三角形内角和教案收藏。
工作总结之家编辑为大家整理的“三角形内角和教案”或许能帮助您解决一些疑惑,请注意这篇文章内容仅供参考。每个老师上课需要准备的东西是教案课件,我们需要静下心来写教案课件。同时还要明白写好教案课件,也能让老师自己知道教学意图。
三角形内角和教案 篇1
教学目标:
1、透过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作潜力、动手实践潜力,发展学生的空间观念。并运用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。
形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你明白这是什么三角形吗?
会是两个直角吗?为什么?
3、引出课题。
师:看来三角形里角必须藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
生:三角形的三个角的度数的和,就是三角形的内角和。
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?能够用什么方法验证呢?
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生带给充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,透过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种状况?
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
师:我在电脑里收索到折的方法,请同学们看一看他是怎样折的(课件演示)。
(鼓励学生用心开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理潜力。)
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
5、巩固知识。
(1)师:你对三角形内角和是多少度还有疑问吗?此刻我们能够肯定的说:三角形的内角和是?度。
(2)解决课前问题,为什么画不出1个内含2个直角的三角形?
1个三角形中有没有2个钝角?
出示2个三角形,生分别说出内角和。
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
3、教师:如果一个都不明白,或只明白1个角,你能明白三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、决定。
5、求4边形、5边形内角和。
下课的时间就要到了,我们来一个挑战题。你们敢理解挑战吗?
如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维潜力。)
三角形内角和教案 篇2
【教材内容】
北京市义务教育课程改革实验教材(北京版)第九册数学
【教材分析】
《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。
【学生分析】
在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
【教学目标】
拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。
争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。
3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。
【教学重点】
让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。
【教学难点】
能利用学到的知识进行合情的推理。
【教具学具准备】
课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸
【教学过程】
一、学具三角板,引入新课
,问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)
3、认识内角
((板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?
(这个呢?(三个)
(设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)
二、动手操作,探索新知
(一)直角三角形内角和
ⅰ、特殊直角三角形内角和
。
2、观察这两个三角形的度数,你有什么发现?
生
生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?
(课件):(
那么另一个三角板的三个内角的总度数是多少?
(生回答,师课件:(
5、这个直角三角形的内角和是多少度?另一个呢?
赶快在你的数学纸上画一个平角。
(师出示一个平角)问:平角是什么样的?
7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。
ⅱ、一般直角三角形内角和
1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。
2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。
(汇报
哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)
三角形的种类
验证方法
验证结果
*“量一量”的方法:
板书:有一点误差的度数
*“剪一剪”的方法:
我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)
现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)
你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?
还有其他方法吗?
*“折一折”的方法:
预设:①生:我是折的。师:怎样折的?你能给大家演示吗?
学生演示(课件:折的过程)
②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)
*推理:
你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)
这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)
3、小结
(刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。
(
(设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是
(二)、锐角三角形、钝角三角形的内角和
1、请你们任意画一个钝角三角形,一个锐角三角形
我们是用什么方法来研究的?
3、学生模仿老师操作说理
4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。
师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是。
(设计意图:引导学生通过直角三角形的内角和是
三、巩固新知,拓展应用
我们就用三角形的这一特性来解决一些问题
1、两个三角形拼成大三角形
(1)每个三角形的内角和都是少度?
(它的内角和是多少度?(这时学生答案又出现了师:究竟谁对呢
2、一个三角形去掉一部分
(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?
再剪去一个三角形呢?(课件演示)
你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。
(
你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?
(3)如果五边形,你还能求出他的度数吗?
(设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于
四、总结评价、延伸知识
通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?
师:先研究的是特殊直角三角形的内角和是拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。
(设计意图:帮助学生梳理本节课的知识脉络。)
三角形内角和教案 篇3
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三、自主探索、研究问题、归纳总结:
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(4)根据学生的反馈情况教师进行操作演示。
撕拼法:
1、教师取出三角形教具,把三个角撕下来,拼在一起,
3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
三角形三个内角和等于180?
意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四、巩固练习,知识升华。
1、完成课本第28页的“试一试”第三题。
锐角三角形中的两个内角和能小于90吗?
