搜索

解直角三角形教案

发布时间: 2023.12.06

解直角三角形教案七篇。

编辑经过认真的比较后,决定向您推荐这篇内容充实的“解直角三角形教案”,建议您将该页面收藏起来备用。教案和课件是老师上课前提前准备的,因此在编写时老师们需要谨慎。设计教案时需要注重培养学生的人文素养。

解直角三角形教案(篇1)

教学目标:

1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。

2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。

3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。

教学过程:

一、创设情景,揭示课题。

1、学生拿出课前准备好的正方形纸沿对角线对折。

提问:得到一个什么图形?(三角形)

2、通过观察、测量和比较说说这个三角形的特征。

(两条边相等,一个角是直角)

提问:那么,这样的三角形我们叫它什么三角形?

揭示课题,板书:等腰直角三角形

这节课就让我们一起来研究等腰直角三角形。

二、动手操作,探索新知。

1、斜边

45

直角边

认识各部分名称和各个角的度数。

投影出示一个等腰直角三角形让学生试说。

边说边课件演示。

45

90

接着让学生指着折成的等腰直角三角形同桌

直角边

互相说各部分名称和每个角的度数。

解直角三角形教案(篇2)

一、教学目标

(一)知识教学点

使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.

(二)能力训练点

通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.

(三)德育渗透点

渗透数形结合的数学思想,培养学生良好的学习习惯.

二、教学重点、难点和疑点

1.重点:直角三角形的解法.

2.难点:三角函数在解直角三角形中的灵活运用.

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.

三、教学过程

(一)明确目标

1.在三角形中共有几个元素?

2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?

(1)边角之间关系

如果用表示直角三角形的一个锐角,那上述式子就可以写成.

(2)三边之间关系

a2+b2=c2(勾股定理)

(3)锐角之间关系∠A+∠B=90°.

以上三点正是解直角三角形的依据,通过复习,使学生便于应用.

(二)整体感知

教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.

(三)重点、难点的学习与目标完成过程

1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).

3.例题

例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好

完成之后引导学生小结“已知一边一角,如何解直角三角形?”

答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.

例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.

在学生独立完成之后,选出最好方法,教师板书.

4.巩固练习

解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.

说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.

(四)总结与扩展

1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.

2.出示图表,请学生完成

abcAB

1√√

2√√

3√b=acotA√

4√b=atanB√

5√√

6a=btanA√√

7a=bcotB√√

8a=csinAb=ccosA√√

9a=ccosBb=csinB√√

10不可求不可求不可求√√

注:上表中“√”表示已知。

四、布置作业

解直角三角形教案(篇3)

第一方面:教材分析

1、本节的地位作用

《解直角三角形》,是前面学过的相似及函数问题的`延续和综合应用,同时也是高中继续学习解斜三角形的重要预备知识。它的学习还蕴含着数学建模和转化化归的数学思想,所以,本节内容无论在本单元,还是整个初中教材甚至中考中都具有重要的地位。

2、学习目标

由于本节课是第一课时,主要是使学生理解直角三角形的边角关系,并能运用关系解直角三角形和与之相关的实际问题,所以我参考课标提出的阶段性要求,确立本节的教学目标是:

(1)会根据直角三角形已知元素,解直角三角形。

(2)通过对解直角三角形的学习,我们能感知未知元素与已知元素的关系,体会知识点之间的内在联系。

(3)培养学生问题意识,渗透转化思想和数学建模意识。

3、本节课重点是解直角三角形,这是因为它和相似等知识一样,是以后会解题的重要工具,将被广泛的应用。

难点是选择合适的边角关系。这是因为在解直角三角形时,需要学生根据已知条件,结合图形,经过分析,选择准确简单的关系式,而学生刚学三角函数,应用还不灵活,所以感到困难。

第二方面:教法分析

本节课我选用了引导发现法和归纳总结法,并应用了媒体教学。这是因为课标提出“教学活动是师生之间,学生之间交往互动与共同发展的过程,教师是教学活动的引导者与合作者。”这两种方法可以让老师成为导演,学生扮演演员,充分发挥学生的主体地位。而媒体的使用可以满足学生的好奇心,课堂容量增大,最大限度的提高课堂效率。

第三方面:学法指导

为了充分发挥导学案的以案导学的作用,在学案中我根据学习内容的需要,增加了“老师温馨提示”栏目,让学生在课前预习时降低学习难度,能够跳一跳,摘到桃子。在教学时,我注意引导学生养成及时归纳、总结规律方法,有目的学习的好习惯。

第四方面:教学程序设计

本节课的教学我按照学案导学的“学——研——展——教——达”的教学模式展开。

1、在学这个教学环节,我在课前下发学案,让学生在学案的引领下,充分感知本节课要学习的内容,记录预习疑惑,及查阅相关资料。及时发现自身学习本节内容的不足之处,在上课时能够积极思考,合作,交流,展示。

2、在研这个环节,我精心设计问题,将本节的唯一知识点———解直角三角形,遵照“由特殊到一般”的原则转变为探索性问题的问题点、能力点,既学案中第二个大问题的里4个小问题,通过对知识点的教师设疑、学生质疑、解释、归纳总结等一系列师生研讨活动,得出解直角三角形的定,挖掘出它的内涵和外延,从而激发学生主动思考,逐步培养学生探究精神以及对教材的分析,归纳,演绎的能力,让学生学会看书,学会自学,进而突出本节重点。

3、在展这个环节我以本节例题即学案中的例1为基础,采用变式训练,逐渐增加问题难度,让学生在不同的问题中,多角度领悟本节重点知识——解直角三角形问题的实质,通过“兵教兵,兵强兵,兵练兵”的方法,让学生充分展示和反馈,帮助学生理解解直角三角形的注意事项,及怎样选择合适的边角关系式,怎样引辅助线,怎样写解题过程等问题,达到突破本节难点的目的。

4、在教这个环节我在学生理解解直角三角形方法的基础上,应用它解决生活中的实际问题,即学案上拓展提升问题,它实质也是本节例题的一个变式训练,培养学生一题多变,一题多解的思维方式,让学生体会数学知识的螺旋上升美。并且我精选了贴近学生生活情境的实际背景,寓德育与数学一体,生活与数学一体。激发学生的学习兴趣,提升学生的创新思维和合作意识,让数学思维好的同学吃的饱,使不同的人在数学上有不同的发展。

5、通过达标检测这个环节,及时反馈本节学生存在的问题,当堂点评,充分发挥小组的合作精神。

6、作业紧紧围绕巩固本节所学内容展开,有一定的梯度,让不同程度的学生都有所收获。板书设计本着重点突出的原则,让学生对本节课的主要知识一目了然,加深印象。

第五方面:设计理念

在设计本节课时,我力求让学生意识到:要解决老师课堂上提出的问题,看书不看详细不行,只看书不思考不行,思考不深不透还不行,如本节的复习提问部分,我虽然在导学案中给出了,但我在提问时却换了一个方式提问,目的让学生真正理解学案内容。而不是照着学案念,在讲授本节课时,我尽量实现自己角色的转变,让自己从讲台走下来,成为“平等中的首席”。

总之,我尽量创设适当和适合的教育情境,因为我知道,如果将15克盐放在我面前,无论如何都难以下咽,但是,把它放在鲜美的汤中,在享受佳肴时,15克盐早已被吸收。情境之余知识,犹如汤之余盐,盐要溶入汤中,才能被吸收;知识需要溶入情境中,才能显示出活力和美感!

解直角三角形教案(篇4)

2 .5  风  炭宝宝竹炭――呵护您的健康 教学目标 1、了解风是怎样形成的 2、知道风向、风速的表示方法和度量单位 3、学会用风向标、风速仪测定风向和风速的方法 4、了解风对人类活动和动物行为的影响 重点难点分析  重点:风的观测 难点:风的形成;目测风向、风速 教学过程 ◇视频片段《赤壁之战》引入课题《追寻风的足迹》。 演示并思考】把充满气体的气球充气口松开,会感到气球内的空气一涌而出,这是为什么? 一、风 1、风是空气的水平运动。 风是从高气压区流向低气压区的。 2、风的两个基本要素:风向和风速 1)风向是指风吹来的方向。 天气观测和预报中常使用8种风向。 表示方法:用一短线段表示。 用纸飞机测风向 【为什么做】 风向和风速是测量风的两个基本要素。观测风向的仪器叫风向标,由箭头、水平杆和尾翼三部分组成。那么风向标是怎样指示风向的呢?风向是由风向标箭头的方向来指示,还是由箭尾的方向来指示呢?风向又是怎么规定的呢?就让我们用纸飞机测风向这个简单的模拟实验来解决吧! 【怎样做】 折一纸飞机,中间用铅笔穿过(要让纸飞机能在铅笔上轻松转动)。用手握住铅笔,将纸飞机放在开启的电风扇前,观察纸飞机的机头和尾翼的指向。注意:此时人要站在纸飞机的后方。并借助指南针判断风向。 【学到了什么】 通过实验,使我们对风和风向有了一个直观的认识:纸飞机的箭头指向风来自的方向。同理,在气象观测中,风向是由风向标的箭头指向的。 同时也使我们明白:实验可以使我们更简洁明了地了解事物,也培养了我们的观察能力。 【进一步的研究】 (1)用纸飞机测风向的实验使你明白了风向标指示风向的事实。你是否在想:这是运用了什么原理呢?为什么风向标会有一定的指向呢?下面的文字,会帮助你有一个了解。 风向标是一种应用最广泛的测量风向仪器的主要部件。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。 地面风指离地平面10─12 米高的风。风的来向为风向,一般用十六方位或360°表示。以360°表示时,由北起按顺时针方向度量。 (2)你知道了风向的`测量方法,一定很想知道风速大小的测量方法。其实你也可以用简单的模拟实验来测量风速。请认真阅读下面的文字,你就会用生活中常见的小风车(参见三维风车式风速仪)或风压板来简单比较风速的大小了,动手试一试。 风向:指风吹来的  方向  ;天气观测和预报中常使用8种风向,即:东、南、西、北、东北、西北、东南、西南(图2―10)。 符号  代表东风。 (2)风速:指单位时间里空气在水平方向上移动的距离,其单位是:米/秒、千米/时或海里/小时表示。 测试风速的仪器叫风速计,它利用风杯在风作用下的旋转速度来测量风速。 风速仪有以下几种:①风杯风速表②桨叶式风速表③热力式风速表。 风速常用风级表示。 【阅读】各风级的名称、风速和目测结果 (3)风对人类的生活有很大的影响,有些动物的行为也和风有关。 【小结】  

解直角三角形教案(篇5)

教学目标:

