迁移,自主探究学习并掌握这一新知识,但他们的这种掌握通常是零散的,不系统的,部分学生甚至会以以往的旧知相混淆——如小数加、减法竖式中和、差的小数位数的确定与小数乘整数竖式中的小数位数的确定。

二、说教学目标

1、知识目标:结合解决实际问题,学习小数乘法的计算方法,并能正确地进行计算。

2、技能目标:经历小数乘整数算理的理解和计算方法的探索过程,体验算法的多样性。

3、情感目标:在解决实际问题的过程中,感受社会主义建设的巨大成就,培养热爱家乡、热爱祖国的情感,激发学生学习数学的兴趣。

三、说教法、学法

如何突破重难点,完成上述三维目标呢?根据教材的特点,本节课采用多媒体为主要教学手段,以讨论交流、合作探究为主要方式进行教学。在教学中创设情境,为学生提供较丰富、直观的观察材料,激发学生学习的积极性和主动性,引导学生在复习整数乘法意义的基础上,自主研究发现小数乘法意义,用已有知识来求解简单小数乘整数的结果,并应用解决实际问题。

整个教学按以下四个环节组织进行:①创设情境,激趣导入,②合作探究,明理获知,③深化运用,巩固新知,④回顾小结,质疑问难。

主要学习方法:转化。另外还有迁移、猜测——验证、归纳。

主要教学方法:引领、提升

四、说教学过程

(一)创设情境,激趣导入

在这个环节中,我分两步组织教学。一是创设贴近学生生活的具体情境,拉近数学知识与实际生活之间的距离,使学生体会到小数与日常生活的密切联系。因此,在教学中,我首先出示课件:今天我当家的图片。在学生观察的基础上提问“上面呈现的信息是什么内容,你从中获得哪些信息?通过这些信息你能提出哪些数学问题?”学生观察后可能提出的问题:

(1)8月份的水费是多少钱?

(2)8月份的电费是多少钱?

(设计意图是:提出一个问题比解决一个问题更重要。因此,在使用青岛版的教材中,我努力培养学生提问题的意识和能力。)

(二) 共同探究,明理获知

1、探索小数乘整数的计算方法

这一环节是本节研究的重点,当重点突破。

⑴首先提出谁能解答上面同学提出的问题?8月份的水费是多少钱??学生独立列式,让学生在具体的情境下,理解小数乘整数的意义,和整数乘法的意义一样。

⑵充分放手,适时点拨,在引导学生观察算式发现一个因数是小数时?可以让学生进行小组讨论寻找解决问题的策略。学生可能出现的方法有:一是用4个3.2相加的方法计算,二是把3.2元化成32角,计算32乘4得128角,再把128角化成12.8元。三是用竖式计算。我重点关注用竖式计算的方法。

⑶关注新知,透彻理解

展示各种竖式算法。通过发问引发学生的讨论,让学生理解算理。“怎样把它转化成我们学过的整数乘法?”把因数3.2看作32来算,变成整数乘法,积就扩大到原来的10倍,这是积的变化规律。要想得到原来的积,就需要将乘得的积缩小到原来的1/10,所以应该从积的左边起数出一位点上小数点。

⑷让学生用自己的语言表述计算方法。先按整数乘法计算,再根据积的变化规律确定小数点的位置。

2、对小数乘整数计算方法的拓展和应用

第二个问题是绿点标示的问题,8月份的电费是多少钱?这里可以完全放给学生,要让学生说说做题的过程,以加深对计算方法的理解。

(设计意图:在本环节中,先让学生独立进行尝试解决小数乘整数的计算方法,通过交流,教师再引导学生重点强调竖式的计算方法,在计算中要让学生理解算理,正确计算。)

(三)深化运用,巩固新知

在这个环节,我设计三组闯关题。第一关是给乘法竖式的积点上小数点,这关是巩固积的小数位数的确定方法,可以让学生说出确定积的小数点位置的方法。第二关是算一算,你有什么发现,重点强调根据小数的性质,可以将计算结果进行化简。第三关是火眼金睛辩对错。要让学生说明判断的依据,尤其是“2.48×60”中“0”的处理要注意。

(设计意图:通过这样闯关练习,不仅调动学生参与学习的热情,更重要的是让学生在由浅入深、循序渐进的层次练习中理解小数乘法的意义,体会用小数乘法解决实际问题的喜悦。)

(四)回顾小结,质疑问难

帮助学生整理,解决疑惑问题。

总之,本节课这样设计是基于让学生能够实实在在从课堂学习中感受到、体验到、领悟到、思考到新知的获取,建立数学模型。能否达到效果,关键在于教师在课堂中对“生成”和“开发”的关注如何,把握如何,调控如何。

数数课件(篇9)

教学内容:

北师大版小学数学一年级上册第28---29页“小猫吃鱼”。

教材分析:

材料中安排的“小猫吃鱼”是一组动态的连续故事情景,通过这一故事情景,让学生进一步理解减法的意义。同时也通过一组动态情景,逐步引出得数是零的减法算式。由于减法的意义对于一年级学生而言,是比较抽象的,如何把这个抽象的概念变为学生能够体会的食物呢?这就需要我们教师来创造性地使用教材,结合本班的实际情况灵活把握。

学情分析:

一年级学生的动手能力较强,生活经验也较丰富,对“小猫吃鱼”.“小鸡吃食”.“吹泡泡”等有自身的经验。利用这些具体情境有利于激发学生的学习兴趣,使他们体会数学与生活的联系。

教学目标:

1.在具体的情境中进一步巩固对减法的认识。

2.理解得数是0的减法算式的实际意义,并能正确计算5以内数的加减法。

3.初步体验加减法呼你关系的思想。

4.通过合作交流,获得成功的体验;培养学生认真观察.积极思考.勇于探索的精神。

重点难点:

进一步体会减法的含义。

说教法与学法:

1.根据本节课的意图主题图特点,我采用了以下教法

充分发挥学生的主体性,让学生通过课堂游戏.互相合作、实际操作等方式,自主探索,是学生在游戏的过程中不知不觉的学会知识。

2.通过本节课的教学,是学生掌握一些基本的学法

让学生学会自主发现问题,分析问题,解决问题的方法。

说教学过程:

让学生亲生经历生活中的数学问题,并参与解决问题的过程,激发学生学习的积极性,向学生提供充分从事数学活动的机会,让他们积极主动的参与.解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师知识学生学习的组织者.引导者与合作者。

(一)创设情境,激发兴趣。

由于学生熟悉和喜欢的“过生日”的场面引入,激发学生的学习兴趣。将原课题“小猫吃鱼”改为“小猫过生日”,体现了以活动为主线进行教学。

(二)细看画面,展开想象

告诉学生今天是小猫的生日,猫妈妈特意为它准备了最爱吃的小鱼。然后提问:1.数一数,盘子里有几条鱼?

2.看着小鱼,小猫心里会怎么想呢?3.猜一猜,小猫会吃掉几条小鱼?

设计意图:一数一猜一想,注重培养学生的想象力.思维能力和语言表达能力,体现了以人为本的思想。

(三)套圈游戏

教师引导为了给小猫生日助兴,小方已经迫不及待的表演套圈了,认真看图,你能根据图和所给的加法算式,列一道减法算式码?

设计意图:让学生在欣赏表演中学习,即可是学生放松身心,又可获得知识。

(四)吹泡泡游戏

引导:小朋友,你们玩过“吹泡泡”的游戏吗?下面小明要给小猫表演吹泡泡了,认真观察图画,思考,互相交流。

设计意图:让学生在自己亲身经历过的游戏中学习,培养学生认真观察和积极思考的精神,初步理解“0”在减法中的意义,从而是学生知道生活中处处有数学。

(五)摆学具游戏

同学们,你们看小方和小明都给小猫表演了自己精心准备的节目,我们是不是也应该表示表示呀?听老师的口令……..

设计意图:结合学习内容,设计学生喜欢的摆小棒实践活动,既可以是学生放松身心,又可以获得知识,进一步理解得数是0的减法算式的实际意义。

(六)分蛋糕,学会合作

小猫要请大家吃蛋糕了,小朋友们高兴吗?

请出5个小朋友,其中一个演小猫,请大家吃蛋糕。

设计意图:结合学生的生活体验,设计吃蛋糕这一环节,让学生感知数学就在自己身边,通过小组活动,给学生提供了充分的合作与交流的机会。

(七)总结

回想这节课,我们都玩了哪些游戏,通过这些游戏你有哪些收获?学生谈收获。

(八)联系国庆,体验快乐

明天就是10月1日了你知道10月1日是谁的生日吗?

设计意图:由小猫的生日自然过渡到为祖国妈妈祝贺生日,培养学生热爱祖国的情感。

(九)布置作业

课本第29页第一题和第二题

数数课件(篇10)

教学内容:北师大五年级下册第64页—65页的《百分数的认识》。

教学目标:

(1)知识与技能:让学生经历从实际问题中抽象出百分数的过程,体会引入百分数的必要性,理解百分数的意义,会正确读写百分数。

(2)过程与方法:让学生经历材料收集与,比较、分析、交流、表达的过程,促进学生个性化的数学理解和表达。

(3)情感态度与价值观:让学生在具体情境中理解百分数的含义,体会百分数与生活的密切联系及在生活中的广泛运用。

教学重点、难点:理解百分数的意义,会正确读写百分数。

教学过程:

一、激趣导入,揭示课题:

1、同学们,姚明是大家非常熟悉的篮球巨星,篮球打得相当棒;我发现我们班的韦江华同学投篮也很不错,我统计了一下他投中的个数和姚明在一场球赛中投中的个数(出示投球比赛记录)

姓 名

投进球数

韦江华

17

姚 明

14

韦江华投进了17个,而姚明只进了14个,我认为韦江华比姚明还厉害,你认为呢?为什么?(关键要看投球总数)

师:好,我们来看一下投球总数(出示投球总数)

姓名

投进球数

投球总数

投进球数占投球总数的几分之几

命中率

韦江华

17

50

姚 明

13

20

问:有了这些数据,你可以怎样判断出两人投球谁厉害?

韦江华和姚明投球命中率各是多少?

(四人小组讨论,汇报)

引导学生写出表示命中率的分数并通分,从而比较出命中率的高低。

师:看来姚明确实比韦江华厉害,不过我相信韦江华如果能得到专业的训练,也会有不错的成绩。

老师这里还有一个问题,不过这次有难度了,有信心吗?

2、出示:科技小组所做的黄豆种子发芽的实验记录表

问:你认为哪个品种的发芽情况最好?

(四人小组讨论,并完成填空)

让学生讨论如何比较出发芽率的高低,并进行汇总,把表示发芽率的分数通过通分都写成分母是100的分数。

师:刚才我们把分数都写成了分母是100的形式,这种分数还有一种更简洁的方式,就是我们今天将要学习的百分数。(板书课题)

二、探索交流,获取新知:

1、认识百分数

像刚才同学们说的这些数,还可以分别:25%、28%、22%,分别读作:百分之二十五、百分之二十八、百分之二十二。

像25%、28%、22%、117.5%……这样的数叫作百分数。

2、认识百分数的读写方法

示范书写:我们在书写百分数时,一定要规范,先写分子,然后在右上角画上一个小圆圈,接着画上斜线,最后画上另一个小圆圈,这个符号叫做百分号。

3、读写练习

(1)出示百分数,要求学生读一读,先读给同桌听,再全班齐读。

25%12.5%0.25%121.5%

180%0.12%500%10.1%

(2)老师读,学生写出来。(写在草稿本上)

百分之五百分之八十三百分之二十三点五

百分之一百八十七百分之三点一二

百分之三十点二五

4、探究百分数的意义

师:我们已经明确了百分数的读法和写法,那么,百分数表示什么意思呢?

我们再来看前面解决的两个问题。

(1)分析第一题(投篮)中百分数的意义

这两个百分数表示什么意思呢?独立思考,交流。你能用一句话概括出这两个百分数的意义吗?

:投中球数占投球总数的百分之几。

(2)分析第二题(发芽率)中百分数的意义

提问:你能也用一句话概括出这三个百分数表示的意义吗?

:发芽的种子数占实验的种子数的百分之几

(3)概括百分数的意义

提问:通过我们大家对前面的,那到底百分数表示什么意思呢?请你先自己想一想,然后同桌交流一下。谁能说一说?

板书:百分数表示一个数是另一个数的百分之几

(4)师:百分数指的是两个数的比率关系。所以百分数还有两个名字(百分比,百分率)

四、练习巩固:

1、课本65页“读一读,说一说”。

2、找找生活中的百分数,并说明百分数的意义。

五、妙解成语:

请你根据成语,说出百分数,看谁说得又对又快。

半壁江山百里挑一百发百中十拿九稳

六、本课:

有一位伟大发明家,他有0多项发明,你们知道他是谁吗?老师送你们一句爱迪生的名言:天才=99%的汗水+1%的灵感,课后请同学们思考一下,这里的百分数表示什么意思。

数数课件(篇11)

教学目标

1.掌握分数四则混合运算的运算顺序,并能正确地计算分数四则混合运算式题。

2.提高学生的自学能力、逻辑推理能力及计算能力。

3.培养学生良好的学习习惯。

教学重点和难点

掌握分数四则混合运算的运算顺序,养成良好的学习习惯,提高做题的正确率。

教学过程设计

(一)复习准备

1.板演练习:

(1)88210+1(2)88[2(10+1)]

2.口算:

3.填空:

4.订正板演题。

提问:这两道题是我们以前学过的整数四则混合运算式题,那么运算顺序是什么?(同级运算从左往右依次演算;有两级运算的四则混合运算,应该先算乘除法即二级运算,再算加减法即一级运算;在含有括号的算式中,应该先脱掉小括号,再脱掉中括号。)

(二)学习新课

1.引出课题。

提问:这两道题与板演题有什么相同之处?有什么不同之处?(相同点:都是四则混合运算;不同之处:板演题是整数四则混合运算,这两道题是分数四则混合运算。)

今天,我们就一起来学习分数四则混合运算。(板书课题:分数四则混合运算。)

2.讲授新课。

(1)小组讨论:想一想,分数四则混合运算的运算顺序是什么?