3、有一个四边形,你能不用量角器而算出它的四个内角和吗?
意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教案 篇4
(一)创设情境,悬念引入
一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的`关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。
具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。
(二)探索新知
1、动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。
(将拼图展示在黑板上)
2、尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。
3、证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
4、学以致用,反馈练习
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,则∠C=?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B—∠C=40°,则∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?
解:设∠A=x°,则∠B=3x°,∠C=5x°
由三角形内角和定理得,x+3x+5x=180
解得,x=20
∴∠A=20°∠B=60°∠C=100°
(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?
第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。
通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。
5、巩固提高,以生为本
(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。
(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。
本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用。能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。
6、思维拓展,开放发散
如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。
本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。
(三)归纳总结,同化顺应
1、学生谈体会
2、教师总结,出示本节知识要点
3、教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
(四)作业
1、必做题:习题3.1第10、11、12题
2、选做题:习题3.1第13、14题
(五)板书设计
三角形内角和
学生拼图展示已知:求证:
证明:开放题:
三角形内角和教案 篇5
教学要求
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
教学重点
三角形的'内角和是180°的规律。
教学难点
使学生理解三角形的内角和是180°这一规律。
教学用具
每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、出示预习提纲
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?
3、如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、展示汇报交流
。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
今天我们一起来研究三角形的内角和有什么规律。
3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4、指名学生汇报各组度量和计算的结果。你有什么发现?
5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
11。老师板书结论:三角形的内角和是180°。
一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
出示教材85页做一做。让学生试做。
指名汇报怎样列式计算的。两种方法均可。
∠2=180°—140°—25°=15°
∠=15°
课后反思:
对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。
Gz85.Com小编推荐
三角形内角和教案精品十二篇
备课资料和教学课件也是教师工作的重要组成部分,要求我们教师要认真对待。出色的备课资料需要考虑学生的实际情况,是否为不擅长编写教案和课件而困扰呢?为了满足您的需求,我精心创作了这份“三角形内角和教案”,欢迎访问我们的官方网站获取更多相关信息!
三角形内角和教案 篇1
三角形内角和定理(1)教学反思
“三角形的内角和定理”我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了。证明的过程中,通过课前准备好的三角形道具,让学生通过撕撕拼拼的方法,把三角形的三个内角拼成我们所熟悉的平角或者是同旁内角的关系,辅助线就自然而然的运用到其中。本节的重点和难点也就自然而然地被突破。
课后我认为本节中的成功之处有以下几点:
1、引入简单精炼,给了全体学生的自信心,能使所以学生的注意力迅速地集中到课堂上来;
2、利用拼图的方法来找到“三角形内角和定理”的证明方法的过程中,学生充分地配合,学生的思维得到了最大限度的发挥,而且采用此种方法来引出辅助线在几何中应用,巧妙地分散了本节的重点和难点,事实也证明学生的接受程度很好;
3、教师在多媒体上展示每个三角形都是用三种不同颜色的彩纸拼成的,学生在学习的过程中看起来会更加的清晰、醒目;
4、在本节课的整个流程中,师生之间的配合非常地默契,教师能够关注每一个学生,学生的思维也在短短的45分钟内得到了充分地发散和发挥,通堂的气氛活跃、轻松。
课后我认为本节课中的不足之处:
1、在学生拼图寻求“三角形内角和定理”证明之前的铺垫,有些过快,导致个别学生不太明白这些铺垫对于利用拼图来证明定理时有什么用途;
2、不完全相信学生的能力,比如在学生讨论拼图方法后,让学生到黑板上来展示作品的时候,我似乎不敢距离学生太远,恐怕中间会出现什么差错。而实践证明学生完全是通过自己来完成作品的展示的;
3、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有把课堂还给学生。
三角形内角和教案 篇2
教学过程:
一、激趣引入
(一)认识三角形内角
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
生1:三角形是由三条线段围成的图形。
生2:三角形有三个角,……
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)
(二)设疑,激发学生探究新知的心理
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
生:想。
师:那就让我们一起来研究吧!
(揭示矛盾,巧妙引入新知的探究)
二、动手操作,探究新知
(一)研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形)
师:也就是这个三角形各角的度数。它们的和怎样?