1.认识和辨别锐角三角形、直角三角形和钝角三角形。

2.知道三角形可以按角分为锐角三角形、直角三角形和钝角三角形。

3.通过操作、观察、比较、分类等数学活动培养学生主动探究数学知识的意识。

4.在活动中培养小组合作的意识,学习用自己的语言表达数学概念的本领。

教学重点:

能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。

教学难点:

辨别锐角三角形、钝角三角形和直角三角形。

教学准备:

多媒体、三角尺、彩纸、卡纸、记号笔。

教学过程:

一、复习引入阶段

(1)师:指出下面各是什么角?角有什么共同的特征?(一个顶点和两条直边)

(2)我们已经学习过了线段和角,如果把角的两条边看作线段,把角的两个端点连起来会出现什么图形?(三角形)那你能告诉老师,这些在三角形里的角分别是什么角吗?(PPT边演示,边提问)

(3)同学们说得真不错,今天我们就一起进一步学习研究三角形。(板书课题:三角形)

二、探究阶段

(1)老师请你们动手在小卡片上任意的画一个三角形,画完后标一标你画的那个三角形内的每个角分别是什么角。

(2)老师请同学上来展示一下他画的作品。

(3)观察黑板上你们画的三角形,想一想,是不是可以把它们分分类呢?可以怎么分?(小组内讨论一下)

(4)师:请一个学生代表上台汇报他们小组的发现和讨论出的分类结果。

设疑:这样的分类能把我们所画的三角形全分完吗?有没有第四类?看看你手中画的三角形,有没有不属于这三类中的任何一类?有没有两处都可以放的三角形?如果没有,请几位同学也将自己画的三角形展示在黑板上,并归类,你能找到相应的位置吗?

(5)就像我们的同学都有自己的名字一样,你能给每一类的三角形取一个名字吗?理由?(直角是这类三角形与其它两类三角形的主要特征)你能给其余两类三角形取个名字吗?名字可以任意取,但是要求取的名字要能反映出该类三角形的主要特征。(锐角三角形、钝角三角形)

(6)补充课题。锐角三角形、直角三角形、钝角三角形

(7)定义

师:那谁能根据我们前面分类时的标准尝试着定义什么是锐角三角形、直角三角形和钝角三角形呢?

板书:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。

(8)小结

刚才我们通过观察、比较发现了三角形的形状、大小虽然各不相同,但是根据三角形角的特征只能将其分成锐角三角形,直角三角形和钝角三角形这三种。

(9)三角形的关系

我们可以用集合图表示这三种三角形之间的关系。把所有三角形看做一个整体,用一个圆圈表示,好像是一个大家庭;因为三角形按角来分可以分成三类,那就好像是包含三个小家庭。(边说边把集合图展示在黑板上)每种三角形就是整体的一部分,反过来说,这三种三角形正好组成了所有的三角形。

(10)判断三角形(ppt):生活中的三角形

(11)开放性练习:

①游戏:如果只让你看到三角形中的一个角,你能迅速判断出它是什么三角形吗?这些可能是什么三角形?

(老师手拿小信封,遮去部分,露一个角)

结果:(1)一个直角直角三角形

(2)一个钝角钝角三角形

(3)一个锐角(三种都可能)

师小结:我们在判断时不能盲目的去猜,而应运用概念去思考,以作出正确的判断。

②出示一个直角梯形,只允许剪一刀,你能剪成两个什么样的三角形呢?请你动手折一折。

学生动手操作尝试,老师媒体演示。

三、全课总结,谈收获。

你今天这节课有什么收获?

解直角三角形教案(篇6)

一、教材分析

(一)、教材的地位与作用

本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的'对学生进行这方面的能力培养。

(二)教学重点

本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。

(三)、教学难点

由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。

(四)、教学目标分析

1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。

2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。

3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。

二、教法设计与学法指导

(一)、教法分析

本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。

教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。

(二)、学法分析

通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。

学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。

(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。

三、教学过程设计

本节课我将围绕复习导入、探究新知、巩固练习、课堂小结、学生作业这五个环节展开我的教学,具体步骤是:

(一)复习导入

师:前面的课时中,我们学习了直角三角形的边角关系,下面老师来看看大家掌握得怎样?

1、直角三角形三边之间的关系?(a2+b2=c2,勾股定理)

2、直角三角形两锐角之间的关系?(∠A+∠B=900)

3、直角三角形的边和锐角之间的关系?

生:学生回忆旧知,逐一回答。

目的:温故而知新,使学生能用直角三角形的边角关系去解直角三角形。

师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的实际问题了,这节课我们学习“解直角三角形及其应用”,此环节用时约5分钟。

(二)探究新知

在这一环节中,我分如下三步进行教学,第一步:例题引入新课,得出解直角三角形的概念。

例1(课件展示)、如图,一棵大树在一次强烈的地震中于离地面10米折断倒下,树顶在离树根24米处,大树在折断之前高多少?

师:a或c还可以用哪种方法求?

生:学生讨论得出方法,分析比较,从而得出——使用题目中原有的条件,可使结果更精确。

师:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?

生:学生讨论分析,得出结论。

目的:使学生体会到(课件展示)“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”,此步骤用时约10分钟。

第三步:师生共同总结出解直角三角形的条件及类型。

师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?

生:学生交流讨论归纳(课件展示):解直角三角形,只有下面两种情况:

(1)已知两条边;

(2)已知一条边和一个锐角。

目的:培养学生善总结,会总结的习惯和方法,使不同层次的学生得到不同的发展,此步骤用时约3分钟。

(三)课堂练习:

课本116页练习题的第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)

目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。

(四)课堂小结

让学生自己小结这节课的收获,教师补充、纠正。

1、“解直角三角形”是求出直角三角形的所有元素。

2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。

3、解直角三角形的方法:

(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);

(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;

(3)已知一个锐角求另一个锐角时,用两锐角互余。

目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。

(五)学生作业(此环节用时约6分钟)

课本120页习题4、3A组第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。

四、教学评价

《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。

解直角三角形教案(篇7)

一、 教材简析:

本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。

同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。

二、教学目的、重点、难点:

教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。

重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。

2、正确选择边与角的关系以简便的解法解直角三角形

难点:把实际问题转化为数学问题。

学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。

三、教学目标:

1、知识目标:

(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。

(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、

45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。

(3)运用三角函数解决与直角三角形有关的简单的实际问题。

(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、

2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。

3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.

四、、教法与学法

1、教法的设计理念

根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。

2、学法

学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。

GZ85.com扩展阅读

最新解直角三角形课件(汇编10篇)


在教学过程中,老师的首要任务是准备好教案和课件。撰写教案和课件是每位老师都必须做的事情。教案是促进学生全面素质提升的有效方法,那么什么样的教案才算是好的课件呢?为了让您更好地了解“解直角三角形课件”,我们的编辑对相关信息进行了系统整理。如果您想了解更多相关的信息,请务必访问我们的网站!

解直角三角形课件 篇1

课本116页练习题的第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)

目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。

(四)课堂小结

让学生自己小结这节课的收获,教师补充、纠正。

1、“解直角三角形”是求出直角三角形的所有元素。

2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。

3、解直角三角形的方法:

(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);

(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;

(3)已知一个锐角求另一个锐角时,用两锐角互余。

目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。

(五)学生作业(此环节用时约6分钟)

课本120页习题4、3A组第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。

四、教学评价

《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。

解直角三角形课件 篇2

教学目标:

1.认识和辨别锐角三角形、直角三角形和钝角三角形。

2.知道三角形可以按角分为锐角三角形、直角三角形和钝角三角形。

3.通过操作、观察、比较、分类等数学活动培养学生主动探究数学知识的意识。

4.在活动中培养小组合作的意识,学习用自己的语言表达数学概念的本领。

教学重点:

能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。

教学难点:

辨别锐角三角形、钝角三角形和直角三角形。

教学准备:

多媒体、三角尺、彩纸、卡纸、记号笔。

教学过程:

一、复习引入阶段

(1)师:指出下面各是什么角?角有什么共同的特征?(一个顶点和两条直边)

(2)我们已经学习过了线段和角,如果把角的两条边看作线段,把角的两个端点连起来会出现什么图形?(三角形)那你能告诉老师,这些在三角形里的角分别是什么角吗?(PPT边演示,边提问)

(3)同学们说得真不错,今天我们就一起进一步学习研究三角形。(板书课题:三角形)

二、探究阶段

(1)老师请你们动手在小卡片上任意的画一个三角形,画完后标一标你画的那个三角形内的每个角分别是什么角。

(2)老师请同学上来展示一下他画的作品。

(3)观察黑板上你们画的三角形,想一想,是不是可以把它们分分类呢?可以怎么分?(小组内讨论一下)

(4)师:请一个学生代表上台汇报他们小组的发现和讨论出的分类结果。

设疑:这样的分类能把我们所画的三角形全分完吗?有没有第四类?看看你手中画的三角形,有没有不属于这三类中的任何一类?有没有两处都可以放的三角形?如果没有,请几位同学也将自己画的三角形展示在黑板上,并归类,你能找到相应的位置吗?

(5)就像我们的同学都有自己的名字一样,你能给每一类的三角形取一个名字吗?理由?(直角是这类三角形与其它两类三角形的主要特征)你能给其余两类三角形取个名字吗?名字可以任意取,但是要求取的名字要能反映出该类三角形的主要特征。(锐角三角形、钝角三角形)

(6)补充课题。锐角三角形、直角三角形、钝角三角形

(7)定义

师:那谁能根据我们前面分类时的标准尝试着定义什么是锐角三角形、直角三角形和钝角三角形呢?

板书:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。

(8)小结

刚才我们通过观察、比较发现了三角形的形状、大小虽然各不相同,但是根据三角形角的特征只能将其分成锐角三角形,直角三角形和钝角三角形这三种。

(9)三角形的关系

我们可以用集合图表示这三种三角形之间的关系。把所有三角形看做一个整体,用一个圆圈表示,好像是一个大家庭;因为三角形按角来分可以分成三类,那就好像是包含三个小家庭。(边说边把集合图展示在黑板上)每种三角形就是整体的一部分,反过来说,这三种三角形正好组成了所有的三角形。

(10)判断三角形(ppt):生活中的三角形

(11)开放性练习:

①游戏:如果只让你看到三角形中的一个角,你能迅速判断出它是什么三角形吗?这些可能是什么三角形?

(老师手拿小信封,遮去部分,露一个角)

结果:(1)一个直角直角三角形

(2)一个钝角钝角三角形

(3)一个锐角(三种都可能)

师小结:我们在判断时不能盲目的去猜,而应运用概念去思考,以作出正确的判断。

②出示一个直角梯形,只允许剪一刀,你能剪成两个什么样的三角形呢?请你动手折一折。

学生动手操作尝试,老师媒体演示。

三、全课总结,谈收获。

你今天这节课有什么收获?