(2)汇报讨论结果:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。

(3)讨论例题。

①对例1提出问题:这个算式里含有几级运算?应该先算什么?再算什么?(这个算式含有两级运算,应该先算除法,再算加法。)

试做例1。

用投影仪进行订正,并请有错误的同学找出错误的原因,防止再出现类似的错误。

数数课件(篇12)

青岛版分数乘法说课稿

(鞠躬)

各位评委老师你们好。 我是1号选手,今天我说课的课题是(分数乘法 ),

我将从说教材、说教法学法、说教学 过程、说板书设计这四个阶段来完成我的说课。

一、说教材。

( 分数乘法 )是九年义务教育课程标准实验教科书小学数学六年级上册第(8 )页至第( 16 )页的内容。这部分教学内容在《数学课程标准》中属于“数与代数”领域的知识。学习分数乘法是在学生掌握了整数乘法意义以及分数加减法基础上教学的。本节课主要内容是求几个相同分数的和,将分数乘法与整数乘法相联系,并探索出分数乘整数计算方法。学好这部分知识有助于学生为以后分数成分数打下基础。

根据以上对教材理解和内容的分析,我制定了三个方面教学目标:

⒈ 知识目标:掌握分数乘正整数的计算方法,并能准确地进行计算。

⒉ 能力目标:通过动手操作,合作交流的过程中,培养学生的观察能力和探索能

3.情感目标:能运用所学知识解决生活中简单的问题,感受生活与数学的的密切联系。 为了使学生能比较顺利地达到教学目标,我确定了本课的重点和难点。 本课的教学重点是:( 理解让学生掌握分数乘正整数的计算方法,并能准确地进行计算。 ); 本课难点是:在操作活动中探索并理解分数乘整数意义,掌握分数乘整数计算方法。)。

二、说教法、学法:

根据本课教学内容和学生的思维特点,我准备采用以下几种说法和学法。 教法:根据教学内容的特点,为了更好地突教法,我在采用启发式教学法引导学生利用已有的知识经验去探索新知, 并在探索过程中,掌握本课重难。 说学法: 采用自主探索合作交流的方式,在探究新旧知识间的迁移过程中,突破本课重难点。

三、说教学过程

(六)年级的学生生动活泼、富有好胜心理,并且大部分学生已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此,在这节课中我设计了多种活动,大胆地放手让学生自主探究、合作交流,充分发挥学生的主体作用。从而使学生轻松学到知识。同时,为了更好地突出教学重点、突破教学难点,达到已定的教学目标,我设计了以下四个教学环节,下面我就具体说说这四个环节

第一环节:以旧引新

1、在黑板上出几个分数加法的计算题

123173335+ 5 10+10+10 14 +14 +14

在做题目前:

1.我会要求学生写出计算过程。

2.再引导学生说一说分数加法的计算方法。

333让学生想一想,能不能把 14+14+14改写成乘法算式呢:?

很自然地引出今天学习的内容,分数乘法【板书课题】

(这样设计,通过复习旧知为新知的学习提供迁移准备,引起学生的好奇心和求知的欲望,同时激发了学生的学习兴趣)

第二环节:探索交流,解决问题。

本环节我设计了以下几个教学活动。

1.出示例题教学例1

根据题意,电脑课件呈现示意图。

列出解答算式:

2222+2+26 + + = = 1111111111

26 ×3= 1111

(3)组织学生探索分数乘整数的计算方法。 26师:11 ×3= 11,说一说你是怎么想的?

① 让学生在小组交流各自的想法

② 接着小组讨论后让学生反馈思维的过程和结果 2×32222+2+26教师板书:11 +11+11 =11= 6= 11

③最后我会引导学生一起总结分数乘整数的计算方法。

再学生口述分数乘整数的计算方法

2、接着我让学生看到第9页教学例2 3计算:8 ×6

(1) 先让学生独立计算。

(2) 接着同桌交流计算方法和步骤。

(3) 比较计算过程,看一看哪一种更为简单。

(3)最后我会引导学生归纳:能约分的要先约分,再计算。

[本环节的设计意图是:培养学生思维的灵活性,发挥学生在课堂的自主地位。] 第三环节:巩固应用,内化新知。

本环节我依据教学目标和学生在学习中存在的问题,对课本第9页的做一做及练习题目加以整理和归类,有针对性练习。

(本环节设计意图):使学生在解决这些问题的过程中,进一步理解、巩固新知,使学生的创新精神和解决问题能力得到进一步提高。

第四环节:回顾整理,反思提升。

这一环节,我请同学回答三个问题:

⑴ 今天你有什么收获?(2) 你还有什么疑惑?(3)你感觉自己今天表现如何?

让学生互相交流,畅所欲言

四、说板书设计

科学的板书设计有利于学生全面理解学习内容,提高学习效率。在本节课的板书中,我力求简单明了形象的反映知识体系以及知识的发展过程,突出本课的教学重点。

数数课件(篇13)

【教学内容】

二年级数学下册,课本第37~39页。

【教学目标】

结合生活中的现实场景认识锐角和钝角,了解锐角和钝角的特点。

会区分并在实物中找到直角、锐角和钝角,会用相关工具画直角、锐角和钝角。

学生体验在活动中学习,在活动中探究的乐趣。

【教学重难点】

1、认识锐角和钝角,并理解与直角的关系。

2、在认识理解的基础上,能够动手折叠或正确的画出锐角和钝角。

【教具准备】

三角尺、纸张、光盘。

【学具准备】

学生三角尺,纸张、小棒、剪刀、

【教学过程】

一、导入新课:

1.同学们,今天老师给你们介绍一位新老师,大家想见见她吗?

2.新老师带我们到一个好玩的地方去看看。00:33播放光盘(游乐场),00:50暂停。让学生先看:你发现了什么数学秘密。

然后点名让学生说说。

3.同学们观察得真仔细,下面我们把这些角请出来02:00播放光盘,02:20暂停,

你认识哪些角?学生回答。

他说得对吗?你有什么办法验证?请学生用三角板验证。

4.生活中还有很多角。我们再到桥上去找找。05:25播放光盘,06:10暂停,你从中找出了些什么角?指名回答。

电视机里的小朋友还找到哪些角?08:27播放光盘。

5.这些角在生活中起到了很大的作用。你能给这些角分类吗?09:35播放光盘,10:25暂停。小组合作,先分清每个人干什么。分类时可以请三角板来帮忙。

学生小组讨论分类。

6.小组汇报分类情况。你们是怎么分的?为什么这样分?

还有不同的分法吗?

电视机里的同学是怎么分的?播放光盘10:53,展示机内学生分类情况。

7.小结分类情况。你喜欢哪种分法?为什么?

二、探究新知,动手操作

1.我们刚才把这些角分成三类,直角已经有了名称,你能给这些角取个名字吗?你是怎么想的?指名回答。

我们来听听电视机里的同学取了什么样的名字。14:08播放光盘。

小朋友说得真形象!数学上我们就把比直角小的角叫锐角,比直角大的角叫钝角。

今天我们一起来学习锐角和钝角。

板书课题。

2.谁能再说说什么样的角是锐角,什么样的角是钝角?指名说。

3.闭上眼睛想一想直角、锐角和钝角。

4.生活中还有很多锐角和钝角,你能找出来吗?

16:03播放光盘

课前游乐场中的角是什么角?18:58播放光盘,19:15暂停。让学生说一说。

你在生活中见过锐角和钝角吗?让学生指一指。

5.你会做一个角吗?请你动手做一个自己喜欢的角(可选择纸张、小棒、剪刀等材料)。

说说你做的是什么角。

学生汇报展示。

还有不同的吗?

6.你能画一个自己喜欢的角吗?

学生动手画一个自己喜欢的角。

学生汇报。

同桌互相欣赏一下画的是什么角。

7.接下来新老师请大家做一个游戏,好吗?24:05播放光盘,猜角,比比谁猜得又快又准。机内外互动。

三、课堂小结:

这节课我们认识了两位新朋友,说说你有什么收获?

四、课后作业:

这节课同学们和电视机里的同学都收获不少,下课以后找一找生活中的直角、锐角和钝角,并说给家长听。

机动活动:用三角板拼一拼,能拼出哪些角?分别是什么角?

小组合作。

数数课件(篇14)

尊敬的各位老师:

大家好!

今天我说课的课题是《分数乘法—解决问题》(第一课时),这是人教版义务教育课程标准实验教科书六年级上册第2单元第2节的内容。根据新课标的理念,下面我将以教什么,怎样教,为什么这样教为思路,从教材分析(包括教材的地位与作用、教学目标,教学重难点)、学情分析、教法学法及教学手段,教学流程、时间安排和板书设计等六个方面谈谈我在处理这节课时的一些不成熟的想法:

一、教材分析:

(一)、教材的地位和作用

分数乘法这个单元是在整数乘法、分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数、小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际的联系,培养学生应用数学的意识和能力。根据教材的编写思路,本单元把解决“求一个数的几分之几是多少”这一类问题组成“解决问题”一个小节,通过“专项”教学使学生更容易理解这类问题的数量关系,掌握解题思路。

(二)、教学目标

根据《数学新课程标准》对本教材内容的要求,结合六年级学生的特点,我制定了如下的教学目标:

1、知识与技能目标:

(1)在理解分数乘法意义的基础上,使学生学会分析乘法应用题的数量关系,

(2)借助线段图,能正确解答求一个数的几分之几是多少的实际问题。

2、过程与方法目标:

(1)在观察、猜想、尝试练习、交流反馈等活动中,培养学生的分析能力,发展学生思维。

(2)创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,合作交流。

(3)培养学生认真审题,仔细计算的好习惯。

3、情感与态度目标:渗透思想素质教育及丰富学生的基本常识,提高学生对数学学习的兴趣。

(三)、教学重难点:

“求一个数的几分之几是多少”,是具有特殊数量关系的问题,属于两个量相比的关系,帮助学生理解和掌握这类问题的基本思路,也就是如何根据分数乘法的意义、算理来解答自然成为本节课的重中之重,所以:

教学重点:分析应用题的数量关系,理解“求一个数的几分之几是多少”用乘法计算的算理

因为本节课涉及的这类数量关系比较特殊,找到两个相比较的量,关键是弄清哪个量是单位“1”,要求的量是单位“1”的几分之几,再根据分数乘法的意义解答。所以:

难点:正确找准单位“1”所对应的量

二、学情分析

六年级学生刚刚进入初中,年龄特点决定了他们对新事物有极强的好奇心,求知欲旺盛,主观能动性极易被调动,同学之间又善于合作和交流,本节的内容又建立在刚刚学过的分数乘法的基础上,所以在教学时,教师可以创设现实情景,提出数学问题,突出自主探索和合作学习,让学生在已有知识的基础上,自主建构新知识,理解算理,分析数量关系,寻找解决问题的思路。

三、教法学法及教学手段:

教师可以为学生创设一种问题背景下的探索活动,使学生在一种动态的探索过程中自己发现解题方法,从而体验成功的快乐,感受数学的思想方法。基于以上思考,以“自主学习”贯穿全课,引导学生迁移旧知、大胆尝试、质疑讨论、挑战闯关等,把“过程性目标”凸显出来,另外借助现代多媒体教学手段充分体现出新课标理念中数学感知的直观性原则,提高课堂容量,让学生在发现中体会到数学学习的其乐无穷,同时受到良好的国情教育。

四、教学流程:

根据本节教材内容的特点及学生的认知水平,我制定了以下六个教学环节:

(一)、复习质疑、引新

1.口算、的结果并说出算式的意义。

2.列式计算:

20的是多少?6的是多少?

学生完成后,可请同学说一说这两个题为什么用乘法计算?

(导入)同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(板书课题)

设计意图:承上启下,以旧引新。

(二)、引入新知—探究解法

例1的教学:(屏幕展示)

学生读题,找出已知条件和要解决的问题,在理解题意的基础上指导学生画线段图。根据“我国人均耕地面积仅占世界人均耕地面积的”这个条件,应该把这条线段平均分成几份?怎样表示?根据以上数量之间的关系,这道题应该怎样列式?根据什么?(请一学生板演,其他学生尝试自己画图,教师巡视)对照板书,把不正确的地方改正过来。

学生可能会出现下面解答方法:

解法一:世界人均耕地面积是单位“1”,把单位’“1”平均分成5份,我国人均耕地面积占了2份,先求出一份是多少平方米,再求出2份是多少平方米,即我国人均耕地面积是多少平方米。列式解答:2500÷5×2=1000(m2)

解法二:根据分数乘法的意义,我国人均耕地面积占了世界人均耕地面积的,是占了2500 m2的,所以把2500看作单位“1”,要求我国人均耕地面积是多少,就是求2500的是多少,根据一个数乘以分数的意义,所以用乘法计算:2500× =1000(m2)

设计意图:这里主要是通过学生自主探索和合作交流的方式得出,同时不给固定的思考模式,学生可以从不同的角度思考,只要合理就应该肯定。

师:同学们,看到了这个结果,跟世界人均耕地面积2500m2相比,你们有什么感受吗?该怎么办呢?能说说你们的想法吗?(适机让学生看看课本是怎么说的,以快速达到学习教育的效果)【渗透思想素质教育和增长学生的基本常识】

(三)、跟踪训练—深化知识

1、动口填一填:

⑴表示()的()

⑵表示把()看作单位“1”,平均分成()份,共有这样的()份

⑶某班有男同学25人,女同学人数是男同学人数的,这里把()的人数看作单位’1”,求女同学有多少人,就是求()的()是多少,列式是()

⑷甲的工作效率的相当于乙的工作效率,这里把( )的工作效率看作单位“1”,()的工作效率占。

2、动手做一做:课本练习四第2、3题、17页“做一做”

3、小林身高米,小强身高是小林的,小强身高多少米?

设计意图:这一环节的设计意图是反馈教学,内化知识。几道练习题配合新课设计,与例题形式类似,结合这些练习帮助学生进一步巩固解决“求一个数的几分之几是多少”这类问题的思路和方法。

(四)、归纳小结

(学生谈,教师补充,强调。)我们在解答“已知一个数,求它的几分之几是多少?”这种类型的分数乘法应用题时,首先要找准题中的单位“1”所对应的量,然后再根据分数乘法的意义列式计算

设计意图:帮助学生对本节课内容进行梳理,进一步突出重点,解决难点。

(五)拓展练习提高解题能力

1、海象的寿命大约是40年,海狮的寿命是海象的,海豹的寿命是海狮的。海豹的寿命大约是多少年?