生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么?
生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和
1。猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
生1:180°。
生2:不一定。
2。操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
2)小组汇报结果。
师:请各小组汇报探究结果。
生1:180°。
生2:175°。
生3:182°。
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
3课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:我们可以得出一个怎样的结论?
生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。)
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?
生:不可能。
师:为什么?
生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、 按要求计算。(数学信息较为隐藏和生活中的实际问题)
3、游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
五、全课总结。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
三角形内角和教案 篇3
一、说教材
1、教学内容苏教版《义务教育六年制小学教科书·数学》四年级下册第130~131页。
2、教材简析
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的。通过学习三角形的内角和使学生学会求三角形中第三个内角的度数的方法,同时让学生经历探索、猜想、归纳等过程,发展学生的合情推理能力。
3、教学目标
(1)让学生探索发现三角形的内角和是180°。
(2)通过动手拼摆等活动提高学生的动手能力和思维能力,感受数学的转化思想。
(3)进一步发展学生空间观念。
4、教学重点
探索发现三角形的内角和是180°。
5、教具准备
多媒体课件
6、学具准备
每人准备几个不同类型的三角形。
二、说教法、学法
新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证,通过实验、操作、交流等活动,获得知识与能力,掌握解决问题的方法,获得情感体验。
三、说教学过程
(一)猜角设疑,揭示课题我们来做个游戏叫“猜角”。请同学们拿起桌子上量好角角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。想信吗?(不相信),下面我们来试一试。(师生猜角活动。)师:你想知道老师是怎么猜的吗?其中的奥秘就在今天我们要探索的知识。(板书:“的内角和”并齐读课题)[设计意图]在教学中激励学生展开积极的思维活动。先创设猜角的游戏情境,让学生对三角形三个角的度数关系产生好奇,引发学生的探究欲望。通过本节课的学习,你有什么收获?你还有什么问题吗?
三角形内角和教案 篇4
《三角形的内角和是180°》教学设计
教学思路:
由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。
学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。
教学目标:
1、知识技能目标:
(1)理解和掌握三角形的内角和是180°;
(2)运用三角形的内角和知识解决实际问题和拓展性问题;
2、能力技能目标:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感与态度目标:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点
重点:理解掌握三角形的内角和是180°。
难点:运用三角形的内角和知识解决实际问题。教具、学具准备:
教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。
教学过程:
一、创设情境 生成问题
(一)课件出示三角形争吵图
在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?
(二)猜想什么是三角形的内角和
师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?
课件演示三角形的内角(内角和)
二、探索交流 解决问题
(一)探究猜想内角和的度数
师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?
生:用量角器进行度量。
师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。
生回答。(回答可能不一样。)
师:同学们通过刚才的汇报你有什么想说的吗?
生:我发现内角和的度数不一样。
师:是啊,什么原因呢?
生:可能是量的时候出现了差错。
师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?
板书课题:三角形的内角和
(二)讨论验证方法
以小组为单位来想一想我们可以怎么样来验证?
小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)
(三)动手验证
生活动,师巡视
(四)汇报
师:哪个小组来汇报你们的验证方法和验证结论?
组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。
师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?
组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。
组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。
哪个小组的同学最想上来展示一下你们的研究成果?
师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?
(动画演示剪拼验证过程)
边演示边解说。
见证奇迹的时刻到了,你发现了什么?
师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。
课件演示独特折法
同学们还有不同的验证方法吗?
组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。
组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。
出示:普通折法
师:还有不同折法吗?
组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。
师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?
组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。
师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?
课件演示长方形推理法。
师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。
看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。
小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。
三、巩固应用 内化提高
同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!
1、根据已知角的度数求出未知角的度数
(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)
2、求等边三角形各内角的度数
3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)
4、放风筝:
同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?
一个等腰三角形的风筝一个底角是70度,求顶角的度数?
5、挑战极限:
同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?
根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?
四、回顾整理反思提升
同学们通过这节的学习你有哪些收获?