解直角三角形课件 篇3

一、教学目标

(一)知识教学点

使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.

(二)能力训练点

通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.

(三)德育渗透点

渗透数形结合的数学思想,培养学生良好的学习习惯.

二、教学重点、难点和疑点

1.重点:直角三角形的解法.

2.难点:三角函数在解直角三角形中的灵活运用.

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.

三、教学过程

(一)明确目标

1.在三角形中共有几个元素?

2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?

(1)边角之间关系

如果用表示直角三角形的一个锐角,那上述式子就可以写成.

(2)三边之间关系

a2+b2=c2(勾股定理)

(3)锐角之间关系∠A+∠B=90°.

以上三点正是解直角三角形的依据,通过复习,使学生便于应用.

(二)整体感知

教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.

(三)重点、难点的学习与目标完成过程

1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).

3.例题

例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好

完成之后引导学生小结“已知一边一角,如何解直角三角形?”

答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.

例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.

在学生独立完成之后,选出最好方法,教师板书.

4.巩固练习

解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.

说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.

(四)总结与扩展

1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.

2.出示图表,请学生完成

abcAB

1√√

2√√

3√b=acotA√

4√b=atanB√

5√√

6a=btanA√√

7a=bcotB√√

8a=csinAb=ccosA√√

9a=ccosBb=csinB√√

10不可求不可求不可求√√

注:上表中“√”表示已知。

四、布置作业

解直角三角形课件 篇4

一、教材分析

(一)、教材的地位与作用

本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的'对学生进行这方面的能力培养。

(二)教学重点

本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。

(三)、教学难点

由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。

(四)、教学目标分析

1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。

2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。

3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。

二、教法设计与学法指导

(一)、教法分析

本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。

教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。

(二)、学法分析

通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。

学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。

(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。

三、教学过程设计

本节课我将围绕复习导入、探究新知、巩固练习、课堂小结、学生作业这五个环节展开我的教学,具体步骤是:

(一)复习导入

师:前面的课时中,我们学习了直角三角形的边角关系,下面老师来看看大家掌握得怎样?

1、直角三角形三边之间的关系?(a2+b2=c2,勾股定理)

2、直角三角形两锐角之间的关系?(∠A+∠B=900)

3、直角三角形的边和锐角之间的关系?

生:学生回忆旧知,逐一回答。

目的:温故而知新,使学生能用直角三角形的边角关系去解直角三角形。

师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的实际问题了,这节课我们学习“解直角三角形及其应用”,此环节用时约5分钟。

(二)探究新知

在这一环节中,我分如下三步进行教学,第一步:例题引入新课,得出解直角三角形的概念。

例1(课件展示)、如图,一棵大树在一次强烈的地震中于离地面10米折断倒下,树顶在离树根24米处,大树在折断之前高多少?

师:a或c还可以用哪种方法求?

生:学生讨论得出方法,分析比较,从而得出——使用题目中原有的条件,可使结果更精确。

师:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?

生:学生讨论分析,得出结论。

目的:使学生体会到(课件展示)“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”,此步骤用时约10分钟。

第三步:师生共同总结出解直角三角形的条件及类型。

师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?

生:学生交流讨论归纳(课件展示):解直角三角形,只有下面两种情况:

(1)已知两条边;

(2)已知一条边和一个锐角。

目的:培养学生善总结,会总结的习惯和方法,使不同层次的学生得到不同的发展,此步骤用时约3分钟。

(三)课堂练习:

课本116页练习题的第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)

目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。

(四)课堂小结

让学生自己小结这节课的收获,教师补充、纠正。

1、“解直角三角形”是求出直角三角形的所有元素。

2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。

3、解直角三角形的方法:

(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);

(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;

(3)已知一个锐角求另一个锐角时,用两锐角互余。

目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。

(五)学生作业(此环节用时约6分钟)

课本120页习题4、3A组第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。

四、教学评价

《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。

解直角三角形课件 篇5

一、教材分析

(一)教材地位

直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用、《解直角三角形的应用》是第28章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。

(二)教学目标

这节课,我说面对的是初三学生,从人的认知规律看,他们已经具有初步的探究能力和逻辑思维能力。但直角三角形的应用题型较多,他们对建立直角三角形模型上可能会有困难。针对上述学生情况,确定本节课的教学目标如下:

1、通过观察、交流等活动,会建立直角三角形模型。

2、经历解直角三角形中作高的过程,懂得解直角三角形的三种基本模型,进一步渗透数形结合思想、方程思想、转化(化归)思想,激发学生的学习兴趣。

(三)重点难点

1、重点:熟练运用有关三角函数知识。

2、难点:如何添作辅助线解决实际问题。

二、教法学法

1、教法:采用“研究体验式”创新教学法,这其实是“学程导航”模式下的一种教法,主要是教给学生一种学习方法,使他们学会自己主动探索知识并发现规律。

2、学法:主要是发挥学生的主观能动性。学生在课前做好预习作业,课堂上则要积极参与讨论,课后根据老师布置的课外作业进行巩固和迁移。

三、教学程序

(一)准备阶段

我主要的准备工作是备好课,在上课前一天布置学生做好预习作业。

预习作业:

1、如图,Rt⊿ABC中,你知道∠A的哪几种锐角三角函数?能给出定义吗?

2、填表:锐角α三角函数

3、已知:从热气球A看一栋高楼顶部的仰角α为300,看这栋高楼底部的俯角β为600,若热气球与高楼的水平距离为m,求这栋高楼有多高?

4、如图:AB=200m,在A处测得点C在北偏西300的方向上,在B处测得点C在北偏西600的方向上,你能求出C到AB的距离吗?

5、如图:梯形ABCD中,BC∥AD,AB=13,且tan∠BAE=,求BE的长。

(二)课堂教学过程

1、预习作业的交流

小组交流预习作业并由学生代表展示。

2、新知探究

(1)教师出示问题

1、如图:要在木里县某林场东西方向的两地之间修一条公路MN。已知点C周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东450方向上,从A向东走600米到达B处,测得C在点B的北偏西600方向上。问:MN是否穿过原始森林保护区?为什么?

追问:你还能求出其他问题吗?若提不出问题,可给出问题:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?

(2)出示问题

2、如图,一艘轮船以每小时20千米的速度沿正北方向航行,在A处测得灯塔C在北偏西300方向,航行2小时后到达B处,在B处测得灯塔C在北偏西600方向。当轮船到达灯塔C的正东方向D处时,求此时轮船与灯塔C的距离(结果保留根号)。

追问:如果改变若干条件,你能设计出其他问题吗?

(3)出示问题

3、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得OB=km,台风中心从B点以40km/h的速度向正北方向移动。经5h后到达海面上的点C处,因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动。以O为原点建立如图所示的直角坐标系。

如:(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为(结果保留根号)。

(2)已知距台风中心20km的范围内均会受到台风的侵袭。如果某城市(设为点A)位于O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?

3、巩固练习

飞机在高空中的A处测得地面C的俯角为450,水平飞行2km,再测其俯角为300,求飞机飞行的高度。(精确到0.1km,参考数据:1.73)

4、课堂小结

请学生围绕下列问题进行反思总结:

(1)解直角三角形有哪些基本模型?

(2)本节课涉及到哪些数学思想?

(3)你觉得如何解直角三角形的实际问题?

5、布置作业

复习第29章《投影与视图》具体见试卷

6、课堂检测

1、如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离。

2、如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO。

3、如图所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4m,背水坡AB的坡度是1︰1,迎水坡CD的坡度1︰1.5,求坝底宽BC。

四、设计思路

本节课通过预习作业中3、4、5三个问题,引出了解直角三角形的三种基本模型,说明了解直角三角形应用的广泛性,从而体现了学习直角三角形应用知识的必要性。教学中坚持以学生为主体,注重所学内容与现实生活的联系,注重使学生经历观察、交流等探索过程。并通过追问与设计问题的形式,让学生解直角三角形的任务中发现了新问题,并让学生带着问题探索、交流,在思考中产生新认识,获得新的提高。在突破难点的同时培养学生勤于思考,勇于探索的精神,增加学生的学习兴趣和享受成功的喜悦。

解直角三角形课件 篇6

一、 教材简析:

本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。

同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。

二、教学目的、重点、难点:

教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。

重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。

2、正确选择边与角的关系以简便的解法解直角三角形

难点:把实际问题转化为数学问题。

学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。

三、教学目标:

1、知识目标:

(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。

(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、

45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。

(3)运用三角函数解决与直角三角形有关的简单的实际问题。

(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、

2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。

3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.

四、、教法与学法

1、教法的设计理念

根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。

2、学法

学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。

解直角三角形课件 篇7

2 .5  风  炭宝宝竹炭――呵护您的健康 教学目标 1、了解风是怎样形成的 2、知道风向、风速的表示方法和度量单位 3、学会用风向标、风速仪测定风向和风速的方法 4、了解风对人类活动和动物行为的影响 重点难点分析  重点:风的观测 难点:风的形成;目测风向、风速 教学过程 ◇视频片段《赤壁之战》引入课题《追寻风的足迹》。 演示并思考】把充满气体的气球充气口松开,会感到气球内的空气一涌而出,这是为什么? 一、风 1、风是空气的水平运动。 风是从高气压区流向低气压区的。 2、风的两个基本要素:风向和风速 1)风向是指风吹来的方向。 天气观测和预报中常使用8种风向。 表示方法:用一短线段表示。 用纸飞机测风向 【为什么做】 风向和风速是测量风的两个基本要素。观测风向的仪器叫风向标,由箭头、水平杆和尾翼三部分组成。那么风向标是怎样指示风向的呢?风向是由风向标箭头的方向来指示,还是由箭尾的方向来指示呢?风向又是怎么规定的呢?就让我们用纸飞机测风向这个简单的模拟实验来解决吧! 【怎样做】 折一纸飞机,中间用铅笔穿过(要让纸飞机能在铅笔上轻松转动)。用手握住铅笔,将纸飞机放在开启的电风扇前,观察纸飞机的机头和尾翼的指向。注意:此时人要站在纸飞机的后方。并借助指南针判断风向。 【学到了什么】 通过实验,使我们对风和风向有了一个直观的认识:纸飞机的箭头指向风来自的方向。同理,在气象观测中,风向是由风向标的箭头指向的。 同时也使我们明白:实验可以使我们更简洁明了地了解事物,也培养了我们的观察能力。 【进一步的研究】 (1)用纸飞机测风向的实验使你明白了风向标指示风向的事实。你是否在想:这是运用了什么原理呢?为什么风向标会有一定的指向呢?下面的文字,会帮助你有一个了解。 风向标是一种应用最广泛的测量风向仪器的主要部件。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。 地面风指离地平面10─12 米高的风。风的来向为风向,一般用十六方位或360°表示。以360°表示时,由北起按顺时针方向度量。 (2)你知道了风向的`测量方法,一定很想知道风速大小的测量方法。其实你也可以用简单的模拟实验来测量风速。请认真阅读下面的文字,你就会用生活中常见的小风车(参见三维风车式风速仪)或风压板来简单比较风速的大小了,动手试一试。 风向:指风吹来的  方向  ;天气观测和预报中常使用8种风向,即:东、南、西、北、东北、西北、东南、西南(图2―10)。 符号  代表东风。 (2)风速:指单位时间里空气在水平方向上移动的距离,其单位是:米/秒、千米/时或海里/小时表示。 测试风速的仪器叫风速计,它利用风杯在风作用下的旋转速度来测量风速。 风速仪有以下几种:①风杯风速表②桨叶式风速表③热力式风速表。 风速常用风级表示。 【阅读】各风级的名称、风速和目测结果 (3)风对人类的生活有很大的影响,有些动物的行为也和风有关。 【小结】  