(学生默读题目,再独立或合作交流思考)

师:这道题,谁和谁比较?如何找单位“1”?谁来说说你是如何理解分析的?

(老师适机合作,学生自主解答)

2、练习四第10题

设计意图:这个环节安排的第一个练习题是连续求一个数的几分之几是多少的题目,这类练习有利于加强学生对解决这类问题数量关系的理解和分析,培养学生分析判断和推理能力,可借助线段图帮助学生分两步分析数量关系,抓住第一步求什么,谁是表示单位“1”的量;第二步求什么,谁是表示单位“1”的量,分步列出算式,计算出结果,在分步列式的基础上,引导学生列成连乘的综合算式。第二个练习题是个思考题,供学有余力的学生做,与整数中求比一个数的几倍多几的问题思路相同。

(六)、作业布置:

另:预习课本20页至21页的内容,尝试解决下列问题:

①一桶油400千克,用去,用去多少千克?还剩多少千克?

②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

五、时间安排:

复习质疑、引新(3分钟左右);引入新知—探究解法(8分钟左右);

跟踪训练—深化知识(10分钟左右);归纳小结(2分钟左右);

拓展练习提高解题能力(10分钟左右);作业布置:(7分钟左右)

六、板书设计:

例1的两种思路线段图:投影屏幕

学生板演区

以上是我对这节课的教学的看法,希望各位老师指正。谢谢!

数数课件(篇15)

一、说教材

(一)教材地位及作用

1、地位

《分数乘法》是人教实验版六年制上册第二单元的分数乘法的第一课时的内容。这部分内容的学习是在学生已经学习了整数乘法的意义和分数加法计算的基础上进行的。在这个内容中,分数乘整数的意义和整数乘整数的意义相同,都是求几个相同加数的和的简便运算,只是这里的相同加数变成了分数,同时分数乘整数又是分数乘分数、分数乘加、乘减混合运算的基础,因此必须使学生切实掌握好。

2、作用

本部分教材内容是继以前学过的分数的加法和减法后的又一分数运算,它既与整数的乘法有着内在的联系,也是后期进一步学习分数乘以分数的乘法的基础。

(二)教学目标

依据《课标》的要求,结合我对教材的理解和对学情的分析,确定了以下教学目标:

1、知识与技能:能理解分数乘以整数的计算法则,熟练掌握它的运用。

2、过程与方法:创设故事情景,导入问题,引入新课;在教学过程中,通过学生的自主操作和探究,探寻分数乘法的意义,总结出分数乘以整数的计算法则;并利用课堂习题练习和闯关练习题,使学生在实际解题中理解和掌握其运算法则,以及熟练计算涉及约分与化简的计算题,以及运用所学知识解决实际问题的能力,渗透数形结合的数学思想。

3、情感态度与价值观:通过情境故事进入课堂问题,使学生感受生活中处处有数学,进一步激发学生的学习兴趣。

(三)教学重点与难点

根据教学大纲的要求和教学目标,以及我对学情的分析,确定了以下重难点。

重点:掌握分数乘以整数的计算法则,并会在计算题中加以运用。

难点:在计算分数乘以整数的式子中,涉及约分与化简的计算题的运算。

二、说教学法

(一)说教法

为了完成以上教学目标,突出重难点,根据本阶段学生的认知特点和本节课教学内容,我在课前准备了线段单位“1”纸和PPT两种教具。在整节课我将采用以下教学方法:

1、问题导入法:创设问题情境,由一个关于分数乘以整数的计算问题引出本节课主题“分数乘法——分数乘以整数”;

2、演示法:在解决问题中,运用直观的教具,使学生理解题意,从而解决袋鼠与人速度问题。

3、讨论法:让学生们根据计算的过程和结果自己总结计算法则,以培养学生合作意识,增强学生语言表达能力;

4、练习法:在随堂练习的习题中,强化学生对本节内容的理解,从而熟练掌握分数乘以整数的计算法则,并学会在实际问题中解题和做到举一反三以强化新知。

多种教学手段有机地贯穿于教学各环节中,引导学生在感知的基础上加以抽象概括,充分遵循了(从)感知→(经)表象→(到)概念这一认知规律。

(二)说学法

根据新课程改革提出的理念及本节课的教学内容,我打算指导学生运用以下学习方法:

1、计算总结:让学生通过自己计算和讨论总结概括出分数计算的运算法则。

2、运用讨论法、练习法等方式,让学生在大量的实际习题中掌握知识,把文字知识运用于解题中进行掌握,从而进一步调动学生的学习兴趣。努力做到教学做合一,以学生为主体,教师为主导的教学理念,使全体学生都能参与探索新知的过程。

三、说教学过程

本节课分六个教学环节:问题导入、探究新知、巩固练习、课堂总结、布置作业和板书设计。

(一)问题导入

通过讲动物世界中的袋鼠速度与人的速度问题,引入本节课主题“分数乘法”,进而激发学生学习的兴趣。问题如下:人跑一步的距离相当于袋鼠跳一下的2/11,那么人跑三步的距离是袋鼠跳一下的几分之几?

我将引导学生理解题意,带领学生一起解决问题,计算出过程和结果,发现用学过的知识不能计算出分数乘以整数的式子时,从而引出本节课新内容——分数乘以整数。

(二)探究新知

这一环节,分三步走:

1、总结分数乘以整数计算法则。

从日常的生活中引入数学问题,使学生感受到数学知识的日常化、生活化。课件展示袋鼠与人速度问题图,带领学生们一起理解题意,解决问题。然后将让同学们分小组交流,根据黑板上的分数相加以及分数乘以整数的两个式子,讨论总结出计算法则。接着我再根据学生的汇报,进行总结,板书出分数乘以整数的计算法则为:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

2、分数乘以整数计算法则的意义。

在总结出分数乘以整数的计算法则后,趁热打铁,让学生们观察两个式子,找出区别,然后总结出,运用分数乘以整数的计算法则意义为:运用分数乘以整数的计算法则进行计算,将会使得计算更为简洁和准确快速。

3、随堂练习引出约分和化简计算题。

在学习了分数乘以整数的计算法则后,将进行随堂练习,进而巩固知识,也为接下来要学习的涉及约分和化简的计算做铺垫。我将展示以下练习题:

前两道题为基础分数乘以整数练习,后两道题会涉及约分,在由学生们自己的计算中总结出与前面习题不一样的地方,接着我将顺势指出其特别的计算,这道题与前三道题的不同之处在于它会涉及约分,这是本节课又一知识点,即:涉及能约分的分数乘以整数的计算中,要先约分,最后结果为假分数的要化成整数和带分数。

由学生们自己在实际计算中总结出知识点,也能培养学生们观察能力和解题能力以及将知识运用于实际解题中的能力。

(三)巩固练习

练习是帮助学生加深理解和巩固认知的手段,是培养和提高学生的良好心理素质的途径,整节课上我设计了有针对性、层次感强的练习。

1、基本练习:

在基本练习中,一共涉及四道题,分别是一道不涉及任何约分的计算题、涉及直接约分的计算题以及最简结果为整数和最简结果为带分数的两道计算题。

2、提高练习

在提高练习中,我将用一道应用题来进行巩固练习,应用题是六年级的学生常见的题型,这道题的练习不仅能帮助学生锻炼解答应用题的能力,也引出延伸知识,即:在分数与多个整数相乘的计算中,分数乘以整数的计算法则同样适用。

这些练习题难度由简到难,层层深入,具有针对性,有利于学生对不同类型习题的掌握,也进一步的理解和巩固了本节课的知识。

(四)课堂总结

让学生谈谈本节课的收获和体会,使学生体验到探究成功的乐趣,树立学好数学的信心。

本节课课堂内容为:

1、分数乘以整数的计算法则为:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

2、涉及能约分的分数乘以整数的计算中,要先约分,最后结果为假分数的要化成整数和带分数。

(五)布置作业

1、课后练习题第二题

练习题可以帮助学生们加深对所学知识的理解,并能够运用于实际解题中,做到学以致用。

2、预习教材第10页的内容——分数乘以分数。

让学生们由今天所学知识联系下节课新内容,即分数乘以分数的运算,帮助学生们养成课前预习的好习惯,也能培养他们对知识的迁移学习能力,和对知识举一反三的学习能力。

GZ85.com扩展阅读

数学函数课件


你也许需要"数学函数课件"这样的内容。每个老师在上课前需要规划好教案课件,每个人都要计划自己的教案课件了。教案是实现复合型人才培养目标的有效实践。欢迎大家与身边的朋友分享吧!

数学函数课件 篇1

设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1

ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1

ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。

ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。

复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。

函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。

对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;

对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。

ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

ⅱ确定f(x) 和f(-x)的关系:

若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;

若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。

⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。

⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a0时的最大值或a

若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);

若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

数学函数课件 篇2

(一)通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象概括能力.

(二)理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

(三)在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的.

这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax■,(a≠0),故可在此基础上,引入奇、偶函数的概念,便于学生理解.在引入概念时始终结合具体函数的图像,增强直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于有定义域奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念——非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想的效果.

1.观察如下两图(图略),思考并讨论以下问题:

(1)这两个函数图像有什么共同特征?

(2)相应的两个函数值对应表是如何体现这些特征的?

可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

2.观察函数f(x)=x和f(x)=的.图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

由上面的分析讨论引导学生建立奇函数、偶函数的定义.

1.奇、偶函数的定义.

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.

2.提出问题,组织学生讨论.

(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?

(2)奇、偶函数的图像有什么特征?

(3)奇、偶函数的定义域有什么特征?

[例题]

1.判断下列函数的奇偶性.

注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x),∴f(x)=x(1-x).

(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)内是增函数,还是减函数,并证明你的结论.

解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)内是增函数,证明如下:

∴f(x)在(0,+∞)上是增函数.

思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

[练习]

1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

1.有既是奇函数,又是偶函数的函数吗?若有,有多少个?

2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:

(1)F(x)=f(x)·g(x)的奇偶性.

(2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

数学函数课件 篇3

初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0 (a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

数学函数课件 篇4

教学要求:

1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学过程:

一、复习铺垫

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、引入新课

我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

二、教学新课

1、教学例1。

出示例1。让学生计算,在课本上填表。

让学生观察表里两种量变化的数据,思考。

(1)表里有哪两种数量,这两种数量是怎样变化的?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

想一想,这个式子表示的是什么意思?

2、教学例2

出示例2和想一想

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

比值1.6是什么数量,你能用数量关系式表示出来吗?

谁来说说这个式子表示的意思?

3、概括正比例的意义。

像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

4、具体认识

(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

例2里的两种量是不是成正比例的量?为什么?

(2)做练习八第1题。

5、教学例3

出示例3,让学生思考/

提问:怎样判断是不是成正比例?

请同学们看一看例3,书上怎样判断的,我们说得对不对。

强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

1、做练一练第1题。

指名学生口答,说明理由。

2、做练一练第2题。

指名口答,并要求说明理由。

3、做练习八第2题(小黑板)

让学生把成正比例关系的先勾出来。

指名口答,选择几题让学生说一说怎样想的?

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业。

数学函数课件 篇5

目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

二、提出问题

某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?

在这个问题中,可提出如下问题供学生思考并 回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

5.若设该商品每天的利润为y元,求y与x的函数关系式。

将函数关系式y=x(20-2x)(0 <x <10=化为:

y=-2x2+20x (0<x<10)……………………………(1)

将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:

y =-100x2+100x+20D (0≤x≤2)……………………(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?

(分别是二次多项式 )

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点 ?

让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y= 5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.P3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。

数学函数课件 篇6

函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?本文就初中函数教学中三个常见问题,谈谈在教学设计方面一些方法和实践。

数学知识的教学有两条线:一条是明线,即数学知识;一条是暗线,即数学思想方法。单独教授知识无益于课本的复读,利用数学思想进行教学和学习,才能真正实现数学能力的提高。

数学思想方法是对数学的知识内容和所使用方法的本质的认识,它是形成数学意识和数学能力的桥梁,是灵活运用数学知识、数学技能和数学方法解决有关问题的灵魂。 日本数学教育家米山国藏在《数学的精神、思想和方法》一文中曾写道:学生在初中、高中等所接受的数学知识,因毕业进入社会后几乎没有什么机会应用这种作为知识的数学,所以,通常是出校门后不到一两年便很快就忘掉了。然而不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神,数学的思维方法、研究方法、推理方法和着眼点等都随时随地发生作用,使他们受益终身。因此,在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。 在函数的教学中,应突出“类比”的'思想和“数形结合”的思想。

1 .注重“类比教学”

不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法, 利用类比的思想进行教学设计实施教学 , 可称为“类比教学” .

在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ” ,真正实现 “ 教是为了不教 ” 的目的.

有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。

首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓“麻雀虽小,五脏俱全”。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。

数学函数课件 篇7

一、知识与技能

1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.

2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

二、过程与方法

1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.

2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.

三、情感态度与价值观

1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.

2、通过分组讨论,培养学生合作交流意识和探索精神.

教学重点:理解和领会反比例函数的概念.

教学难点:领悟反比例的概念.

教学过程:

一、创设情境,导入新课

活动1

问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

师生行为:

先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.

教师组织学生讨论,提问学生,师生互动.

在此活动中老师应重点关注学生:

①能否积极主动地合作交流.

②能否用语言说明两个变量间的关系.

③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.

分析及解答:(1)

;(2)

;(3)

其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

上面的函数关系式,都具有

的形式,其中k是常数.

二、联系生活,丰富联想

活动2

下列问题中,变量间的对应关系可用这样的函数式表示?

(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;

(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.

师生行为

学生先独立思考,在进行全班交流.

教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

(1)能否从现实情境中抽象出两个变量的函数关系;

(2)能否积极主动地参与小组活动;

(3)能否比较深刻地领会函数、反比例函数的概念.

分析及解答:(1)

;(2)

;(3)

概念:如果两个变量x,y之间的关系可以表示成

的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.

活动3

做一做:

一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?