三角形内角和教案 篇5
教材分析
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180°。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90°,钝角三角形里的两个锐角和小于90°。
学情分析
学生在前面的学习中已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,知道了平角是180°;学生通过前几年的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯,所以在学生具备这些数学知识和能力的基础上,来引导学生探索和发现三角形内角和是180°这一性质。
要让学生明确一个三角形分成两个小三角形后,每个三角形内角和还是180°,两个小三角形拼成一个大三角形,大三角形的内角和也是180°。
教学目标
1、知识目标:让学生探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、能力目标:培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
教学重点和难点
教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。
教学难点:让学生经历探索和发现三角形的内角和是180°的过程。
教学过程:
(一)、激趣导入:
1、认识三角形内角
我们已经认识了什么是三角形,谁能说出三角形有什么特点?
(三角形是由三条线段围成的图形,三角形有三个角,…。)
请看屏幕(课件演示三条线段围成三角形的过程)。
三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角
形的内角。(这里,有必要向学生直观介绍“内角”。)
2、设疑激趣
现在有两个三角形朋友为了一件事正在争论,我们来帮帮它们。(播放课件)
同学们,请你们给评评理:是这样吗?
现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)
(二)、动手操作,探究新知
1、探究特殊三角形的内角和
师拿出两个三角板,问:它们是什么三角形?
(直角三角形)
请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)
从刚才两个三角形内角和的计算中,你们发现了什么?
(这两个三角形的内角和都是180°)。
这两个三角形都是直角三角形,并且是特殊的三角形。
2、探究一般三角形内角和
(1).猜一猜。
猜一猜其它三角形的内角和是多少度呢?(可能是180°)
(2).操作、验证一般三角形内角和是180°。
所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
(可以先量出每个内角的度数,再加起来。)
测量计算,是吗?那就请四人小组共同计算吧!
老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:
(3)小组汇报结果。
请各小组汇报探究结果
提问:你们发现了什么?
小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。
3继续探究
(1)动手操作,验证猜测。
没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?
(先小组讨论,再汇报方法)
大家的办法都很好,请你们小组合作,动手操作。
(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。
学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)
我们可以得出一个怎样的结论?(三角形的内角和是180°)
引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。
5、辨析概念,透彻理解。
(出示一个大三角形)它的内角和是多少度?
(出示一个很小的三角形)它的内角和是多少度?
一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)
把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°。)
这两道题都有两种答案,到底哪个对?为什么?
(学生个个脸上露出疑问。)
大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。
经过一翻激烈的讨论探究后,学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°
(三)小结
刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
(四)、巩固练习,拓展应用
下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=85°,∠2=65°,求∠3。
(2)在三角形中,已知∠1=98°,∠2=49°,求∠3。
2、判断
(1)一个三角形的三个内角度数是:90°、75°、25°。()
(2)一个三角形至少有两个角是锐角。()
(3)钝角三角形的内角和比锐角三角形的内角和大。()
(4)直角三角形的两个锐角和等于90°。()
3、解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
4、拓展练习。
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
小组的同学讨论一下,看谁能找到最佳方法。
学生汇报,在图中画上虚线,教师课件演示。
请同学们自己在练习本上计算。
(四)、课堂总结
通过这节课的学习,你有哪些收获?