解直角三角形课件 篇8

一、教学目标

(一)知识教学点

巩固用三角函数有关知识解决问题,学会解决坡度问题。

(二)能力目标

逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。

(三)德育目标

培养学生用数学的意识,渗透理论联系实际的观点。

二、教学重点、难点和疑点

1.重点:解决有关坡度的实际问题。

2.难点:理解坡度的有关术语。

3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。

三、教学过程

1.创设情境,导入新课。

例 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图

水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。

同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。这时,教师应根据学生想学的心情,及时点拨。

通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义。

解直角三角形课件 篇9

1教学目标

(一)知识目标

1、使学生理解直角三角形中五个元素的关系,及什么是解直角三角形;2、会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.

(二)能力训练点

1、通过综合运用勾股定理,直角三角形的两个锐角互余及边角之间的关系解直角三角形,逐步培养学生分析问题、解决问题的能力;2通过数行结合的运用,培养学生添加适当辅助线的能力。

(三)情感目标

渗透数形结合的数学思想,培养学生学以致用的良好的学习习惯.

2学情分析

九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养。

为实现本节既定的教学目标,根据教材特点和学生实际水平对本节教学采用的基本策略是:

①创设问题情境,激发学生思维的主动性。

②以实际问题为载体,结合简单教具及多媒体提供的图象,引导学生建立数学模型,把实际问题抽象为数学问题。

③把实际问题中提供的条件转化为数学问题中的数量,掌握探索解决问题的思想和方法。

④课堂尽量为学生提供探索、交流的空间,发动学生既独立又合作的愉快的学习。

由于大部分学生的阅读分析能力相对较弱,教学中引导学生讨论、交流,罗列出问题中的所有已知条件、未知条件,探索已知与未知之间的数量关系,进而结合勾股定理、三角函数关系式寻求解决的方案,从而达到解决的目的。

有效的数学学习活动,不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课的例题与练习题的已知、未知都有所不同,合理引导,利用这种“不同”让学生在探究学习中得到提高,获得知识,也是本节课追求的主要目标。

我打算采用“创设情境———自主探究———合作交流———达标训练———反思归纳”的流程来进行本节课的教学。

3重点难点

1.重点:直角三角形的解法.

2.难点:把实际问题抽象为数学问题,建立数学模型;三角函数在解直角三角形中的灵活运用;j解直角三角形时,在已知的两个元素中,为什么至少有一个元素是边.

4教学过程4、1第一学时教学活动活动1【讲授】教学活动

1.我们已经掌握了Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又可启发引导学生思考,为什么两个已知元素中必有一条边呢?从而激发学生的学习、探索热情。

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师让学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).

3.例题评析

例1在Rt△ABC中,∠C为直角,AC= BC=,解这个三角形.

例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 =35,解这个三角形(精确到0、1).

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.

完成之后引导学生小结“已知一边一角,如何解直角三角形?”

答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.

议一议

在直角三角形中,

(1)已知a,b,怎样求∠B的度数?

(2)已知a,c,怎样求∠B的度数?

(3)已知b,c,怎样求∠B的度数?

你能总结一下已知两边解直角三角形的方法吗?与同伴交流。

(三)巩固练习

在△ABC中,∠C为直角,AC=4,BC=4,解此直角三角形。课本74页。

1、找四名学生板演,重视过程的规范性和完整性;2、学生独立完成,教师简评。

解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.

试一试

(四)总结与扩展

引导学生小结:

1、在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.

2、解决问题要结合图形(没有图形时要先画草图)。

解直角三角形课件 篇10

一、说教材

今天我执教的这一课是二年级第二学期第五单元中《锐角、钝角、直角三角形》这一课。

教学目标:

知识与技能目标:知道三角形可以按角分为锐角三角形、钝角三角形和直角三角形以及它们的特征。能辨别锐角三角形、钝角三角形和直角三角形。

过程与方法目标:培养学生观察能力、动手操作能力和合作交流能力。

情感与价值观目标:提高学生对三角形的学习兴趣,感受三角形在生活中无处不在。

教学重点:

能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。

教学难点:

辨别锐角三角形、钝角三角形和直角三角形。

二、说教学过程

这节课由引入、新授、练习和总结四部分组成。

首先是从生活中引入三角形,让学生介绍和观察一些生活中的三角形,感受到三角形在生活中无处不在,以此引出课题。新授部分主要是由以下几个环节构成。

第一个环节通过学生动手操作来判断教师给出的6个三角形的三个角分别是什么角,并填写表格。这里不仅要学生把表格填写完整,还要学生总结出判断一个角是什么角的方法,首先用眼睛观察,如果明显比直角大或比直角小的就马上能够判断了,如果跟直角很接近或者拿不定主意的时候才要用直角量具去验证。填写表格不单单是记录数据,更重要的是让学生数形结合对锐角、钝角和直角三角形初步有所感知。

第二个环节是让学生通过观察刚才填写的表格来发现其中的规律,总结出这6个三角形中,每个三角形至少有2个锐角,最多有一个直角,最多有一个钝角。并且让学生通过验证自己带来的三角形,得出所有的三角形都有这样的特点。

第三个环节是根据刚才找到的三角形的角的特点,来给三角形分类。并且总结出三角形按角分类可以分成锐角、钝角和直角三角形三类。然后通过学生对刚才自己带来的三角形和老师出示的三角形进行判断,巩固三类三角形的定义,并总结出判断三角形属于什么三角形的方法。

第四个环节就是通过三角板和三角尺的比较,和改变三角板摆放的位置,让学生发现判断一个三角形是什么三角形只跟三角形角的特点有关,跟三角形的大小和它摆放的位置没有关系。最后的练习部分有两个练习,第一个练习是给出三角形的一个角让学生判断是什么三角形。给出一个直角和一个钝角时学生很容易就判断出来,但是给出一个锐角的时候,由于前面学习的负迁移,学生很容易脱口而出是锐角三角形,然后通过实际的演示、谜底的揭晓,让学生认识到判断一个三角形是锐角三角形必须要知道三个角都是锐角才行,给出一个锐角是不能判断它是什么三角形的。第二个练习其实是这节课的一个综合运用,学生不仅是要知道判断一个三角形是什么三角形的方法,还要以最快的速度来判断,也就是一开始讲的,明显比直角大或者小的角用眼睛就可以判断,比较像直角或者拿不定主意的时候一定要用直角量具去测量。最后总结的时候,还让学生把今天学到的知识跟自己的实际生活联系起来,整个一堂课从生活中提炼出数学知识,再把数学知识回归到生活中去。

三角形教案


资料所覆盖的面比较广,可以指学习资料。平常的学习工作中,我们会经常使用到一些资料。参考资料我们接下来的学习工作才会更加好!你是不是在寻找一些可以用到的资料呢?或许"三角形教案"是你正在寻找的内容,但愿对你的学习工作带来帮助。

三角形教案【篇1】

一、教材分析

本节教材是学生对小学阶段三角形有初步了解的基础上进一步认识三角形的特点和性质。三角形是最简单、最基本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。对学生更好地认识现实世界,拓展空间观念都有非常重要的作用,同时对今后学习三角形全等、相似和解直角三解形,解决相关的实际问题,都有不可低估的作用。

二、教学目标

1、结合实物和图形理解三角形定义

2、找到所有三角形的共同特点。

3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。

4、初步了解任意三角形三边之间的大小关系。

5、能应用所学知识解决日常生活中与三角形有关的实际问题。

6、初步感受三角形简单、广泛地适用性。

7、培养学生动手、动脑、合作、交流、探究意识。

三、教学重难点

重点:三角形共同特点的.理解及三角形三边关系性质的理解。

难点:应用三边关系性质解决简章的实际问题。

四、教具及材料准备

三角板、实物的三角形、包装带、剪刀、头钉、白纸、透明胶等(师生同备)

五、学生情况及教学构思

七年级学生年龄较小,思维正处在由具体形象思维向抽象逻辑思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际出发说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。

六、教学实施

1、师:在小学我们进一步了解了三角形,今天我们在一起进一步认识三角形的定义、记法及其相关性质,随之在黑板上板书课题(1 认识三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。

生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由许多三角形构成的。

师:在黑板上画出同学熟悉的屋顶框架图。

2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?