师生行为:

学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:

①生能否理解反比例函数的意义,理解反比例函数的概念;

②学生能否顺利抽象反比例函数的模型;

③学生能否积极主动地合作、交流;

活动4

问题1:下列哪个等式中的y是x的反比例函数?

问题2:已知y是x的反比例函数,当x=2时,y=6

(1)写出y与x的函数关系式:

(2)求当x=4时,y的值.

师生行为:

学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:

①学生能否领会反比例函数的意义,理解反比例函数的概念;

②学生能否积极主动地参与小组活动.

分析及解答:

1、只有xy=123是反比例函数.

2、分析:因为y是x的反比例函数,所以

,再把x=2和y=6代入上式就可求出常数k的值.

解:(1)设

,因为x=2时,y=6,所以有

解得k=12

因此

(2)把x=4代入

,得

三、巩固提高

活动5

1、已知y是x的反比例函数,并且当x=3时,y=8.

(1)写出y与x之间的函数关系式.

(2)求y=2时x的值.

2、y是x的反比例函数,下表给出了x与y的一些值:

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表.

学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.

四、课时小结

反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.

数学函数课件 篇8

1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

2、函数定义域的解题思路:

⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。

⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。

⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。

⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶ 不要求集合B中的每一个元素在集合A中都有原象。

⑴ 在定义域的不同部分上有不同的解析式表达式。

⑵ 各部分自变量和函数值的取值范围不同。

⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。

有理数的加法课件15篇


本文的“有理数的加法课件”是指教案课件的设计。教案课件是教师在上课前准备好的工具,通常要经过认真的设计和准备。教学教案的精心准备可以帮助教师更好地展开教学活动。为了帮助大家更好地了解“有理数的加法课件”,工作总结之家小编特地整理了一份详尽的文献资料,希望大家会喜欢这篇文章!

有理数的加法课件【篇1】

教学目标:

1.知识与技能

掌握加法法则,体会加法法则的意义。

2.过程与方法

通过经历有理数加法运算的发生过程,体验数的运算探索过程,感悟有理数加法运算的技巧及运算规律。

通过运算归纳出技巧,感悟绝对值不相等的异号两数相加的技巧,突破本节内容中的难点问题。

3.情感、态度与价值观:

养成积极探索、不断追求真知的品格。

教学重点和难点:

重点:有理数加法法则;

难点:异号两数相加的法则。

教学安排:

第1课时。

教学过程:

一、师生共同研究有理数加法法则

我们已经熟悉正数的加法运算,然而实际问题中做加法运算的数有可能超出正数范围。

例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。掌前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4+(-2),黄队的净胜球数为1+(-1)。

这里用到正数与负数的加法。学生考虑一下,怎么计算 4+(-2)?

师:下面我们可以借助数轴来讨论有理数的加法。

一个物体作左右方向运动,我们规定向左为负,向右为正。

① 两次运动后物体从起点向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

有理数的加法课件【篇2】

一、教学内容

《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

二、设计理念

七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

三、教学目标与重难点

目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;

2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

重点:会用有理数加法法则进行运算.

难点:异号两数相加的法则.

四、学情分析

1.学生非常熟悉正数加正数,正数加零的情况。

2.有理数的分类、数轴、绝对值的相关知识已经掌握。

3.学生善于形象思维,思维活跃,能积极参与讨论。

五、教学策略

1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

六、教学流程

1.回顾旧知,启发思维

展示课件上的三个问题,请同学们思考并回答。

(1)有理数是怎么分类的?

(2)有理数的绝对值是怎么定义的?

(3)下列各组数中,哪一个数的绝对值大?

7和4; -7和4; 7和-4; -7和-4

【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

2.创设情境 引入课题

问题一:两个有理数相加,有多少种不同的情形?

答:正+正,负+负,正+负,正+0,负+0,0+0.

【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

(出示课题)

【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

(二)分析问题探究新知

问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

学生们各抒己见,总结法则。

1、 同号两数相加,取相同的符号,并把绝对值相加。

2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

3、 一个数同0相加,仍得这个数

老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

(三)运用新知深入体会

例1计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

解题时,先确定和的符号,后计算和的绝对值.

课堂练习:

1.计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.计算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

3.用“>”或“

(1)如果a>0,b>0,那么a+b____0;

(2) 如果a

(3) 如果a>0,b|b|,那么a+b____0;

(4) 如果a0, |a|

【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

(1)如果a>0,b>0,那么a+b=+(|a|+|b|)

(2) 如果a

(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)

(4) 如果a0, |a|

(5)a+0=a.

【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

(四)延伸拓展敢于挑战

问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

问题六:小学学过的运算律是否适用于有理数的加法?

【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

(五)归纳总结感受思想

(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

(2)本节课你学习到了哪些数学思想方法?

【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

(六)布置作业

(1)P56 习题1、3

(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

七、设计说明

1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

有理数的加法课件【篇3】

教学目标

1.进一步掌握有理数的加法运算法则,理解加法运算律在有理数范围内推广的合理性,掌握有理数的加法运算律;

2.能灵活、合理地运用有理数的加法运算律进行简化计算;

教学重点:

有理数的加法运算律

教学难点:

灵活运用加法运算律

教学过程:

一、1.回忆小学里学过的加法运算律有:(1);(2).

2.阅读P33解决问题的方法,计算下列各题,再比较它们的大小:

(1)(-15)+6=,6+(-15)=,(-15)+66+(-15);

(2)(-3.2)+(-5.8)=,(-5.8)+(-3.2)=,

(-3.2)+(-5.8)(-5.8)+(-3.2);

(3)[6+(―5)]+(―4)=,6+[(―5)+(―4)]=,

[6+(―5)]+(―4)6+[(―5)+(―4)].

3.依据上述问题的解答,归纳有理数的`加法运算律:交换律:;

结合律:.

4.计算:

(1)(-5.15)+9.15;(2)9.15+(-5.15);

(3)[3+(—5)]+(—7);(4)3+[(—5)+(—7)].

二、展示交流

1.在下列“△”“○”“□”中各写一个有理数,比较(1)和(2),(3)和(4)的计算结果,你有什么发现?与同伴交流.

(1)△+○=;(2)○+△=;

(3)(△+○)+□=(4)△+(○+□)=.

2.计算:

(1)12+(-15)+(-6)+(-20)+18+25;(2)(-)+(-)+(+)+(+).

三、课堂反馈

1.计算:

(1)16+(-25)+24+(-32);(2)23+(-17)+6+(-22);

(3)(-2)+3+1+(-3)+2+(-4);(4)(-7)+(-6.5)+(-3)+6.5.

2.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞行高度是多少?

3.小吃店一周中每天的盈亏情况如下(盈余为正):

128.3元,-25.6元,-15元,+27元,-7元,-36.5元,+98元,则本周的盈亏情况如何?

四、迁移创新

一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,结果如下表(单位:克)

听号12345

质量444459454459454

听号678910

质量454449454459464

这10听罐头的总质量是多少?

五、课堂作业课本P39习题2.5第3题

有理数的加法课件【篇4】

今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。

有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。

1、知识与能力目标:

(1)了解有理数加法的意义。

(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。

2、过程与方法目标:

(1)经历法则探索的过程,培养学生归纳总结知识的能力。

(3)在探索过程中感受数形结合和分类讨论的数学思想。

(4)渗透由特殊到一般的唯物辩证法思想。

3、情感与态度目标:

(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。

(2)培养学生协作意识,体验成功,树立学习自信心。

我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。

教学程序:

我采用的教学模式分为“引——探——结——用”四个环节。

例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2)。

蓝队的净胜球数为1+(-1)。

这里用到正数和负数的加法。

那么,怎样计算4+(-2)呢?

此环节大约2分钟。

现规定正能量为正,负能量为负。

(1)若两个好人携带正能量分别为+20、+30。

则相加的结果是( )。

(2)若两个坏人携带负能量分别为—20、—30。

则相加的结果是。

这两个算式,运算有什么特点呢?

负数+负数,负能量增大。

最后概括为①定符号;②把绝对值相加。

(3)若一个好人携带正能量+30一个坏人携带负能量—10。

则两人较量的结果是( )赢,还剩( )能量。

(4)若一个好人携带正能量+20一个坏人携带负能量—40。

则两人较量的结果是( )赢,还剩( )能量。

这组算式,运算有什么特点呢?

异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大,符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。

最后概括为①定符号;②把绝对值相减。

再看两种特殊情形:

(5)若一个好人携带正能量+30,一个坏人携带负能量—30。则两人较量的结果是( ),还剩()能量。

新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。

1、同号两数相加:

取加数的符号,并把绝对值相加。

2、异号两数相加:

取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得0。

此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。

数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题。例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。

在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。

我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。

我用卡通动画人物来引入问题情境,使学生能够形象的理解有理数加法法则。在思考问题时,首先应让学生对好人、坏人在一起有几种情况有一个明确的认识,培养学生考虑问题的完整性。然后再逐一的进行探索,通过学生谈论交流,最后得到有理数的四条加法法则。

我安排了同号两数相加和异号两数相加两种最典型的类型,以起到巩固法则和规范格式的作用。

为了培养学生的数学语言的表达能力,在课堂中我尽可能的让学生用自己的话来表达。这样可以及时纠正学生错误,引导学生规范的表达。

有理数的加法课件【篇5】

一. 教材的地位和作用

有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。二.教学目标 1、认知目标:

(1)理解有理数加法的意义;

(2)理解并掌握有理数加法的法则; (3)应用有理数加法法则进行准确运算; 2、 能力目标:

(1)培养学生准确运算的能力; (2)培养学生归纳总结知识的能力; 3、情感目标:

(1)通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造。 (2)体会有理数加法的数形思想。

三.教学重点、难点:

整节课都是围绕着有理数加法法则进行的,因此根据《教学大纲》的要求,本节课的重点是:有理数加法法则的理解与运用。突破策略:?利用多媒体手段,借助于动画演示,化抽象为具体.?讲清楚探究有理数加法法则的方法和过程。由于学生第一次接触带有符号的两个数

相加,必须克服小学里长期形成的算术加法的思维定势的影响,特别是异号两数相加的符号和绝对值因此我确定本节课的难点是:异号两数相加加法法则的理解和应用。突破策略;?精选各种有趣的题型,让学生通过训练,尝试成功. ?利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。

教学方法

我在本节课主要采用“引导——发现教学法”,并借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当主角,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具多媒体 ,让学生在多媒体演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

在整个教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

学习方法

七年级学生是智力发展的关键年龄,逻辑思维从经验型逐步向理论型发展。观察能力,记忆能力和想象能力也随着迅猛发展。他们生性好动,注意力易分散,爱发表见解,希望得到老师的表扬。所以在教学中我抓住学生的这一生理特点,一方面应用直观生动的形象幻灯图象,引发学生的兴趣,使他们的注意力始终集中在课堂上。另一方面通过小组竞赛和互举例子创造条件和机会,让学生发表见解,发挥学生学习的主动性。

本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。

采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。

教学过程

《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。

有理数的加法课件【篇6】

一.教学目标

1.知识与技能

(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

(2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

2.过程与方法

通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。

3.情感态度与价值观

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二、教学重难点及关键:

重点:会用有理数加法法则进行运算.

难点:异号两数相加的法则.

关键:通过实例引入,循序渐进,加强法则的应用.

三、教学方法

发现法、归纳法、与师生轰动紧密结合.

四、教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

五、教学过程

(一)问题与情境

我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。

(二)师生共同探究有理数加法法则

前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

(+3)+(+1)=+4.

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

(-2)+(-1)=-3.

现在,请同学们说出其他可能的情形.

答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

(+3)+(-2)=+1;

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)+(+2)=-1;

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(+3)+0=+3;

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

(-2)+0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

0+0=0.

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数.

(三)应用举例 变式练习&&

例1 口答下列算式的结果

(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.

学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

例2(教科书的例1)

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)

=-(3+9) (和取负号,把绝对值相加)

=-12.

(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

=-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)

=-0.8

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)作业设计

1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.

3.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0

(六)板书设计

1.3.1有理数加法

一、加法法则二、例1例2例3

有理数的加法课件【篇7】

1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。

2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。并能运用有理数加法解决实际问题。

3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。

教学活动

师生活动

设计意图

小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?

5+3=8

如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?

(-5)+(-3)=-8

如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?

5+(-3)=2

足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。

图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的净胜球数如何表示?

有理数加法法则:

1.同号两数相加,取相同符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.

3.一个数同0相加,仍得这个数。

例1 计算

(1) (-3)+(-9)

(2) (-4.7)+3.9

解:(1)(-3)+(-9)=-(3+9)

=-12

(2)(-4.7)+3.9=-(4.7-3.9)

=-0.8

这节课我们学习了哪些知识?

习题1.3 1、8、12题

有理数的加法课件【篇8】

【教学目标】

1.理解有理数加法的实际意义;

2.会作简单的加法计算;

3.感受到原来用减法算的问题现在也可以用加法算.

【对话探索设计】

〖探索1〗

(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?

(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?

(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?

(4)把第(3)题的算式列为300+(-200),有道理吗?

(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?

〖探索2〗

如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?

假设原点为运动起点,用下面的数轴检验你的答案.

在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?

〖小游戏〗

(请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?

〖练习〗

1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?

2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?

〖补充作业〗

1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):

(1)温度由下降;(2)仓库原有化肥200t,又运进-120t;

(3)标准重量是,超过标准重量;(4)第一天盈利-300元,第二天盈利100元.

2.借助数轴用加法计算:

(1)前进,又前进,那么两次运动后总的结果是什么?

(2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少?

3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?