甲生:每一个三角形都有三个内角,三个顶点。

乙生:每一个三角形都由三条线段组成。

丙生:任意三角形的三内角之和都等于180°。

(同学们发言积极)

师:为了方便通常用三角形三顶点的大写字母来记一个三角形、并在三个大写字母前面加上符号“△”。如图中可记作“△ABC”,(并在黑板上板书 △ABC),同时规定每个顶点的大写字母所对边就用它的小写字母表示,顶点A所对的边BC用a表示,边AC、AB分别用b、c表示。

师:请同学们在屋顶框架图中至少找出5个不同的三角形,并用三个大写字母记出相关的三角形,并与同伴交流。

三角形教案【篇2】

1、关注学生学习研究过程。老师在教学三角形的意义时,没有直接把“由三条线段围成的图形叫做三角形”这个定义直接地呈现给学生,而是紧紧围绕三条线段”、“围成”这两个关键词进行教学,通过比较、判断等等手段使学生认识到三角形必须具备两个条件:

2、锐角三角形:三个角都小于60度,三个角度相加的总角度的和等于180度;

3、三角形按角分:锐角三角形,直角三角形,钝角三角形;

4、注重设计的趣味性。在最初的'定义学习之后,我们进入到本课的难点,画高。教师通过让学生自己来找高,以及自己动手画画高,到最后优生的演示,无一不是体现学生在课堂上的自主地位。虽然画高到最后的钝角的高,这个过程出来的比较曲折,但我相信真正思考该问题的学生对三角形的学习是非常深刻。这也符合我们新课程的教学理念:以学生为主体,充分发挥学生的探究精神。

5、等边三角形,三条边都相等的三角形,又叫做正三角形;

6、不过,我认为本课还是有值得改进的地方。比如,在画高的过程中,教师所呈现在黑板上的三角形不够大,导致三条高密密麻麻地堆在一起,影响学生更为直观地进行理解。同时,板书的排版还需要更为简洁、合理。

7、钝角三角形:有一个角大于90度,其余二个角都小于60度,三个角度相加的总角度的和等于180度。

8、三角形三条边不一定相等。

9、三角形小学数学高年级的内容之一。在本课之前,学生已经学习过一些相关的知识点,如线段、角、也能简单区分三角形和其他形状的区别,三角形的认识是平面图形知识的起点,是学习研究其他几何图形的基础,在实践中有着广泛的应用。本节课的教学主要包括三角形的定义、画高等内容。老师的这节课整个教学过程始终围绕教学目标展开,层次比较清楚,环节紧凑,并注意引导学生通过观察、分析、动手实践、自主探索、合作交流等活动,突出体现了学生对知识的获取和能力的培养。具体体现在以下几个方面:

10、二、是否围成封闭的图形。接着安排判断练习,从正反两方面,同时还出现用曲线围成的图形、用不封闭的线围成的图形等。进一步加深对三角形意义的理解。

11、三角形按边分:等边三角形和非等边三角形,非等边三角形又可分为等腰三角形和三条边都不相等的三角形;

12、参考资料人民教育出版社

13、当然,作为一名非专职的数学老师去听课,我的观点可能还是比较肤浅或不够正确,但老师的教态自然、大方,教学设计紧凑等方面仍是值得我们学习的。

14、等腰三角形,有两条边相等的三角形,

15、应该是:三角形任两边之差小于第三边。它是由三角形任意两边和大于第三边变形得到的。

16、拓展资料

17、直角三角形:有一个角等于90度,其余二个角的角度相加的总角度的和等于90度;

18、一、是否具有三条线段;

19、三条边都不相等的三角形

20、《三角形三边的关系》教学设计

三角形教案【篇3】

难点名称

幼儿能够在生活中很好的应用三角形并能够进行创意。

难点分析

从知识角度分析为什么难

幼儿能够在生活中很好的应用三角形及创意绘画,需要幼儿掌握三角形的特点及其组成部分,平时认真仔细观察生活,并加以想象创作,对幼儿来说具有一定的难度。

从学生角度分析为什么难对幼儿来说都能够认识三角形,但是要能够运用并进行创意绘画,需要幼儿具有丰富的想象力和创造力,并且具有一定的绘画能力,对幼儿有一定难度。

难点教学方法

1、通过生活照片直观演示引导幼儿观察了解三角形在生活中的应用

2、通过教师示范创意三角形,引导幼儿边唱边绘画

教学过程

导入

1、游戏导入:教师通过点击游戏直接导入主题,小朋友们好,今天咱们来认识一个新的图形宝宝“三角形”;你们认识三角形吗?让我们玩一个点击小游戏考一考自己吧!

2、提出问题:请小朋友们仔细观察想一想,到底什么样的图形才是三角形呢?幼儿试着说一说。

知识讲解

(难点突破)

2、三角形定义:由三条线段首尾相接围成的图形叫做三角形。

3、线段:一条直直的线有两个端点。

3、首尾相接:一条线段的开头端点与前一条线段的尾点连接重合,叫做首位相接。

4、三角形特点:每个三角形都有三个顶点、三条边和三个角组成。

课堂练习

(难点巩固)

5、快速判断:请小朋友们看一看下图中哪个是三角形?

6、连一连:图上有四个点,请小朋友任选三个点,画出三角形吧!

7、游戏“小猴过河”:小朋友们,小猴想要过河,可是桥上有很多的图形宝宝,只有踩着三角形宝宝,小猴才能顺利地过河,小猴不认识三角形,这可把小猴难住了。小朋友,请你来帮助小猴找到过河的三角形路线吧!

8、生活应用

①提问:小朋友们,在我们的.日常生活中也有很多常见的三角形宝宝,请你来说一说你都见过什么呢?

②三角形的特点:美观性、稳定性(教师出示图片,引导幼儿观看三角形美观、稳定性在生活中的应用。)

9、创意绘画:

①提问:小朋友们,通过给三角形添画,你可以把三角形变成什么呢?

②三角形创意演示(边唱边出示图片):三角形,变变变,变个风筝天上飞,变个风筝天上飞,我是三角形好宝宝;三角形,变变变,边条鱼儿水中游,变条鱼儿水中游,我是三角形好宝宝。

③出示三角形创意简笔画:比如说,三角形可以变成一只小鸡,变成一块西瓜,变成一条章鱼,等等。

小结小朋友们,快来大胆想象一下,尝试着把三角形画一画、唱一唱吧!

三角形教案【篇4】

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3.培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).

(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。

(3)等边三角形的3个内角都是( )。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。

(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。

2、判断

(1)一个三角形中最多有两个直角。 ( )

(2)锐角三角形任意两个内角的和大于90。 ( )

(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )

(4)三角形任意两个内角的和都大于第三个内角。 ( )

(5)直角三角形中的两个锐角的和等于90。 ( )

四、拓展探究

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

六、谈谈自己本节课的收获。

教学反思

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。

任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

三角形教案【篇5】

教学目标:

知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

过程与方法:.积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。.能根据三角形三边的关系解释生活中的现象

情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

教学重点:三角形三边关系的实验与探究。

教学难点:利用三角形三条边之间的关系解决实际问题。

教具准备:三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt

教学过程:

一、导入。

1、谈话创设情境:

这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)

2、复习旧知:

(1)(欣赏图片)你看到了什么?

(2)那你能说一说,你对三角形都有哪些了解?

(3)三个顶点,三个角,三条边,三角形具有稳定性;

(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。

3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课

二、动手操作、探究新知。

(一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?

操作要求:

1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员

2、测量员量出你所选择的纸条的长度;

3、记录员做记录;

4、操作员动手拼三角形,把你拼出来的图形贴在下面;

5、组长汇报结果。

注意:相邻的两条线段要端点相连。

(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。

展示操作结果:

试验次数三边长度(cm)结果三角形三条边的长度关系

(1)3、5、9否较短的两条边长度之和小于第三边3+5

(2)3、6、9否较短的两条边长度之和等于第三边3+6=9

(3)3、5、7是较短的两条边长度之和大于第三边3+5>7

(4)5、6、7是较短的两条边长度之和小于第三边5+6>7

(5)5,8,13否较短的两条边长度之和等于第三边5+8=13

(6)7,11,12是较短的两条边长度之和大于第三边7+11>12

(7)18,7,5否较短的两条边长度之和小于第三边5+7

(8)11,4,15否较短的两条边长度之和等于第三边4+11=15

(三)引导学生发现特性:(课件演示)

1、两条边的长度之和小于或等于第三条边的长度不能围成三角形

2、较短的两条边的长度之和大于第三条边的长度能围成三角形

3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)

4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?

三、精彩练习、拓展提升。(课件出示)

在能围成三角形的各组小棒下面画“√”。(单位:厘米)

(5)1cm2cm3cm()(6)4cm2cm3cm()

(7)3cm4cm5cm()(8)3cm3cm5cm()

四、学以致用。

(一)、课件出示:课本82页例3情境图。

1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?

2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?

3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)

(二)完善表格。

小棒长度(厘米)能否围成三角形

第一根第二根第三根

35

35

35

35

35

35

35

35

五、课堂总结。

同学们,通过今天的研究你有什么收获吗?

1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。

2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

板书设计:

三角形三边关系

三角形任意两边之和大于第三边。

两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。

三角形教案【篇6】

教学内容:

人教版《义务教育课程标准实验教科书。数学》四年级下册第59页60页。

教学目标:

1、通过学习使学生认识三角形,知道三角形各部分的名称,能用字母表示三角形;理解三角形底和高的对应关系,会在三角形内画高初步了解三角形的外高。

2、在找一找、画一画、说一说的过程中感知三角形的表象,在画高的过程中感受三角形底与高的相互依存关系。

3、通过教学培养学生的观察能力、作图能力,数学语言表达能力。积累抽象概括及画高等数学活动经验。养成学生用数学的眼光观察生活的好习惯。体验数学与生活的密切联系,培养学生的空间观念。

4、通过使用iPad辅助教学,提高学生的参与度。体会在现代信息技术的支持下,学习可以无处不在。

教学重点:

理解三角形的概念、认识三角形各部分的名称。

学生准备:课前在网上搜索,生活中拍摄与三角形有关的物体图片。三角板,铅笔,白纸。

课件出示谜面:形状似座山,三竿首尾连。拐角尖又尖,学问不简单。

指名学生读一读。

你猜可能是什么?它是人类智慧的象征。今天我们将一起来认识三角形。

从古到今三角形在我们的生活中都有着广泛的应用,课件出示古金字塔和安康汉江三桥画面。(课件出示抽象画面中的三角形)

打开iPad,小组交流你搜集的有关生活中三角形的图片。指一指三角形都在哪?指名小组汇报,说一说搜集的结果。

现在知道三角形是什么样了吗?在练习纸上画一画吧。(师在黑板上画)

跟同桌或小组里的同学说一说,你是怎么画的?什么样的图形叫三角形?

画好以后在你画的三角形的上面写上自己的名字,用iPad拍照后发班级QQ群,大家互相欣赏,举手评价,学生评价时老师点击放大该学生的作品。

课件出示判断:

来看看下面这些图形,哪些是三角形?这些为什么不是?(相机板书:3条线段,每相邻两条线段的端点相连)

说一说,什么样的图形叫三角形?

课件出示:由3条线段围成的图形叫做三角形。你觉得这里的“围成”是什么意思?(完善板书)

1、引导观察并讲述:(课件出示)围成三角形的这三条线段就是这个三角形的边,每相邻两边相连的端点叫做顶点,由一个顶点出发的两条边所组成的图形就是角。三角形有几条边,几个顶点,几个角?

练习:找个同学上来指一指黑板上这个三角形各部分的名称。

都理解了吗?再找个同学上来指一指:这回老师说你来指好吗?“那个顶点”,学生指哪个都摇头 .

师:为了更好的区分它们,我们可以用字母A,B ,C分别表示这三个顶点。这个顶点就读作“顶点A”读,(指B,C)这个是?这样一来这条边就叫AB边。(指另外两条)。这个角就是——角A.

师:整个三角形就可以叫做——三角形ABC.真会类推!快动手把你的三角形也用字母表示出来。

练习并过渡:(课件出示同底不等高的三角形)现在会用字母表示三角形了吗?

师:这是个三角形家族,如果用ABC表示这个蓝色的三角形的话,这个绿色的三角形可以表示为AB——D.这个红色的就是——三角形ABE.

师:看样子三角形也是有高的,而且这个高还影响着三角形的.大小。

师:如果三角形有高的话,那这个高应该在哪儿呢?(停顿一下出示课件)看看下面哪个三角形画出了你心目中的高?

你的感觉到底对不对呢?请打开课本60页,在书中去找一找。

谁来读一读?

演示画高:指着黑板上画的三角形:它有高吗?那咱们一起来给它画出来好吗?过点A做BC边的高。对边在哪?怎么画?

全体学生尝试独立画自己所画的三角形的高。

老师拍典型图片,用iPad展示,画得好的同学汇报自己的画法。同桌用三角尺互查,画得是否标准。总结用三角板画高的方法。

(可能会有画三条高的,进行展示)课件出示三条高,理解高和底的对应关系,知道三角形有三条高。

练习画高:会画高的同学把手举起来我看看!都会画呀!请打开课本60页,完成下面的“做一做”.(课件出示)

用iPad展示,指名学生推送作品。在学生的作业点评中巩固画高的方法,理解直角三角形两条直角边互为底和高。

三、了解形外高。

如图:先给出ABCD四个点,让学生观察,如果连线组成三角形的话,你觉得可以组成哪些三角形?

课件演示过A点做BC边的垂线AE.观察你觉得AE是哪些三角形哪条边上的高?了解钝角三角形的形外高。

今天我们对三角形进行了更为深入的学习,生活中有三角形吗?

来学校的路上我发现了一个三角形,想知道是什么吗?大家说是直接出示图片还是给一些线索大家来猜一猜?课件出示:高40厘米,底50厘米。这个三角形可能是什么?先把你的想法与同桌比划比划,再全班交流。

三角形教案【篇7】

教学目标:

1.通过观察、操作活动,认识三角形各部分名称以及底和高的含义,会在三角形内画高。

2.通过实验,积累认识图形的经验和方法。

3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。

4.体验数学与生活的联系,培养学生学习数学的兴趣。

教学重难点:

教学重点:概括三角形的概念,认识三角形各部分的名称,知道三角形的底和高。

教学难点:会画三角形的高。

教学准备:

课件、磁条。

教学过程

(一)引入

1.

课前谈话引入:

板书:认识三角形

老师带来了一些图片,你能从中找出三角形吗?出示生活中的三角形图片,学生说说生活中的三角形(生活中有哪些物体上有三角形)

(二)探究

1.学生动手操作、老师黑板摆三角形。

(1)师:刚才我们看了这么多的三角形,你能动手画一个吗?

师:这里有同学们画的一些三角形,老师在黑板上也创作了一个三角形,请同学们仔细观察,这些三角形有共同的特点吗?先想一想,再和你的同桌说一说。

哪一位同学来说一说你的发现,

你能找出三角形的3个顶点、3个角、3条边分别在哪里?跟同桌说一说。

利用学生错误资源,出示未首尾相连的图,你能用完整的语言来说一说什么是三角形了吗?

引导学生归纳总结:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。(并板书)

2.

试一试:

刚才同学们都很厉害,你会在方格纸上画三角形吗?先让学生说一说任选三个点是什么意思,再按要求画一画。尽可能多画几个。

思考:都能画出一个三角形吗?

得出结论:三角形的三个顶点不能在同一条直线上。

3.认识三角形的底和高(同学们非常了不起)

(1)同学们,请看这幅图,这是一个人字梁,是建造房屋时房顶的结构,你能量出图中人字梁的高度吗?你量的是哪条线段?它和底边有什么样的位置关系?

(2)学生独立思考,然后小组交流,指名说一说量的是哪一条线段,和下面的横梁在位置上有什么关系。

(3)测量人字梁的高。学生在书上独立测量人字梁的高,交流测量方法及高是多少。

(4)画三角形的高

如果我们把人字梁所表示的三角形画下来,就可以这样表示出它的高和底。(课件出示三角形的高的变化动画,让学生说一说高是如何变化的)

从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。课件出示概念

怎样利用工具规范的画出三角形的一条高呢,请看屏幕演示。(课件)看清楚了吗?

5.

学生做作业纸,不同的边做为底作高,得出三角形也有三条高。

展台展示学生作业,观察你有什么发现?(三条底对应三条高)

(三)巩固

1.

填空

2.

判断

3.

书本量高

4.

书本作高

(四)总结延伸

1.

通过今天的学习,你有哪些收获?

2.

好,同学们请看,老师将三角形的一条边变化一下,还能围成一个三角形吗?

板书设计

认识三角形

三条线段首尾相接围成的图形叫作三角形

3条边

(底)

3个顶点

3个角

三角形教案【篇8】

【教学内容】

苏教版小学数学四年级下册第22~23页,第24页“想想做做”第1~3题。

【教材简析】

这节课的教学内容是“空间与图形”的重要内容之一。通过学习可以加深和拓展学生对三角形的认识,同时也可以让学生积累一些认识图形的经验与方法。例题1首先提供现实背景让学生从中找三角形,并说说生活中看到过的三角形,从整体上初步感知三角形。接着让学生动手做出一个三角形,从而体会三角形是由三条线段围成的,并抽象出图形,进而介绍三角形各部分的名称,形成三角型概念。例题2则是让学生在活动中感受三角形三条边的长度关系,发现三角形两条边的长度和大于第三边。教材还安排来“想想做做”,让学生通过画图、观察、操作及时巩固所学的知识。

【教学目标】

1、通过观察、操作、交流等活动,进一步认识三角形;让学生经历合作探究的过程,自主发现三角形的三边关系,并能利用关系解决简单实际问题。

2、引导学生经历探索、发现、创造、交流等有趣的数学活动过程,培养学生的观察理解能力、动手操作能力、合作交流能力、分析概括能力,进一步发展空间观念,提高学生运用知识解决问题的能力,增强学生的创新意识。

3、激发学生对数学的好奇心,增强学生学习数学的兴趣,培养学生用数学的眼光去判断、解决生活中的问题,使其产生对生活的理性思维的数学习惯。

【教学重点】

认识三角形的特征。

【教学难点】

探究三角形三条边之间的关系。

【设计思路】

在学习活动中,学生对于一个知识点更多的是关注它是什么,而忽视它为什么是这样。因此在教学中添加了从以前学过的旧知识“角”中引出三角形,找到新旧知识间的生长点。在教学三角形的特征后,回过来让学生给三角形取名,让学生明白“三角形”名称存在的理由。既开阔了学生的知识视野,又加深了学生的知识理解。

【教学过程】

一、课前谈话,激发兴趣

1、图形王国里有许多图形,今天老师要带大家认识一个新的图形(板书:认识)

2、你想通过这堂课的学习,了解这个新图形的哪些方面呢?

【设计意图:认识图形正如认识人一样,一般要知道它的名称、形状、特征。三角形的名称和形状,学生以前的学习中已经初步认识,本课教学的重点在认识三角形的特征。课前活动通过把“人”“物”进行关联,有助于学生明白需要认识三角形的哪些方面。】

二、联系实际,引入课题

1、同学们,赵老师要来看看谁的眼睛最亮,谁的记性最好,准备好了吗?

2、多媒体出示长方形、直角三角形、正方形、锐角三角形、圆。(2秒后隐去)提问:刚才出现的图形中哪种图形最多?再看一遍

3、继续看下去,多媒体出示:长方形、正方形、圆。(2秒后隐去)

提问:和第一次比少了什么图形?再看一遍

4、同学们,在以前的学习中我们已经初步认识了三角形。(补充板书:三角形)

【设计意图:学生已经认识了三角形的名称和形状,通过这样一个“比眼力”和“比记性”的游戏活动,既让学生一下子集中了注意力,又巧妙地在“多”与“少”的比较中一下子推出了“主人公”——三角形。】

5、(出示例题1的图片)你能在这张图片中找到三角形吗?

在我们身边你能找到三角形吗?(指名说)在教室里你能找到三角形吗?

6、谈话:生活中的许多物体上都有三角形,一起来看看。

【设计意图:从在游戏中找平面图形中的三角形,到找实际照片中的三角形,到找身边生活中的三角形,强化了学生对三角形的视觉印象。】

三、动手操作、探索新知

1、感受三角形的边角特征。

(1)谈话:刚才同学们在生活中找到了许多三角形,那你能用老师提供的材料想办法做出一个三角形吗?(小组活动)谁来说说你是怎么做的?

(2)交流:谁来说说你是怎么做的?

①用小棒摆的。(你用了几根小棒围成的?)(板书:3根小棒)

②在钉子板上围的。(把橡皮筋分成了几段?)(板书:3段)

③沿三角尺的边画的。(你画了几条首尾相接的线段?)(板书:3条线段)

④用直尺在方格纸上画的。(你画了几条首尾相接的线段?)(板书:3条线段)

(3)同学们真棒,都能用自己的方法做出了三角形。请看黑板,这个图形认识吗?请说出角各部分的'名称。你能把它变成一个三角形吗?(指名到黑板上画)

(4)你会把角变成一个三角形吗?由角的各部分名称,你能说说三角形各部分的名称吗?(板书:3条边、3个角、3个顶点)

(5)通过刚才的做一做和现在的变一变,你知道三角形有哪些特征?现在你知道为什么这个图形的名字是三角形了吧?

(6)你认为还可以给它取个什么名字?(板书:三边形)

不过啊,我们生活中还是习惯叫它三角形。

【设计意图:在学生做三角形活动中,更多的是让学生在汇报怎样做三角形中能够关注到三角形的构造。通过让学生把以前学过的角变成三角形的环节,沟通了知识之间的联系,让学生明白三角形不仅可以来自生活的抽象,还可以来自知识的演变。更重要的是,从角过渡到三角形,学生很容易得到三角形各部分的名称。另外,让学生自己思考三角形名称的由来,不仅扩大了学生的知识面,而且借此进一步强化了三角形的边角特征。】

2、巩固与过渡

(1)同学们会做三角形了,下面我们要在点子图上画出两个不同的三角形。(出示想想做做第1题)

师拿学生作业交流:你是怎么画的?(画三角形时我们可以先确定它的三个顶点。)

(2)这三个点能画在同一条直线上吗?看来啊,只要三个点不在同一条直线上,两两相连就能够画出三角形,那么是不是任意的三条线段都能围成三角形呢?