有理数的加法课件【篇9】

“有理数的加法”是北师大版七年级数学上册第二章有理数及其运算的第四节内容,本节内容安排三个课时,本课时是本节内容的第一课时,本课设计主要是通过知识竞赛中得分的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。“有理数加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(20分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.注重引导学生参与探索、归纳有理数加法法则的'过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.所以根据这个情况本节课的设计就采取了第二种方案。

学生刚升入初中不久,对于新的教学方法还不太熟悉,在新时期下,学习过程更注重对于学生能力的培养,而不是单纯的强调学生掌握一些定式的法则,学习知识是为了解决实际问题,而学生又缺少分析问题的能力,所以小组讨论就是学生锻炼能力的重要方式,但小组讨论往往不知道从何说起,这就需要老师给学生设定合适的话题,让学生有的放矢,而学生在课前已经进行了教材的阅读,对于教材内容没有新鲜感,所以这时我从问题入手,举出一个看似搞笑的结果,让学生产生兴趣,积极参与,培养学生归纳及自主探索和合作交流能力。

1.知识与技能

(1)通过知识竞赛中小组得分的计算,经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法,使学生掌握有理数加法法则,并能运用法则进行计算。

(2)理解有理数的加法法则和运算律,在有理数加法法则的教学过程中,注意培养学生的运算能力。

(3)能熟练进行整数加法运算,并能用运算律简化运算。

2.过程与方法

通过观察,比较,归纳等得出有理数加法法则,能运用有理数加法法则解决实际问题。

3.情感与态度

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

4.重点与难点

会用有理数加法法则进行运算.异号两数相加的法则.类比小学阶段学习的加法,比较其中的差别,注重不同点的教学,即异号两数相加时的绝对值相减的问题。

(一)创设问题情境首先设置一个大家都感兴趣的话题:某次数学竞赛,有三种参赛队,比赛规则规定,每答对一题得4分,答错一题扣4分,不答不得分也不扣分。最后得了冠军的队一道题都没答,而第二名还答对了三道题,这是一个什么样的情况?请设计一个具体情况,使这种情况合理符合题意。

问题出来之后请学生小组讨论分析,每个组的答案可能不一致,比如说第二名可以是答对三题但答错了五道题,那么得分就是-8分,而第三名可以是答错了一题,一个也没答对。然后由学生给出计算过程,即(+12)+(-20)=-8分,也可以有其它举例。

(二)师生共同探究有理数加法法则

之前我们已经学习了有理数的一些知识,比如绝对值等,以上面的问题为例,来不分析不同情况下的得分情况:

(1)答错3题时:

(-4)+(-4)+(-4)=-12分

(2)答对5题时:4+4+4+4+4=20分

(3)答对3题,答错5题时,答对的3题与答错的3题抵消为0,剩下的两个答错题得分为-8,即12+(-20)=-8由学生讨论其它情形的得分情况及计算方法。总结:先确定得分是正还是负的,再考虑绝续值。法则得出:加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

(三)应用法则解决问题

例1(教科书的例1)

解:(1)(-10)+(-1)(两个加数同号,用加法法则的第2条计算)=-(10+1)(和取负号,把绝对值相加)=-11(2)180+(-10)(两个加数异号,用加法法则的第2条计算)=+(180-10)(和取正号,把大的绝对值减去小的绝对值)=+170(3)5+(-5)

=0(互为相反数的两个数相加得0)(4)0+(-2)

=-2(一个数同0相加,仍得这个数)

例1.计算下列算式,先判断正负说理由,再计算绝对值。(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);总结:给以上各题分类,即同号还是异号,再选择法则的相应内容去解决问题。

强调异号两数相加时符号的确定及绝对值的确定。

(四)小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)练习设计

1、基础练习:

教材36页知识技能1.计算

(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25(4)45+(-23);

(5)-45+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37;(9)(-13)+0通过计算学生总结法则哪部分的应用最易出错,从而提示学生注重异号两数相加时符号的确定及绝对值的确定。教材第2、3题自己完成

数学理解中设计-4+3的情境,是为了锻炼学生解决实际问题的能力。可以有多种,比如气温的变化,得分的变化,水位的变化等。

2、提升练习

1.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0

2.已知如图:

那么a+b ______0;

a

0

b

本节教案设计注重引导学生参与探索、归纳有理数加法法则的过程,紧跟教学改革的脚步,把培养学生能力做为主要内容,同时注重合做交流,小组讨论,学习的过程是培养学生能力的过程,同进也兼顾数学学习的基础,计算能力的培养,让学生掌握加法法则,类比有理数范围的加法和小学阶段的加法的区别,并能用法则进行计算。

有理数的加法课件【篇10】

一、教学内容分析

本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

二、学习者分析

七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

三、教学目标

1、使学生掌握有理数加法法则,并能运用法则进行计算;

2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

四、信息技术应用分析

由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

五、教学过程

1、复习提问,引入新知

通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

2、出示问题情境、解决新知

在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

3、探索发现,归纳新知

利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

4、展示例题、应用新知

此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

5、达标训练,巩固新知

本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

6、规律总结,升华新知

本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

7、作业和运用,拓展新知

通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

有理数的加法课件【篇11】

1. 教学目标

1.1地位、作用

在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力.运算能力的培养主要是在初一阶段完成. 有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提.有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习.

1.2学情分析

在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂.因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障.围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力.

另一方面,课本知识的传授是符合学生的认知发展特点的.在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础.

1.3教学目标

根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:

知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用.

能力目标:通过情境的设计,培养学生的探索创新精神.在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力.

情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣.

1.4教材处理

根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算.

2. 重点、难点

2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则).

2.2教学难点:异号两数加法的实际意义及法则的归纳.

3. 教学方法与教学手段

本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力.

在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区.

4. 教学过程:

4.1创设情境,让学生的思维“动”起来

[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲.从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志.将跑道抽象为数轴,起跑点为原点,将生活问题数学化.

说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索.

4.2体验进程,让学生的思维“活”起来

“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲.

[开放式探索] 刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米.问刘翔两次以后的位置可能在哪里?

设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性.它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟.这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题.在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化.

教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导.

预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方.这是一个距离与位移的概念混淆并且教学中不宜新增概念. ②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃.

处理方法:①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈.②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼 .③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区.

教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题.

4.3探究规律,让学生的思维“跳”起来

用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少.

在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲.让学生作课堂的主人,陈述自己的结果.对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径.

预先设想学生思路,可能从以下方面分类归纳,探索规律:

① 从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)

② 从加数的不同数值情况(加数为整数;加数为小数)

③ 从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)

④ 从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)

⑤ 从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)

教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏.

4.4注重反思,让学生的思维“深”下去

[反思应用1] 例1:计算 (-3)+(-9) ; (-4.7)+3.9;

[反思应用2] 例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数?

设计意图:当数学知识转化为表象知识时,一定要让学生从形式化过渡到符号化与数字化.这两例都是课本例题,教学过程中现在要减少学生的表象思维,让他们尽可能习惯用法则做题.培养学生的“数学化”意识.

4.5拓展应用相结合,让学生的思维得以升华

[练习1]计算 15+(-22); (-13)+(-8);

[练习2]用算式表示下列结果:

⑴ 温度由-4C上升7 C ⑵收入7元,又支出5元

[练习3]火眼金睛找错误:

=-1.7

②文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米又接着向西走了60米,此时小明的位置在( )

A.文具店 B.玩具店 C. 文具店西边40米处 D. 玩具店西边60米处

C组: ①找规律:从表1中找规律,并按规律在表2的空格里填上合适的数

② 为了体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的马路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17

⑴如果最后一名老师送到目的地时,小王距出车地点的距离是多少?

⑵若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?

设计意图:分层设计练习,满足不同基础水平和不同思维层次的同学的需要.A类题训练学生的定向思维,培养基本技能;B类题主要训练学生的发散思维,培养学生的灵活性;C类题具有一定的挑战性,培养学生思维的深刻性,同时在挑战的过程中,培养学生的意志力.

[板书设计]

有理数的加法(一)

2 + 3 = 5

(-2)+(-3)=-5

2 + (-3)=-1

(-2) + 3 =1

(-2) + 2 = 0

0 + 3 = 3

0 + (-3)= -3

同号两数相加

绝对值不相等的异号两数

异号两数相加

绝对值相等的异号两数

一个数同0相加

(法则归纳)

先定符号,再算绝对值

教学设计的说明

布鲁纳的认知理论认为:人的认知过程要经历一个从“实物操作”到“表象操作”再到“符号操作”的过程,这时知识才真正内化到人的认知结构.我觉得,这种认知规律是我在这堂课的教学的设计过程中应该遵循并且努力实现的.

《有理数的加法》是一堂纯粹的运算技能课,如何在这种我们认为理所当然而学生茫然无知的课上让学生感觉自己是知识的主人,有主动探索发现的权利是我备课时反复琢磨的一个主题,怎么才能把一堂传统的“教、记、练”的课有效地发挥教师的引导作用从而使课堂富有生命力真正培养学生的各方面能力更是我所追求的.我想,数学就应该是这样一种在具体、半具体、半抽象、抽象中间的铺排,是穿梭于实物与算式之间的一种形式化过渡.

弗兰德对师生语言互动进行分类时认为,课堂上教师的讲与学生的讲有三种交流方式:回应、中立、自发,在这堂课上,我希望学生能自发地运用语言表述他们的需要与探索,我充分设想学生的可能困难同时又充分相信学生、充分调动学生的积极性与参与意识,让他们的思维动起来、跳起来再沉下去,让学生思维从形式化过渡到符号化、数字化,让学生真正成为课堂的主人.

有理数的加法课件【篇12】

第一课时

三维目标

一、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

二、过程与方法

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。

三、情感态度与价值观

培养学生主动探索的良好学习习惯。

教学重、难点与关键

1.重点:掌握有理数加法法则,会进行有理数的加法运算。

2.难点:异号两数相加的法则。

3.关键:培养学生主动探索的良好学习习惯。

四、教学过程

一、复习提问,引入新课

1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?

2.比较下列每对数的大小。

(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。

五、新授

在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

要解决这个问题,先要分别求出它们的净胜球数。

红队的净胜球数为:4+(-2);

蓝队的净胜球数为:1+(-1)。

这里用到正数与负数的加法。

怎样计算4+(-2)呢?

下面借助数轴来讨论有理数的加法。

看下面的问题:

一个物体作左右方向的运动,我们规定向左为负、向右为正。

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

有理数的加法课件【篇13】

1.教学目标

1.1地位、作用

在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

1.2学情分析

在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂。因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障。围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力。

另一方面,课本知识的传授是符合学生的认知发展特点的在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础。

1.3教学目标

根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:

知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用。

能力目标:通过情境的设计,培养学生的探索创新精神。在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力。

情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣。

1.4教材处理

根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算。

2.重点、难点

2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则)。

2.2教学难点:异号两数加法的实际意义及法则的归纳。

3.教学方法与教学手段

本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力。

在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区。

4.教学过程:

4.1创设情境,让学生的思维“动”起来

[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲。从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志。将跑道抽象为数轴,起跑点为原点,将生活问题数学化。

说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索。

4.2体验进程,让学生的思维“活”起来

“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲。

[开放式探索]刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米。问刘翔两次以后的位置可能在哪里?

设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性。它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟。这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题。在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化。

教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导。

预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方。这是一个距离与位移的概念混淆并且教学中不宜新增概念。 ②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃。

处理方法:①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈。②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼。③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区。

教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题。

4.3探究规律,让学生的思维“跳”起来

用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少。

在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲。让学生作课堂的主人,陈述自己的结果。对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径。

预先设想学生思路,可能从以下方面分类归纳,探索规律:

①从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)

②从加数的不同数值情况(加数为整数;加数为小数)

③从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)

④从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)

⑤从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)

教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏。

4.4注重反思,让学生的思维“深”下去

[反思应用1]例1:计算(—3)+(—9);(—4。7)+3。9;

[反思应用2]例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数?

设计意图:当数学知识转化为表象知识时,一定要让学生从形式化过渡到符号化与数字化。这两例都是课本例题,教学过程中现在要减少学生的表象思维,让他们尽可能习惯用法则做题。培养学生的“数学化”意识。

4.5拓展应用相结合,让学生的思维得以升华

[练习1]计算15+(—22);(—13)+(—8);

[练习2]用算式表示下列结果:

⑴温度由—4C上升7 C ⑵收入7元,又支出5元

[练习3]火眼金睛找错误:

=-1。7

②文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米又接着向西走了60米,此时小明的位置在()

A.文具店B。玩具店C。文具店西边40米处D。玩具店西边60米处

C组:①找规律:从表1中找规律,并按规律在表2的空格里填上合适的数

②为了体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的马路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,—4,+13,—10,—12,+3,—13,—17

⑴如果最后一名老师送到目的地时,小王距出车地点的距离是多少?

⑵若汽车耗油量为0。4升/千米,这天下午汽车共耗油多少升?

设计意图:分层设计练习,满足不同基础水平和不同思维层次的同学的需要。A类题训练学生的定向思维,培养基本技能;B类题主要训练学生的发散思维,培养学生的灵活性;C类题具有一定的挑战性,培养学生思维的深刻性,同时在挑战的过程中,培养学生的意志力。

[板书设计]

有理数的加法课件【篇14】

学习目标

1. 理解有理数的加法法则.

2. 能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.

3. 掌握异号两数的加法运算的规律.

[知识讲解]

正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为

4+(-2),

蓝队的净胜球数为

1+(-1)。

这里用到正数和负数的加法。

下面借助数轴来讨论有理数的加法。

一、负数+负数

如果规定向东为正,向西为负,那么一个人向西走2米,再向西走3米,两次共向西走多少米?很明显,两次共向西走了6米.

这个问题用算式表示就是:(-2)+(-4)=-6.

这个问题用数轴表示就是如图1所示:

二、负数+正数

如果向西走2米,再向东走4米, 那么两次运动后 这个人从起点向东走2米,写成算式就是

(—2)+4=2。

这个问题用数轴表示就是如图2所示:

探究

利用数轴,求以下情况时这个人两次运动的结果:

(一)先向东走3米,再向西走5米,物体从起点向()运动了()米;

(二)先向东走5米,再向西走5米,物体从起点向()运动了()米;

(三)先向西走5米,再向东走5米,物体从起点向()运动了()米。 这三种情况运动结果的算式如下:

3+(—5)= —2;

5+(—5)= 0;

(—5)+5= 0。

如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人

从起点向东(或向西)运动了5米。写成算式就是

5+0=5或(—5)+0= —5。

你能从以上7个算式中发现有理数加法的运算法则吗?

三、有理数加法法则

1. 同号的两数相加,取相同的符号,并把绝对值相加.

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得零.

3一个数同0相加,仍得这个数。

四、例题

例1 计算(-3)+(-9);(2)(-4·7)+3·

分析:解此题要利用有理数的加法法则. 解:(1) (-3)+(-9)= -(3+9)= -12:

(2) (-4·7)+3·9=-(4·7-3·9)= -0·8.