3、研究三角形三条边的关系。

(1)谈话:老师给大家准备了长度分别为10厘米、6厘米、5厘米、4厘米的四根小棒,任意选三根围一围,看看能否围成三角形。可以把每一次所用小棒的数据记录在作业纸的表格中。

(2)交流:谁来说说你选了哪三根小棒,能围成三角形吗?

(3)同学们每次都是选三根小棒,为什么有的能围成三角形,有的不能围成三角形呢,这里面又有怎样的奥秘呢?我们先来观察这个三角形(6cm5cm10cm)。

(4)仔细观察,比较三根小棒的长度,说说你有什么发现?可以和你的同桌交流交流。引导学生发现:6+5>106+10>55+10>6

(板书:三角形两条边长度的和大于第三边)

(5)是不是这样呢?我们来看这个三角形(4cm5cm6cm)的三条边是不是也有这样的关系?

指名交流:4+5>64+6>55+6>4

(6)现在我们来看看这三根小棒为什么不能围成三角形?(出示6cm4cm10cm)

(7)出示(4cm5cm10cm):指出:再次说明两条边的长度和要大于第三边,但现在有两条边的长度和等小于第三边,所以不能围成三角形。

请同学们思考:在判断任意的三条线段能不能围成三角形时,是不是要把所有的两边之和都算出来和第三边作比较?

【设计意图:探究三角形三条边之间的关系是本课的教学重点,通过让学生凭借自己的探索发现三角形三条边的关系,既理解了知识、又培养了学生的探索意识,学生也能对这部分知识有深刻的印象。可谓一举数得。】

三、综合练习,巩固深化

1、老师这里还有几组线段要请同学们来判断一下能不能围成三角形。下面我们要采取抢答的形式,老师说开始,你就可以站起来回答,看看哪位同学的反应最快。好吗?

①6cm9cm3cm②7m6m5m③4dm10dm8dm

【设计意图:此题采用抢答形式,强化了学生自觉运用三角形围成的快捷判断方法的意识。其中,变化了数据后的单位名称,用意是扩大知识的应用范围。】

2、放学后老师还要去趟少年宫,请看(出示地图),从学校到少年宫有几条路线?走哪一条路最近呢?你是怎么想的,能用今天的知识来解释吗?

3、拓展

(1)有一个活动角,已知这条边是2cm,这条边是5cm,请问第三条边可以是几厘米(填整数)?

(2)如果一个三角形的最短边是5cm,另外两条边可以是几厘米?

(3)如果三条边的和是5cm,三条边分别是几厘米?

【设计意图:这一题是开放题,有效地训练了学生思维的广阔性。另外,第(1)小题的设计与新授过程中“由角演变成三角形”这一教学环节相呼应,又使他们进一步体会三角形三条边的关系。】

四、全课总结

刚才同学们都想了解新图形的名字、样子、特征,现在都了解了吗?谁愿意把你了解的知识介绍给同学听一听。

三角形教案【篇9】

一、教学目标:

(一)知识目标

1、让学生通过观察、操作、讨论探索出三角形的内角和等于180及3条边之间的关系,体验解决问题方法的多样性。

2、在活动中,使学生初步学会与同学合作探索问题。

3、培养学生的语言表达能力和说普通话的能力。

(二)能力目标

通过让学生猜测验证三角形的内角和的过程中,培养学生探究、解决问题的能力。

二、教学重点:

三角形的内角和及三角形的三条边之间的关系。

三、教学难点:

验证三角形的内角和等于180。

四、教具准备:

三角板2个、量角器、不同类型的三角形。

五、学具准备:

三角板、量角器

六、教学过程:

(1)活动一:复习导入

师:上节课我们学习了三角形的有关知识,谁能说一说?

指名交流,说出三角形的稳定性和三角形的分类。

学生表述的质量。

(2)活动二:探究新知

师:两个三角板它们都是三角形,都有几个内角?

量一量它们的内角的和是多少度?

等边三角形的内角和是多少度?

小组合作进行,量出一个三角形的内角和是:60+30+90=180,第二个内角和也是:45+45+90=180。

等边三角形的内角和室60+60+60=180。

小结:这山种特殊的三角形的内角和都是180。

给学生提供充分的空间进行探究。

关注学生的结论。

(3)活动三:操作验证

师:是否所有的三角形的内角和都是180呢?用你喜欢的方法验证,比一比哪个小组性的方法多。

结论:三角形的内角和是180。

学生拿出事先准备的三角形和必要的工具进行验证,可以用折叠的方法,也可以用量角器量的方法,还可以用剪拼的方法等。小组探索,全班交流并总结。

让每个学生都参入活动中。

关注学生的验证过程。

(4)活动四:探究三条边之间的关系

师:三角形的三条边之间有什么关系呢?可以摆一摆,量一量。你有什么发现?

师:板书:三角形的任意两条边之和大于第三边。

同桌俩合作进行,三角形的两条边的和大于第三边。

指名交流,集体总结:三角形任意两边之和大于第三边。

关注学生的验证方法。

(5)活动五:巩固练习

师:做教材45—46页的6、7、8、9题。

让学生独立完成,然后全班交流订正。

公主学生交流的质量,给予一定的评价。

(6)活动六:课堂小结

说一说这节课你有什么收获?

学生的知识进行回顾总结。

鼓励学生用自己的语言进行总结。

创意作业:在自己周围找一找与课本类似的铁塔,并找出不同的三角形。

七、板书设计:

(1)三角形的三个内角的和是180度

(2)三角形任意两边之和大于第三边

八、教学反思:

三角形是最简单的多边形,学生对三角形已有一定的感性认识,因为在生活中他们经常会接触到。本节三角形的认识是学生在角的认识的基础上进行教学的,它又是进一步学习三角形有关知识的重要基础。本节课的教学主要包括三角形的意义、特征、特性,三角形的分类和三角形之间的关系等内容。

我在教学中贯彻让学生经历知识的形成过程为原则,整个教学过程始终围绕教学目标展开,力求做到层次清楚,环节紧凑,并注意引导学生通过观察、实验和操作,突出体现了学生对知识的获取和能力的培养。

现代心理学、教育学认为,语言的准确性体现着思维的周密性,语言的层次连贯性体现着思维的逻辑性,语言的多样性体现着思维的丰富性。众所周知能力和思维相辅相成,而思维的发展同语言的发展又紧密相关,这说明要提高学生思维能力,就必须培养学生的语言表达能力,从而提高学生的口语能力,提高说规范话、说普通话的水平。

三角形教案【篇10】

教学内容:

义务教育课程标准实验教科书数学四年级下册80~81页的例1、例2

教学目标:

1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形的高和底的含义,会在三角形内画高。

2、培养学生观察、操作、自学的能力和应用数学知识解决实际问题的能力。

3、体验数学和生活的联系,培养学生学习数学的兴趣。

教学重点:

1、理解三角形的特性。

2、在三角形内画高。

教学难点:

理解三角形高和底的含义,会在三角形内画高。

教学准备:

多媒体课件、投影。

教学过程:

一、谈话引入。

师:我们学过哪些平面图形?

师:说一说你对三角形有哪些认识?

师:同学们对三角形已经有了初步的了解,这节课我们继续研究和三角形有关的知识。

(板书课题:三角形的特性)

二、探究新知。

1、三角形的特征。

(1)画一画。

师:请你在纸上画一个自己喜欢的三角形。并和同桌边指边说一说三角形有几条边?几个角?几个顶点?

师黑板上画一个三角形,让学生说出各部分的名称师板书。(教师板书各部分名称)

(2)摆一摆。

师:每根小棒相当于一条线段。请你动手用三根小棒摆一个三角形。

找一学生上投影前摆一摆,并说一说是怎么摆的?

(3)看一看。

老师也摆了一个三角形,课件出示。

你们有什么看法?

教师用课件演示并强调:有三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

(4)找一找。

下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。(学生一起用手势表示)

2、三角形的特性。

(1)动手操作发现三角形的特性。

师生拿出平行四边形框架。

师:用手拉动,说一说有什么发现?(容易变形,不稳定。)

指导学生操作:去掉一条边,再扣上拼组成三角形框架。

师:再拉一拉有什么感觉?

师:想一想这说明三角形具备什么特性?(稳定性)

(2)生活中寻找三角形的特性。

师:三角形的稳定性在生活中的用处很大,你能举个例子吗?

课件出示例2的主题图,请你找出各图中哪有三角形?说一说它们有什么作用?

3、认识三角形的底和高。

(1)情境引入。

故事引入,两个三角形争论谁的个高。课件出示

让学生说一说怎样比较这两个三角形的高,并准备好相应的两个三角形学具试着让学生前面来分别指一指它们的高,并比一比。

师:请你拿出(指锐角三角形)这样一个三角形,试着指一指它的高。

(2)看书自学。

师:什么是三角形的高?怎样正确的画出三角形的高呢?请打开书81页,看看书上是怎样说的,又是怎样画的,和你的想法一样吗?

师:谁来说一说?

请你在刚才的三角形中画出三角形的一条高,并标出它所对应的底。

(3)教师板演。

我把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC。想想怎样以AC边为底画出这个三角形的高?

生说高的画法,师板演,并强调用三角板画高的方法。

(4)进一步认识三角形的高。

在三角形中标上字母ABC,和同桌说一说刚才画的高是以哪条边为底画的?

师:刚才我们画了三角形的一组底和高,想一想一个三角形只有一组底和高吗?为什么?

(三)应用练习。

1、填空:

三角形有()个顶点,()条边,()个角。

2、学校的椅子坏了,课件演示,怎样加固它呢?(教材86页第2题)

3、小明画了三角形的一条高,你说他画的对吗?为什么?

(四)课堂小结。

通过这节课的学习,你对三角形又有了哪些新的认识?

你还想了解和三角形有关的哪些知识?

三角形教案【篇11】

在观察、操作活动中,概括三角形的特征,认识各部分名称以及底和高的含义,会在三角形内画高,用字母表示三角形。

在观察、操作活动、概括中,积累认识图形的经验和方法。

体验数学与生活的联系,培养学生学习数学的兴趣。

教学重点:概括三角形的概念,认识三角形各部分的名称,知道三角形的底和高。

1.出示主题图。

教师:同学们,你们知道这是哪儿吗?你能找出图中的三角形吗?