例2足球循环赛中,

红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。 解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。 三场比赛中,红队共进4球,失2球,净胜球数为

(+4)+(—2)=+(4—2)=2;

黄队共进2球,失4球,净胜球数为

(+2)+(—4)= —(4—2)= ();蓝队共进()球,失()球,净胜球数为

()=()。

五、课堂练习1.填空:

(1)(-3)+(-5)=;(2)3+(-5)=;

(3)5+(-3)=;(4)7+(-7)=;

(5)8+(-1)=;(6)(-8)+1 =;

(7)(-6)+0 =;(8)0+(-2) =;

2.计算:

(1)(-13)+(-18);(2)20+(-14);

(3)1.7 + 2.8 ;(4)2.3 + (-3.1);

121)+(-);(6)1+(-1.5); 332

12(7)(-3.04)+ 6 ;(8)+(-). 23(5)(-

3.想一想,两个数的和一定大于每个加数吗?请你举例说明.

4. 第23页练习 1、2。

课堂练习答案

1.(1)-8; (2)-2; (3)2; (4)0; (5)7; (6)-7;

(7)-6; (8)-2.

2.(1)-31; (2)7; (3)4.5; (4)-0.7; (5)-1 ;

(6)0 ; (7)2.96; (8)-1. 6

3.不一定,例如两个负数的和小于这两个加数.

课外作业:第31页1题.

课外选做题

1.判断题:

(1)两个负数的和一定是负数;

(2)绝对值相等的两个数的和等于零;

(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;

(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.

2.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.

3.已知│a│= 8,│b│= 2.

(1)当a、b同号时,求a+b的值;

(2)当a、b异号时,求a+b的值.

课外选做题答案

1.(1)对;(2)错;(3)错;(4)错.

2.a+b和a+(-b)的值分别为0.8、-4.

3.(1)当a、b同号时,a+b的值为10或-10;

有理数的加法课件【篇15】

第一课时

三维目标

一、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

二、过程与方法

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。

三、情感态度与价值观

培养学生主动探索的良好学习习惯。

教学重、难点与关键

1.重点:掌握有理数加法法则,会进行有理数的加法运算。

2.难点:异号两数相加的法则。

3.关键:培养学生主动探索的良好学习习惯。

四、教学过程

一、复习提问,引入新课

1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?

2.比较下列每对数的大小。

(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。

五、新授

在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

要解决这个问题,先要分别求出它们的`净胜球数。

红队的净胜球数为:4+(-2);

蓝队的净胜球数为:1+(-1)。

这里用到正数与负数的加法。

怎样计算4+(-2)呢?

下面借助数轴来讨论有理数的加法。

看下面的问题:

一个物体作左右方向的运动,我们规定向左为负、向右为正。

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

小数乘小数课件


期盼这份"小数乘小数课件"能够为您提供更全面的信息,我们将不断改进和提高希望您能多多关注我们的网站。教案课件是老师工作中的一部分,要是还没写的话就要注意了。设计教案需要注重对学生的关爱和支持。

小数乘小数课件 篇1

今天我说课的课题是《小数乘小数》。是苏教版小学五年级上册第九单元第一课时的教学内容。这部分内容主要是教学小数乘小数的计算,教材一共安排了两道例题和4道练习题。

一、分析教材

(一)教材所处的地位

小数乘以小数是在学生学习了小数乘以整数、整数乘以小数及整数乘法的基础上进行教学的。它既是小数除法学习的基础,也是小数四则混合运算和分数小数四则混合运算学习的基础。

(二)学情分析。

由于前面的学习,学生已有很多丰富的感性经验,还有一些学习能力强的学生已懂得了计算的方法,但是对于算理的理解还是不到深刻。

(三)教学的要求及重、难点的确定

教学目标:

1、从学生原有的知识经验出发,通过主动探索和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行笔算。

2、在探索过程中,通过观察、比较、归纳与概括的过程中,学会用数学语言进行表述交流,渗透转化思想。

3、使学生体验学习过程是研究的过程,感受探索成功的愉悦,分享与同伴学习的乐趣。

教学重点:探索并掌握“小数乘以小数”的计算方法。

教学难点:两个因数都扩大10倍,积就扩大100倍的理解。

二、说教法、学法

(一)学法

尝试-----探索交流-----总结方法-----运用解决问题

学生的学习就是紧紧依托已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“尝试、探索交流、解释心中一个又一个的迷团,总结出方法、最后会运用方法解决问题”这一循环过程中,发现“积中小数位数与因数小数位数”的关系,得出计算的方法。

(二)教法

引导交流,深化提炼。

学生是学习的主体,只有学生的主动、积极参与的课堂才是具有灵性的课堂,真实的课堂。《积极学习101个策略》中提到,教会别人是最好的学习策略。再一个学生的思维与成人之间有很大的区别,因此学生的方法才最好。所以把课堂让给学生,让学生在交流中获得新知,使得课堂充满活力。

(三)说教学程序

1、创设情境,引出可探索的“数学问题”。

数学来源于生活,数学更服务于生活。通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到数学与生活的密切联系,激发产生计算的迫切需要,在急于要弄明白的求知心理驱动下,激起了探索的欲望,为下一步的自主探究创造了良好的心理条件。

2、对算理和算法的自主探索。

放手让学生尝试运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。通过相互的交流,相互的质疑,不断产生认知冲突,思维碰撞出火花,营造出继续探索规律,解释新问题的氛围。

(1)独立尝试。独立计算,学生会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,有助于教师充分了解学生计算小数乘以小数时在认知上的难点,为教师接下来有针对性、有重点的教学找准了最佳的切入口。

(2)交流算法碰撞思维。在交流中,不同层次的学生畅谈自己的算法与想法,老师可以及时掌握学生不同的思维生长点和认知区别。尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生认识上的冲突和思维的碰撞,这样从错误到理解,加深学生对算理的理解。

小数乘小数课件 篇2

一、教学目标:

1、了解小数的产生和理解小数的意义。

2、掌握小数的计数单位及单位间的进率。

二、教育方面:

1、培养学生的观察、分析能力和抽象概括能力。

2、感受数学与生活的联系及其价值,体验数学学习的乐趣。

三、教材分析:

1、教学内容:义务教育课程标准实验教科书数学四年级下册《小数的认识和加减法》中的“小数的意义”问题。

2、内容分析:教材选用测量黑板、课桌,一方面这两种事物都是教室里学生非常熟悉的,另一方面学生在测量之后除了能够体会小数的产生于实际需要以外,还可以将测量结果作为一般的常识来掌握。考虑到学生对长度单位比较熟悉,教材仍选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过分米(厘米、毫米)改写成米数,三个层次共同说明,把低级单位的数改写成高级单位的数可以用分母是10.100、1000的分数表示,再进一步用小数表示。教材着重从“小数是十进分数的另一种表现形式”的角度说明小数的含义,最后教材说明小数的计数单位及相邻两个计数单位之间的进率由学生自己填出。

3、学情分析:小数的意义属于概念教学,比较抽象,在操作中要重过程。根据本课教学内容的特点和学生对概念认知的思维特点,我们在制定本课教学环节时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验。

四、教学目标:

(1)使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。

(2)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

(3)培养学生的观察、分析、推理能力。

五、教学重点、难点。

教学重点:使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位和相邻两个计数单位间的进率。

教学难点:小数意义的探究过程和相邻两个计数单位间的进率。

教学准备:多媒体课件、测量工具(米尺)。

六、教学过程:

(一)操作导入:

1、让两名学生测量黑板、课桌长度。(用米作单位)

2、交流测量结果,展开讨论。

3、引导小结:

在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书课题:小数的产生和意义)

【设计意图】通过让学生自己动手测量黑板、课桌长度的活动,当让学生用米作单位说出黑板的长时,学生心理产生了矛盾,因为测量黑板时多出的部分不够1米,课桌也不够1米,无法得到整数的结果,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性。

(二)引导探究:

1、认识一位小数。(出示米尺)

(1)在米尺上找出1分米的地方。

①用米作单位,怎样用分数来表示?为什么?(结合分数的意义说明)

②用小数表示是:0.1米。

③谁来说说0.1米表示什么?(把1米平均分成10份,每份1分米,是米,也可以写成0.1米。)

板书:1分米=米=0.1米。

(2)讨论:

①用米作单位,3分米怎样用分数和小数表示?7分米呢?

②分别说说0.3米、7分米表示什么意思?

2、认识两位小数。(出示米尺)

(1)在米尺上找出1厘米的地方。

①用米作单位,怎样用分数来表示?为什么?

②用小数表示是:0.01米。

③谁来说说0.01米表示什么?(把1米平均分成100份,每份是1厘米,是米,也可以写成0.01米。)

板书:1厘米=米=0.01米.

(2)讨论:

①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?

②分别说说0.03米、0.06米各表示什么意思?

3、认识三位小数。(出示学生尺)

(1)在尺上找出1毫米的地方。

①用米作单位,怎样用分数来表示?为什么?

②用小数表示是:0.001米。

③谁来说说0.001米表示什么?

板书:1毫米=米=0.001米。

(2)讨论:

①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?

②说说0.003米和0.006米各表示什么意思?

照这样分下去,还可以得到万分之一米……也可以写成0.0001米。

象刚才小圆点后面一位的小数叫一位小数,两位的小数叫两位小数_____。

(三)概括:

1、概括小数与分数的关系。

(1)什么样的分数可以用一位、两位、三位_____小数来表示?

(2)一位、两位、三位小数分别表示几分之几?举例说说。

2、概括小数的意义。

师:分母是10、100、1000……的分数可以用小数表示。

【设计意图】小数的意义是十分抽象的概念,学生比较难理解。要改变死记硬背、机械训练的方式,防止重结论,轻过程的做法。因此,我引导学生进行观察,使学生始终参与到概念的探究过程中,通过比较、归纳、分析和综合,理解小数、分数之间的关系,最后抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。

(四)小数的计数单位和进率

(1)小数的计数单位是什么?(展开讨论)板书:(十分之一、百分之一、千分之一,分别写作0.1、0.01、0.001)

(2)1米里有几个0.1米?0.1米里有几个0.01米,每相邻两个单位间的进率是多少?

(3)师:因为整数和分数相邻两个单位间进率都是10,所以这些分数也可以仿照整数的写法,写在个位的右面,用一个小圆点(小数点)隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数。

【设计意图】老师没有直接告诉学生小数的计数单位是什么,每相邻两个计数单位间的进率是10,而是让学生从解决问题中发现、归纳出来。这样能促使学生进行多角度、多方面、多层次的探索,符合学生的认知规律,培养学生应用所学知识解决问题的能力,获得学习成功的体验,增进学好数学的信心。通过讨论交流和概括总结,培养数学思维能力和合作精神。

(五)巩固应用

1、学生看书并完成例1的空白。

2、P51“做一做”用分数、小数表示涂色部分。

3、闯关练习:

(1)括号里能填几?你是怎么知道的?

0.3里面有()个,0.09里面有()个;0.08里面有()个。

(2)下面的括号里能填几?

0.1米里面有()个0.01米。

0.01米里面有()个0.001米。

0.001米里面有()个0.0001米。

4、说说这些小数的计数单位分别是什么?它里面含有多少个计数单位?

0.3、0.18、0.25、0.036

【设计意图】使学生明确小数和分数的关系,加深对小数意义的理解和对计数单位的认识,让所学知识得以巩固。

(六)课堂总结

这节课我们学习了什么?你知道了什么?你还有什么问题?

【设计意图】对知识点进行梳理,培养学生概括能力和语言表达能力。

(七)板书设计:

小数的产生和意义

小数的产生:在进行计算和测量时,往往得不到整数的结果。

整数分数小数

一位小数:1分米=米=0.1米。

两位小数:1厘米=米=0.01米。

三位小数:1毫米=米=0.001米。

七、小数的计数单位:

十分之一、百分之一、千分之一,分别写作0.1、0.01、0.001。

八、教学反思

1、有关小数知识,三年级学生已有了初步认识,在生活中也有所接触,如购物中的数学问题等。本节课,我通过让学生量一量来引入,从现实情景中感受小数的产生,促进学生进一步学习的欲望。激发学生学习的积极性。

2、重视学生的自主探究。在引入小数意义的教学时,学生在教师的指导下更多地通过自主探究、深入感悟开展学习活动的。教师给学生提供了教大的学习空间。本节课学习的基础是分数初步认识,教师利用米尺,将分母是10的分数与一位小数相联系,通过学生的观察、体验,感悟新知识,掌握新知识,并以此为基础,进一步探究二位小数、三位小数的意义。课堂教学中始终应该关注学生的有效学习,发挥学生的主体作用。

3、课堂结构体现层次性。课堂教学安排要努力体现学生的认知规律,先易后难,先扶后放。在本节课的教学中所采用的“一引、二放、三收获”正是体现了我的设计思想。在小数意义和小数计数单位教学中,首先通过教师的引导,让学生建立正确的概念,如借助于直观工具,建立一位小数的意义。我认为,在学生头脑中形成正确表象非常重要。在小数计数单位的教学中,我也同样如此安排。

小数乘小数课件 篇3

一、说教材

说课的内容是北师大出版的小学数学第八册第三单元第38-39页的“文具店”―――小数乘法意义。该内容的呈现与过去的教材呈现有区别,没有细分为“小数乘以整数,小数乘以小数”两个部分,而是删繁就简,重点体会“小数乘整数”的意义。这是在学生已经学习过“元、角、分与小数”、“小数的意义”、“小数的加减法”和掌握了“整数乘法的意义”基础上进行教学的,它是在整数乘法意义的基础上的进一步扩展。纵观学生的知识基础及对教材的剖析,我确立了该课的教学目标及教学重难点。

二、说教学目标

1、知识目标:使学生初步了解小数乘法的意义。

2、技能目标:通过具体情况和实践操作,使学生在充分感知的基础上,理解小数乘法的意义,能从多角度想出简单小数乘法的结果,培养学生动手操作能力、观察能力、合作交流能力和抽象概括能力,渗透类推、迁移、转化的数学思想。

3、情感目标:使学生感到数学在生活中无处不在。

三、说教学重点、难点

新大纲倡导对概念性的内容不下准确的定义,而是通过系列探究活动,让学生感知、理解其内涵所在,能用自己的话表述即可。因此,让学生感知、理解小数乘法的意义和利用已学的知识基础计算其结果就成为本节课的教学重难点。

四、说教法、学法

如何突破重难点,完成上述三维目标呢?根据教材的特点,本节课采用多媒体为主要教学手段,以讨论交流、合作探究为主要方式进行教学。在教学中创设情境,为学生提供较丰富、直观的观察材料,激发学生学习的积极性和主动性,引导学生在复习整数乘法意义的基础上,自主研究发现小数乘法意义,用已有知识来求解简单小数乘整数的结果,并应用解决实际问题。整个教学按以下四个环节组织进行:①创设情境,激趣导入,②合作探究,明理获知,③深化运用,巩固新知,④回顾小结,质疑问难。

五、说教学过程

(一)创设情境,激趣导入

在这个环节中,我分两步组织教学。一是创设贴近学生生活的具体情境,拉近数学知识与实际生活之间的距离,使学生体会到小数与日常生活的密切联系。因此,在教学中,我首先出示课件①,即欣欣文具店全景图。在学生观察的基础上提问“如果你来买某种文具,怎样才能知道你该付多少钱呢?”旨在让学生明白要知道购物中需要付多少钱,必须知道物品的单价和所购的数量。待学生回答后,紧接着出示课件②,即文具专柜。在学生观察中提问“你从这个文具柜中获得了哪些信息?”、“你能根据这些信息提出数学问题吗?”,这样设计的目的就是培养学生的观察能力和思考能力,并让学生感受到数学在我们生活中无处不在。二是复习整数乘法的意义,从学生提的数学问题中,选择“买3支钢笔需要多少元?”让学生自主解答,说说为什么要这样列式,算式2×3表示什么意义?从而为后面小数乘法意义的学习作好铺垫。

(二)合作探究,明理获知

首先是在合作交流中,初步感知体会小数乘法的意义。在学生回顾整数乘法意义之后,提问“买三块橡皮需要多少元?”,学生自主思考如何解决,学生这时应该不难就能列出算式0.2×3,随即追问“为什么要这样列式?你是怎么想的?”,在学生充分回答的基础上初步感知0.2×3表示的意义。紧接着设问“0.2×3的结果是多少?”,放手让学生分组讨论探究,指导学生从多角度去思考计算0.2×3的方法。这样,既尊重了学生学习的主体地位,又增强了学生合作探究学习能力的培养,不仅学会了运用已学的小数意义、小数加法和将小数转化整数的知识来解决实际问题,随机渗透了类推、迁移、转化的数学思想,也让学生在探究过程中进一步加深了小数乘法意义的理解。

再就是引导学生观察比较,能用自己的话阐明小数乘法的意义,理解小数乘法的意义与整数乘法的意义相同,都是求几个几是多少?同时在这个过程中揭示课题并板书。

(三)深化运用,巩固新知

在这个环节,我设计四组闯关题。第一关是试一试:①买3支铅笔需要多少元?②买两把直尺需要多少元?这关是模仿性练习,让学生运用已学的数学知识解决实际问题。第二关是涂一涂,即根据算式涂涂得出结果。第三关是填一填,即根据加法算式写乘法算式和根据乘法算式写加法算式,这两关是提高性练习。是为了进一步加深学生对小数乘法意义的理解。第四关是想一想:0.2×3=0.6,3×0.2=?这关是深化性练习,一是让学生明白整数乘法的交换律在小数乘法中同样适用,二是让学生体会一个整数乘小数的意义也是求几个几是多少。

通过这样闯关练习,不仅调动学生参与学习的热情,更重要的是让学生在由浅入深、循序渐进的层次练习中理解小数乘法的意义,体会用小数乘法解决实际问题的喜悦。

(四)回顾小结,质疑问难

帮助学生整理,解决疑惑问题。

总之,本节课这样设计是基于让学生能够实实在在从课堂学习中感受到、体验到、领悟到、思考到新知的获取,建立数学模型。能否达到效果,关键在于教师在课堂中对“生成”和“开发”的关注如何,把握如何,调控如何。

小数乘小数课件 篇4

《小数的产生和意义》是在学生三年级学习了“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。通过这部分内容的教学,使学生装进一步理解小数的意义和性质,为今后学习小数四则运算打好基础。

本课时的教学重点是使学生明确小数的产生和意义,小数与分数的联系,小数的计数单位,从而对小数的概念有更清楚的认识。

教学难点是:抽象小数的意义。

知识教学点是:

1、使学生了解小数的产生;

2.使学生理解小数的意义;

3.掌握小数的计算单位及单位间的进率。

教具准备:

米尺、课件.

能力训练点是:

1.培养学生的观察力;

2.培养学生的抽象概括能力。为达到上述目标,我在这节课的主设计中采取了以下方法。

一、采用“一引、二扶、三放”三层次教学,促使学生眼、脑、手同时作用,获得丰富表象,引发学生理解一位小数、两位小数、三位小数的意义。 第一层次是让学生通过观察米尺图,在教师启迪下,学生积极思维,根据严密的逻辑性,探索出规律。第二层次先出示米尺让学生感知,然后提问,不直接回答,留 给学生思考余地。再通过填空的形式把思考过程反馈出来。第三层次的教学是通过教师点拨和学生观察、讨论、语言叙述,将规律灵活运用的过程,达到进一步清晰 表象的目的。

二、运用分数的有关知识作迁移,类推出小数的意义,揭示其本质特征。如再次引导学生观察米尺,结合板书讨论问题:把1米平均分成10份、100份、1000份……这样的1份或几份可以用分数来表示,然后结合板书讨论出小数的计数单位,以及相邻两个计数单位间的进率是10。

三、利用多媒体辅助教学。利 用多媒体辅助教学,将文字、图片、声音、音乐、动画等直观形象地展现给学生,以调动学生的视听觉等多种感观,使学生的内心体验推向高潮,使他们产生一种学习的冲动,求知的欲望。如一开始让学生听课件中的读一读。小数对于学生来说并不陌生,在日常生活中学生是有体验的。这样设计就可以调动学生已有的生活经验和初步的认识,消除抽象的数学与学生的距离感。

教学过程设计如下:

1、猜一猜,量一量,这两条带子有多少长,不能得到整“米”数时,须用其它数来表示,教学小数的产生。

3、结合课件教学一位小数、二位小数、三位小数……,教学小数的义意。

4、完成填一填,教学小数的计数单位和相邻两个计数单位间进率是10。

5、完成连线题,

6、学生阅读课本内容,提出问题。

7、学生进行全课小结。

8、练习“思维训练”。

板书设计:

小数的产生和意义

分母是10、100、1000、……的分数可以用小数表示。

小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

每相邻两个计数单位间的进率是10.

小数乘小数课件 篇5

一、说教材

1、教学内容

本节课是人教版小学数学四年级下册第四单元《小数的意义和性质》第一课时《小数的意义》的教学内容。小数的意义是一节概念教学课,这是在学习了“分数的初步认识”和“小数的初步认识”的基础上学习的。掌握小数的意义,是这单元教学的重点,直接关系到小数的性质、单名数和复名数相互改写等相关知识。

2、教材的重点和难点

小数的初步认识是小学数学概念中较抽象,难理解的内容。一位小数是十分之几的分数的另一种表示形式。学生虽然对分数已有了初步的认识,也学过长度单位、货币单位间的进率,但理解小数的含义还是有一定的困难的。同时学生在以后的学习中,小数方面出现的很多问题是属于小数概念不清。

因此,理解小数的含义(一位小数表示十分之几)既是本课时的重点、又是难点。在教学中要注意抓住分数与小数的含义的关键。

二、说学情

对四年级学生进行学习前测表明:学生已经初步掌握了分数的基本知识,会根据具体的情景写分数;会读写小数,能结合具体的计量单位说出小数表示的实际含义,会进行简单的一位小数的加减,会比较简单的两位小数的大小;知道米、分米、厘米之间的进率,知道厘米与毫米之间的进率。这些知识都是本节课教学的起点。

三、说学习目标的确定

基于教材的编写意图和学生的实际,我将本节课教学目标确定为:

1、能通过观察了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的现实原型多角度理解小数和分数的关系,理解计数单位0。1、0。01、0。001。

2、明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……知道相邻两个计数单位间的进率是10。

3、培养学生的迁移、类推能力,以及良好的数学学习品质。

四、说重难点的确定

根据学生掌握知识的程度和学生的学情以及教材的特点,我确定本节课的

重点为:理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。

难点为:理解一位、两位、三位小数的意义。

五、说教法

教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。

小数的含义是属概念教学,较为抽象、凝练,根据学生对概念的认知,一般遵循:感知——表象——抽象概括——形成概念的这一规律。

六、说学法

通过本节教学,要使学生掌握一些基本的学习方法:

1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

七、说教学程序

(一)创设情境,引入课题

1、谈话:同学们,你们认识小数吗?生活中你在哪儿见过小数?你能举出些小数的例子吗?过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?指名测量,其它同学观看

2、让学生结合生活实际,举出相关例子。

3、小结:在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。(出示课题)

【设计意图】:学生在日常购物、测量的过程中都见过小数或用过小数,对小数已经不陌生。想通过学生说一说、想一想、量一量,进一步发现 小数应用的广泛性。这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

(二) 探究新知

1、出示米尺图提问:上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少? 1分米为什么可以1/10米表示呢?根据学生的汇报师引导。

2、请同学们看米尺。

从0到30,从0到50,应该是几分米,十分之几米?用小数怎样表示呢?同桌交流、汇报,根据学生的汇报板书: 1/10米、0。1米、3/10米、0。3米……

3、让学生观察1/10米和0。1米,4/10米和0。4米之间有什么关系?

接着让学生观察1/10米=0。1米,4/10米=0。4米,从这个等式中你发现了什么?学生谈自己的发现(分母数是10的分数可以写成一位小数)

4、提问:十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

(出示米尺)讲解:1厘米是1/100米;1/100米写成0。01米;0。04 米是两位小数,请同学们想一想,4厘米、7厘米,用米来作单位是百分之几米?怎样用小数表示?学生汇报:

(板书: 1/100=0。01 4/100=0。04 7/100=0。07)

5、提问:如果我们把1米平均分成1000份,每一份是多少?

6、讲解并提问:从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

(1)(学生合作交流)让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。

(2)学生交流,并汇报结果。

【设计意图】:通过多角度的强化认识,理解小数是十进制分数的另一种表现形式,在初步理解一位小数意义的基础上,引导学生借助直接观察教具,在老师引导和同学们的合作之下理解小数的计数单位和进率,两位小数、三位小数的具体意义,有效的锻炼了学生的多种能力,突破了学习的重难点,再一次渗透了计数单位和相邻两个计数单位间的进率。

7、课堂小结:

(1)根据学生的汇报再次提问:从这里你们又发现了什么?汇报。

(2)请同学们回忆一下,我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

(3)根据学生的汇报,(师)小结:分母是10、100、1000……的 分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

(4)进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?学生交流:根据学生的交流汇报师进行归纳整理。

【设计意图】:师生共同梳理本节课的学习所得,既能够让学生养成良好的学习习惯,又能够加深对本节课的知识的掌握。

(三)巩固新知 教学课件

(1)将阴影部分用小数和分数表示 (2)找朋友

(3)在括号里填上合适的数

【设计意图】: 通过三个层次的训练,使学生进一步理解小数的意义,小数与十进制分数的关系,并掌握小数的计数单位。特别是在拓展性练习中,让学生在数轴上认识小数,从而可使学生直观地看到小数的大小,还可以体现出小数之间的关系和无限性,为后面的学习打好基础。

(四)作业布置

教材36页1、2、3

【设计意图】:布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。

八、说板书设计:

小数的意义

1 分米 1厘米 1 毫米

1/10 米 1/100 米 1/1000 米

0。1米 0。01 米 0。001 米

小数的计数单位是十分之一、百分之一、千分之一 ……,分别写作 0。1,0。01,0。001……等。

每相邻两个单位间的进率是10。

【设计意图】:板书力求简洁明了,突出新授知识重点,旨在让学生直观了解所学知识。

九、说教学反思

三年级时,学生已经初步认识了分数和小数,尤其在小数的知识上,不仅能利用米尺将几分米、几厘米写成以米作单位的数,利用元角分的关系写出小数,也会用小数表示线段图、面积图中的涂色部分。在此基础上,我设计了复习学案,旨在帮助学生充分回忆起分数和小数的智慧,并初步感知小数和十分之几、百分之几的关系。

探究一位小数和两位小数的意义是本节课的重点,教学时,利用学生的复习学案内容以及学生已有学习经验组织教学,让学生经历数学知识的形成过程,注重让学生经历探究与发现的过程。从学生熟悉的尺子图入手,然后再以面积图为主进行直观探究一位小数的意义。

而两位小数和三位小数则放手给学生,让学生利用手里的学案和三个问题进行自主学习。在学习一位小数之后,学生有了一定的学习经验,能较好的完成任务。

通过一系列的具体操作化抽象为具体,使学生明确了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,这样轻松理解了小数的意义,并运用知识迁移,明确了四位小数、五位小数等多位小数与分数的关系,提高了教学的时效性。进而补充了数位顺序表。

小数的计数单位及小数相邻单位间的进率是本节课的一个教学重点和教学难点,因此在教学小数的意义时就开始渗透0。1和1的关系,后面通过课件演示,是学生明确进率为什么是10。

回顾本节课的教学,教学过程中也存在着不足,比如在学生自主探究两位小数和三位小数时,学生不知道怎么交流,应该是前面一位小数的学习还是不够深刻,部分学生对小数的意义、小数的计数单位和数位掌握不牢,所以到两位小数三位小数出现困难。再如,问到“小数部分有没有最小的计数单位?有没有最大的计数单位时”,学生不能准确回答,是因为对小数的意义的掌握时不扎实、不理解。

这些都是本节课的重点,而出现这些问题说明本节课教学设计还有一些问题,在教学重点知识时,要慢下来,让学生充分理解、掌握。如何帮助学生理解小数的意义,需要继续探究、改进。

小数乘小数课件 篇6

一、教学目标

1.知识与能力目标∶理解小数乘以整数的意义,掌握小数乘以整数的法则。

2.过程与方法目标∶能从已有的知识除法,通过类比的方法得到新的知识。

3.情感态度与价值观目标∶能通过自主的观察和思考,在老师的引导下归纳总结出计算法则。

二、教学重难点

重点∶小数乘以整数的计算法则。

难点∶运用计算法则及正确的确定小数点的位置。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是小数乘整数,下面我将正式开始我的试讲。

上课,同学们好,请坐。

【导入】

导入:同学们,你们都喜欢放风筝吗?有三位小朋友也非常喜欢放风筝,我们一起来看一看,仔细观察这张图片,你能发现哪些数学信息?请你来说,你观察的可真认真,请坐。有三位小朋友正在买风筝,每个风筝的售价是3.5元,他们想买三个风筝,那你们能根据刚刚发现的数学信息,提出一些数学问题吗?请你来说,你提的这个问题可真有价值,请坐。他们买三个风筝一共需要多少钱?那我们该如何列算式呢?对,3个3.5是多少,就用3.5x3。我们一起来观察这个算是它有哪些特点呀?对,是一个小数乘整数,那像这类的算是同学们会计算吗?