2.生活中的三角形。

3.引入。

教师:真会观察,生活中的很多地方都会用到三角形,今天我们就一起走进三角形的世界。

【设计意图】关注学生已有的知识经验,让学生在熟悉的情境中找三角形,列举生活中的三角形,唤起旧知,调动学生已有的生活经验,丰富了三角形的表象,同时体会三角形与生活的密切联系。

1.教学三角形的含义。

(1)教师:我们在生活中找到了三角形,现在请你画一个三角形。

(2)订正:谁来展示一下自己画出的三角形?说说你是怎么画的。(先画一条线段,从这条线段的一个端点出发,再画一条线段,把两条线段的端点连接起来)

预设:学生会画出不同的三角形。在说画法的过程中体会“围成”。

(3)课件出示:

教师:大家看,这两个是三角形吗?为什么?(有两条线段的端点没有连上)

教师:大家说得非常好,三角形每相邻两条线段的端点必须相连,这样相连的三条线段就是“围成”。

(4)教师总结:说说什么是三角形?(由3条线段围成的图形叫做三角形)

【设计意图】在画三角形、说画法、辨析交流的过程中,理解“围成”的含义,概括三角形的含义。培养学生的观察能力和语言表达能力。

2.三角形各部分名称。

(1)教师:你画的三角形有几条边?几个角?几个顶点?标在图上。

(2)汇报:

教师:大家画的三角形样子各不相同,但它们都有3个顶点、3条边和3个角。

(3)教师:如果在三角形的三个顶点上分别写上三个不同的大写字母,如:A、B、C,那么这个三角形就是“三角形ABC”,也可以称为“三角形ACB”或“三角形BAC”等。

教师:再说说,三角形ABC的3条边、3个角、3个顶点分别是什么?

【设计意图】在说、指、写三角形各部分名称的活动中, 认识三角形的基本特征,建立三角形表象。

3.三角形的高和底。

(1)认识三角形的高和底。

教师:三角形除了有3个顶点、3个角和3条边以外,它和平行四边形、梯形一样,也有底和高。什么是三角形的高?什么又是三角形的底呢?请打开教材阅读第60页上的内容。

教师指定学生,说说什么是三角形的高,什么是三角形的底。

(2)画三角形的高。

教师:在刚才画的三角形内,画出一条高,比一比,看谁画得最规范。

订正:画好了吗?老师这里有几位同学画的。(在实物投影仪上展示)这样画对不对?

教师:正确的高怎样画呢?谁愿意画出黑板上这个三角形的高?边画边说怎么画。

学生:以BC边为底画一条高,先用三角板的一条直角边与BC边重合,另一条直角边通过A点,然后从A点向它的对边画一条垂线,用虚线表示,标出直角符号,顶点与垂足之间的线段就是三角形的高。写上高,这条对边叫做三角形的底,写上底。

教师:仔细观察你画的三角形的底和高,它们的位置有什么特点?(互相垂直)

教师:三角形的底和高是一组互相垂直的线段。画三角形的高实际上就是我们学过的过直线外一点,画已知直线的垂线段。

教师:还能在你的三角形中画出其他的高吗?还能通过哪个顶点向它的对边作垂线画高?试一试。

学生自己动手画一画三角形的高。

教师:谁来展示一下自己的作品。说说你画出了几条高?

预设:锐角三角形有3条高,钝角三角形和直角三角形都只有1条高。

预设1:直角三角形的一条高在三角形内,两条直角边互为底和高(课件演示),所以,直角三角形还有两条高在三角形边上。

预设2:钝角三角形的一条高在三角形内,还有两条高的垂足落在钝角两边的延长线上(课件演示),所以,钝角三角形还有两条高在三角形外面。

【设计意图】通过自已阅读教材了解三角形底和高的知识,在动手操作尝试画高、辨析交流、学生演示和再尝试的过程中,认识三角形的底和高,学会画三角形的高。培养学生的观察和动手操作能力。

1.填一填。

(1)由三条( )围成的图形叫做三角形。一个三角形有( )条边,( )个角,( )个顶点。

(2)从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的( ),这条对边叫做三角形的( )。任意一个三角形都有( )条高。

【设计意图】考查学生基本概念的掌握情况。

2.教材第60页做一做。

【设计意图】考查学生能否画出三角形指定边上的高。

三角形内角和教案收藏


工作总结之家编辑为大家整理的“三角形内角和教案”或许能帮助您解决一些疑惑,请注意这篇文章内容仅供参考。每个老师上课需要准备的东西是教案课件,我们需要静下心来写教案课件。同时还要明白写好教案课件,也能让老师自己知道教学意图。

三角形内角和教案 篇1

教学目标:

1、透过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作潜力、动手实践潜力,发展学生的空间观念。并运用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。

形状似座山,稳定性能坚。

三竿首尾连,学问不简单。

师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你明白这是什么三角形吗?

会是两个直角吗?为什么?

3、引出课题。

师:看来三角形里角必须藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

生:三角形的三个角的度数的和,就是三角形的内角和。

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?能够用什么方法验证呢?

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生带给充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,透过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种状况?

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

师:我在电脑里收索到折的方法,请同学们看一看他是怎样折的(课件演示)。

(鼓励学生用心开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理潜力。)

师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

5、巩固知识。

(1)师:你对三角形内角和是多少度还有疑问吗?此刻我们能够肯定的说:三角形的内角和是?度。

(2)解决课前问题,为什么画不出1个内含2个直角的三角形?

1个三角形中有没有2个钝角?

出示2个三角形,生分别说出内角和。

师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

3、教师:如果一个都不明白,或只明白1个角,你能明白三角形各角的度数吗?

求出下面三角形各角的度数。

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。

(3)我有一个锐角是40°。

4、决定。

5、求4边形、5边形内角和。

下课的时间就要到了,我们来一个挑战题。你们敢理解挑战吗?

如果要求10边形的内角和,你会求吗?你有什么发现?

(我的目的不仅仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维潜力。)

三角形内角和教案 篇2

【教材内容】

北京市义务教育课程改革实验教材(北京版)第九册数学

【教材分析】

《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。

【学生分析】

在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

【教学目标】

拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。

争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。

3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。

【教学重点】

让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。

【教学难点】

能利用学到的知识进行合情的推理。

【教具学具准备】

课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸

【教学过程】

一、学具三角板,引入新课

,问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)

3、认识内角

((板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?

(这个呢?(三个)

(设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)

二、动手操作,探索新知

(一)直角三角形内角和

ⅰ、特殊直角三角形内角和

2、观察这两个三角形的度数,你有什么发现?

生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?

(课件):(

那么另一个三角板的三个内角的总度数是多少?

(生回答,师课件:(

5、这个直角三角形的内角和是多少度?另一个呢?

赶快在你的数学纸上画一个平角。

(师出示一个平角)问:平角是什么样的?

7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。

ⅱ、一般直角三角形内角和

1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。

2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。

(汇报

哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)

三角形的种类

验证方法

验证结果

*“量一量”的方法:

板书:有一点误差的度数

*“剪一剪”的方法:

我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)

现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)

你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?

还有其他方法吗?

*“折一折”的方法:

预设:①生:我是折的。师:怎样折的?你能给大家演示吗?

学生演示(课件:折的过程)

②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)

*推理:

你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)

这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)

3、小结

(刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。

(设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是

(二)、锐角三角形、钝角三角形的内角和

1、请你们任意画一个钝角三角形,一个锐角三角形

我们是用什么方法来研究的?

3、学生模仿老师操作说理

4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。

师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是。

(设计意图:引导学生通过直角三角形的内角和是

三、巩固新知,拓展应用

我们就用三角形的这一特性来解决一些问题

1、两个三角形拼成大三角形

(1)每个三角形的内角和都是少度?

(它的内角和是多少度?(这时学生答案又出现了师:究竟谁对呢

2、一个三角形去掉一部分

(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?

再剪去一个三角形呢?(课件演示)

你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。

你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?

(3)如果五边形,你还能求出他的度数吗?

(设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于

四、总结评价、延伸知识

通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?

师:先研究的是特殊直角三角形的内角和是拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。

(设计意图:帮助学生梳理本节课的知识脉络。)

三角形内角和教案 篇3

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]

三、自主探索、研究问题、归纳总结:

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(4)根据学生的反馈情况教师进行操作演示。

撕拼法:

1、教师取出三角形教具,把三个角撕下来,拼在一起,

3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

三角形三个内角和等于180?

意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四、巩固练习,知识升华。

1、完成课本第28页的“试一试”第三题。

锐角三角形中的两个内角和能小于90吗?

3、有一个四边形,你能不用量角器而算出它的四个内角和吗?

意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。

这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:

当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。

三角形内角和教案 篇4

(一)创设情境,悬念引入

一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的`关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。

具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。

(二)探索新知

1、动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。

(将拼图展示在黑板上)

2、尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。

3、证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

4、学以致用,反馈练习

(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?

解:∵∠A+∠B+∠C=180°(三角形内角和定理)

∴∠B+∠C=100°在△ABC中,

(2)已知:∠A=80°,∠B=52°,则∠C=?

解:∵∠A+∠B+∠C=180°(三角形内角和定理)

又∵∠A=80°∠B=52°(已知)

∴∠C=48°

(3)在△ABC中,已知∠A=80°,∠B—∠C=40°,则∠C=?

(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?

(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?

解:设∠A=x°,则∠B=3x°,∠C=5x°

由三角形内角和定理得,x+3x+5x=180

解得,x=20

∴∠A=20°∠B=60°∠C=100°

(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?

第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。

通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。

5、巩固提高,以生为本

(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。

(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。

本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用。能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。

6、思维拓展,开放发散

如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

(三)归纳总结,同化顺应

1、学生谈体会

2、教师总结,出示本节知识要点

3、教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

(四)作业

1、必做题:习题3.1第10、11、12题

2、选做题:习题3.1第13、14题

(五)板书设计

三角形内角和

学生拼图展示已知:求证:

证明:开放题:

三角形内角和教案 篇5

教学要求

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

教学重点

三角形的'内角和是180°的规律。

教学难点

使学生理解三角形的内角和是180°这一规律。

教学用具

每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

教学过程:

一、出示预习提纲

1、三角形按角的不同可以分成哪几类?

2、一个平角是多少度?1个平角等于几个直角?

3、如图,已知∠1=35°,∠2=75°,求∠3的度数。

二、展示汇报交流

。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

今天我们一起来研究三角形的内角和有什么规律。

3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

4、指名学生汇报各组度量和计算的结果。你有什么发现?

5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

提示学生,可以把三个内角拼成一个角,就只需测量一次了。

7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

11。老师板书结论:三角形的内角和是180°。

一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

出示教材85页做一做。让学生试做。

指名汇报怎样列式计算的。两种方法均可。

∠2=180°—140°—25°=15°

∠=15°

课后反思:

对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。

"直角三角形教案"延伸阅读