那这节课就让我们一起走进小数的世界,去探究小数乘整数的计算方法。

【新授】

活动一:

像这个算式我们该如何计算呢?同学们先独立思考,再小组合作,老师相信小组的力量是强大的,老师给大家三分钟的时间,赶紧开始吧。好时间到,哪位同学愿意向大家分享一下你们小组的讨论成果?老师看一组的同学手举的像小树林一样,那就一组的三号同学请你来说。

你这方法可真不错,是运用乘法与加法之间的关系来计算的。三个3.5,我们用加法来表示就是3.5+3.5+3.5等于10.5元。那其他同学还有不同的方法吗?来三组2号同学请你来说,你这方法也非常棒,是运用转换单位来计算的。将3.5元拆分成三元和五角,三元乘三等于九元,五角乘三等于15角。15角就是1.5元,所以九元加1.5元等于10.5元。

六组同学请你来说。非常不错,是用列竖式来计算的,赶紧来说一说你的计算过程,思路非常清晰,请坐。用3.5元乘3,末尾对齐。然后我们该如何计算,谁来说一说?请你来说,思路非常清晰,请坐。将3.5元转化为35角,也就是35角乘3,得105角。最后将得到的结果105角,换算为以元为单位,就是10.5元。同学们,你们都是这样计算的吗?那我们带来看一看这个过程,它是首先用单位换算把元转化为了角,通过这样一转化,把小数转化为了整数,又用整数乘法竖式计算,最后再转化为以元为单位。同学们为什么能想到这个方法呢?对呀,通过这样一转化,我们将我们是没有学过的小数乘法转化为我们之前学过的整数乘法来运算,难度降低,更容易计算了。同学们可真棒这么快想出了这么多种方法来计算。

活动二:

我们带来仔细观察一下这个方法,因数中的小数与我们的积中的小数有什么共同点呢,谁来说一说?请你来说,你的目光可真敏锐。对呀,我们积的小数是一位小数,因数中的小数也是一位小数,所以因数的小数位数与积的小数位数是相同的。这是一种巧合还是一种规律呢?如果我们的这个小数不代表的是钱数,我们又该如何计算?

活动三:

同学们请看这道算式,0.72x5,我们该如何计算呢?同学们先独立思考,再与同桌交流,讨论开始。谁来说一说你的计算过程?请你来说,你的思路可真清晰,我们再来一些计算一下。

首先,0.72x5,末尾对齐,接下来我们该如何计算?谁来说一说?请你来说,哦将0.72乘100,小数点儿向右移动两位,变成了整数72。所以用72x5变成了整数乘法,结果是360。那是不是0.72x5的结果就是360呢?对呀,根据积的变化规律,我们0.72乘100,积也乘100。要想回到原数,我们需要将它的积除以100。所以小数点向左移动两位,变成了3.60,最后我们根据小数的基本性质可以将小数末尾的0去掉。变成3.6。我们看一看这个算式的因数与积有什么关系啊。对呀,因数的小数是两位小数,积也是两位小数。

那根据这两个算式,你能试着懂结出小数乘整数与整数乘整数有什么共同点和不同点呢?请你来说。说的头头是道,真像一个小老师,请坐。

计算小数乘整数时,我们要先把小数转化为整数,按照整数乘法算出积,根据积的变化规律,再确定积的小数点的位置。

也就是先按整数乘法先来计算,一算,按照整数乘法计算出结果,最后再看因数中一共是几位小数,二看,再从积的右边数出几位,点上小数点,三点。最后积的小数部分的末尾的0能去掉。整数部分的0不能去掉。

观察一下黑板上这些内容,以上就是本节课所要学习的平行四边形的面积。

【巩固练习】

这么自信,敢不敢接受老师的挑战?请看大屏幕。第一题谁说出他的答案,请你来说,同学们,你们都同意他的答案吗?看来同学们对这节课的知识掌握的非常扎实了。

【课堂小结】

不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课学习了一种新的小数乘整数的计算方式,就是运用竖式进行计算,计算的过程中要注意小数点的位置和数位对齐。看来啊本节课上特听讲非常认真,请坐!

【作业布置】

那接下来老师老师给大家布置一个小任务,课下去利用今天所学习的知识帮助爸爸妈妈解决一个生活中遇到的小问题。下节课一起来交流讨论一下。

本节课就先上到这,下课,同学们再见!

尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

小数乘小数课件 篇7

教学内容:

P66页例8,“练一练”,练习十二第1、3、4、5题。

教学目标:

使学生初步掌握小数乘小数的意义和计算法则,使学生掌握确定积的小数位数时,位数不够时用“0”补足;培养学生的合作意识和推理能力。

教学重点:

掌握确定积的小数位数时,位数不够时用“0”补足

教学难点:

确定积里小数点的位置

教学准备:

课件、展台

教学过程:

一、复习:出示练习十二第4题

根据第一栏的积,写出其他各栏的积(说说是怎样想的?)

二、教学例8。

出示例8。

(1)花架的占地面积是多少平方米?怎样列式?

指名回答,师板书算式。

(2)学生试做。

0.28

小数乘小数课件 篇8

[教学内容]

教材第82~83页例1、“试一试”以及相应的练习。

[教学目标]

1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。

2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。

3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。

[教学重点]

确定积的小数点的位置。

[教学难点]

理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。

[教材简析]

本课学习小数乘小数的计算方法,其教学的生长点是整数乘法。然而,“按整数乘法相乘后怎样得到原来的积”,则需要经历一个严密的推理过程,教材安排两次探究活动:第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究以后,比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算法则。

[教学过程]

一、在“情境”中引发问题

1、复习旧知:小明搬了新家,这是他家的建筑平面图。你能计算每个房间的占地面积吗?说说你是怎样算的?

书房的面积:3×3=9平方米

厨房的面积:2.7×2=5.4平方米,先按照整数乘法进行计算,因为2.7中有一位小数,所以积中也有一位小数。

客厅的面积:3.21×5=16.05平方米先按照整数乘法进行计算,因为3.21中有两位小数,所以积中也有两位小数。

2、提出问题:有没有同学能计算卧室的面积?

列出算式:3.6×2.8(学生苦于无法计算,面露难色)

指导观察:“3.6×2.8”和刚才的乘法算式有什么不同?

揭示课题:这节课我们一起来探讨“小数乘小数”的计算方法。

(设计意图:从计算“房间的面积”这个生活原型引入,突出数学与实际生活的联系,唤起学生的学习兴趣。学生在计算房间面积过程中,既复习了已有知识,激活了新知的生长点,又引出了“小数乘小数”的新的数学问题,给计算教学增添了浓郁的现实意义。)

二、在推理中实现转化

(一)尝试计算,引导推理

1、估一估,确定积的范围

先估计一下,“3.6×2.8”的积大约是多少?

估算方法一:4×3=12平方米,把3.6和2.8分别看成最为接近的整数,把两个数都看大了,准确得数比估计的数小,所以积小于12平方米。

方法二:3×3=9平方米,把3.6和2.8分别看成比较接近的整数,把3.6看小,2.8看大,所以积在9平方米左右。

确定范围:通过刚才的估计,我们知道“3.6×2.8”的积应该小于12平方米或是9平方米左右,那么准确得数究竟是多少呢?我们可以用竖式来计算。

(设计意图:在竖式计算之前先估一估,一方面使学生体会到解决问题策略的多样性与灵活性,在不要求精确结果的情况下可以使用估算方法很快解决实际问题。同时不同估算方法得到的结果也能为探索笔算方法提供正确结果的大致范围。)

2、点拨转化方向

根据我们以往计算小数乘整数的经验,猜测一下:用竖式计算小数乘小数可以怎样计算?(把两个小数都看成整数,先按整数乘法进行计算,点上小数点。)

3、尝试计算,突现矛盾

学生独立尝试计算,小组相互交流。而后,选择不同的方法板书在黑板上。可能有以下两种方法:

3.63.6

×2.8×2.8

288288

7272

100.810.08

(a)(b)

方法a:把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积也是一位小数,结果是100.8。

方法b:我也是把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积中肯定也有两位小数,积是10.08。

突现矛盾:两种算法似乎都有各自的道理。那么,根据你的理解,哪种算法可能是正确的?(学生可以从刚才估计的结果来判断)大家一致认为10.08是合理的答案,看来关键问题是积的小数位数。计算3.6×2.8的积为什么要点出两位小数?我们继续研究。

4、激活旧知,引导推理

尝试解释:计算3.6×2.8的积为什么要点出两位小数?你能想办法说明吗?

可能出现两种解释方法。方法一:把3.6米和2.8米分别改写成分米作单位,算出面积是1008平方分米,再还原成平方米作单位.所以积是两位小数。方法二:运用“积的变化规律”和“小数点移动规律”,计算时把3.6和2.8分别看作36和28,把两个因数都乘了10,算出的积1008就等于原来的积乘100。为了让积不变,就要把1008除以100。

引导推理:随着学生的回答,出示分析推理图,你能看懂虚线框里的意思吗?谁愿意说说自己的理解?

3.6

×2.8

288

72

1008

看着分析图,引导学生完整叙述整个推理过程。

第一个箭头“×10”是把3.6看成36是乘10;第二个箭头“×10”是把2.8看成28是乘10;把两个因数都乘10,得到的积就等于原来的积乘100;最后一个箭头“÷100”表示要得到原来的积就要把得到的整数积除以100。

现在你们知道算法a错在哪里了吗?(两个因数都乘10,积也就乘了100,算法a只把得到的积除以了10。)

小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。

通过推理,我们证明了3.6×2.8=10.08,和估计的结果是一致的,积确实小于12平方米或是9平方米左右。

(设计意图:最现实的教学起点是学生认知上的困惑与矛盾处。学生根据以往小数乘整数的经验,能够凭借直觉判断小数乘小数也能转化乘整数乘法进行。然而按整数乘法算出积后如何回归到小数乘法的积,恰是学生的思维困惑处。适时呈现推理图,让学生思考虚线框里的箭头图及提示算式的意思,扶着学生一步步完成整个推理过程。)

(二)独立推理,实现转化

1、提出问题:刚才我们求出了小明房间的面积,阳台的面积是多少平方米呢?

根据例题学习的方法,先想一想可以怎样计算2.8×1.15,再根据自己的思考过程,结合分析图完成。

1.15

×2.8

920

230

2、交流推理过程:你是怎样得到1.15乘2.8的积的?追问:得到3220后为什么除以1000呢?

引导学生表达(结合分析图):把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000。要求原来的积,就要用3220除以1000,从3220的右边起数出三位,点上小数点。

3.220可以化简吗?根据是什么?

(设计意图:这里学生独立经历推理的过程,看图填数,依着箭头图的提示进行完整的思考。通过扶放结合,循序渐进的数学推理活动,学生在探索中感受着计算思维的内在魅力,感悟着知识间的内在联系、解决新问题的有效途径——转化策略,同时对“积的小数位数与因数小数位数”的关系也有了初步的体验。)

(三)专项对比,概括方法

1、专项对比:两次探究之后,我们来比较各题中两个因数与积的小数位数,你发现它们之间有什么联系?(小数与小数相乘时,如果因数里一共有几位小数,那么积里面就有几位小数。)

2、你能给下面各题的积点上小数点吗?

8.772.916.5

×0.9×0.04×0.6

7832916990

3、概括方法:通过探索,大家对小数乘小数的方法都有了各自的理解。那么,你觉得小数乘小数应该怎样计算?小组里互相说一说。

在全班交流的基础上引导学生完整表达:先按整数乘法算出积,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。跟我们刚才的猜测是吻合的,关键是确定积的小数点的位置。

(设计意图:探索之后应是发现与提升。通过比较因数与积的小数位数的关系,学生在理解算理的基础上自然发现积里点小数点的操作方法。随后归纳概括出小数乘小数的计算方法也就水到渠成了。)

三、在“应用”中发展思维

1、基本练习

(1)根据148×23=3404,很快地写出下面各题的积

14.8×23=148×2.3=14.8×2.3=1.48×2.3=0.148×23=

(2)完成练习十四第1题。学生独立计算,然后同桌互相检查计算过程。

2、解决问题

(1)星期天,小明的妈妈去超市买东西。

商品名称

色拉油

饼干

大米

单价

38.7元/瓶

15.6元/千克

5.8元/千克

数量

2瓶

1.5千克

18.4千克

总价

(2)这是小明的爸爸去某地出差乘出租车的一张发票,显示以下信息:单价1.6元,里程5.5千米,起步价8元/3千米。学生讨论算法,尝试计算。

3、拓展练习

在括号里填上合适的数,使算式成立。

()×()=0.48

(设计意图:这里既有突出重点方法的专项练习、基本练习,又有运用方法解决问题的实际应用,更有拓展思维的挑战性练习,希望通过一系列有层次的练习活动,实现学生计算教学中的基础性和发展性的和谐统一。)

四、在“交流”中提升经验

让学生畅谈学习的感想,并总结本课的主要知识。

(设计意图:反思是重要的学习方式,在新课即将结束时,引导学生回顾与反思方法与技能的获得过程,能帮助学生提升转化这一重要的解决问题的策略,丰富学生的体验。)

"数数课件"延伸阅读