三角形内角和教案 篇6
本课是三角形的内角和是北师大版四年级下册第二单元的内容,是三角形的一个重要性质,也是进一步学习几何的基础,经过第一学段以及本单元的学习,学生对于三角形已经有了直观的认识,这为感受、理解、归纳三角形内角和的概念打下坚实的基础,学好本课,对以后学习几何能起到承前启后的效果。
基于对教材以上的认识以及课程标准的要求,我拟定以下教学目标: 知识目标:使学生理解并掌握三角形内角和是180°。
能力目标:①通过学生画、量、猜、剪、拼、折、观察等活动,培养学生探索、发现、观察以及动手操作能力。
②能运用三角形内角和是180°解决实际问题。
情感目标:让学生体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角和都是180°的过程。让学生在动手实验中得到结论,感悟学习中的快乐
“授之于鱼不如授之于渔”,对于四年级的学生来说应进一步提高他们对问题的思考策略,在研究三角形的内角和是180°这一核心问题时,我先让学生独立思考、然后小组合作,通过量一量、剪一剪、拼一拼、折一折等活动来探究三角形内角和的秘密,完成了对新知识的建构,体现了学生动手实践、合作交流、自主探索的学习方法。既培养了学生的观察能力,同时又培养了学生的探索能力和创新精神。
长期以来,我们的教育进行的是颈部以上的学习,它只强调记忆、思维。荷兰教育家弗来登塔尔认为:数学学习是一种活动,这种活动与游泳、骑自行车一样,不经过亲身体验,仅仅看书本、听讲解、观察他人的演示是学不会的。因此将课堂还给学生,努力营造学生在教学活动中自主学习的时间,使他们课堂教学中重要的参与者,与创造者,学生动手实践、合作交流、自主探索的学习方法。本着这样的指导思想,在教学设计上,我力求充分体验以学生发展为本的教育理念,将教学思路拟定为:复习引入、猜想验证、巩固内化、拓展延伸。运用课件教学直观明了便于理解。
强调面向全体学生的同时,关注每个学生个体差异,因材施教、课堂遵循先易后难、先差生后优生的原则,完成大纲目标的同时,也去挖掘优生的潜能,全面提高学生的成绩。
教学的艺术不至于传授知识,而在于唤醒、激发和鼓励,上课伊始,我先让学生复习三角形的有关知识为切入点,以旧引新使学生明确学习方向。学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半甚至没有结果。这时我让学生大胆猜想,形成统一的认识,使后面的探索和验证活动有了明确的目标。为此我精心设计了以下三个问题:什么是三角形的内角?什么是三角形的内角和?同学们先猜一猜三角形的内角和是多少度?可能学生都会猜180°。“那每一个三角形的内角和都是这个度数吗?你敢肯定吗?你能用什么方法去说服别人吗?”估计学生都得把刚才量的三角形的三个角的度数加起来进行验证。根据学生的回答我一一板书。(板书180°、180°、182°、179°、178°)同学们请仔细观察这一个个数据,你有什么发现?可能有的同学会说我们用量的方法得到三角形的内角和有的是180°,有的比180°大,有的比180°小。为什么会出现这种情况:测量时有误差。
“那你还有其他的方法来验证三角形的内角和就是180°吗?请你们利用老师提供的学具先独立思考,然后小组合作验证。”
当学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的探究活动,在活动中,我把“放”和“引”有机的结合,鼓励学生积极开动脑筋,从不同途径探索解决问题的方法。通过一系列“动”的过程,在大量感知的基础上,使学生能自己发现并总结出知识的规律,内化这一活动,使之不仅知其过程而且知其结果,从感性认识上升到理性认识,完成了认识上的飞跃,实现了知识的再创造。
当学生验证有困难时,我会适时的引导。“既然你们都猜三角形的内角和是180°,能不能把它转化成我们上册学过的某个知识点呢?”由于学生已经有了角大小比较的经验,会有一些学生想到把三角形的三个角撕下来拼在一起与平角作比较,从而得到三角形的内角和是180°。我让这些孩子到前面展示并鼓励全班同学都动手做一做,使更多的学生明白这个猜想是正确的。“同学们你们把三角形的三个角撕下来拼在一起得到什么结论?”估计会有下面精彩的回答:各种形状的三角形内角和都是180°;我不用撕,直接折也能得到三角形的内角和都是180°;老师我在验证直角三角形的时候有一个更好的方法,只要把两个锐角折成一个直角与原来的直角相加不也是180°吗;(有创新)老师也用折角的方法验证了各种形状的三角形。(课件……)通过课件的直观演示,又一次证实了学生的猜想是正确的。,每个孩子都是独有的个体,在合作中互补,确实有利于难点的突破。验证三角形的内角和是本节课的难点,所以我让孩子们合作验证。在合作中交流,在合作中相互学习。“同学们,通过刚才的活动,你现在可以肯定的告诉老师三角形的内角和是多少度了吗?这个三角形的内角和是多少度?(出示一个大三角形)把它剪小后问:现在呢?(剪几次)那现在你对三角形的内角和是180°还有怀疑吗?谁能用一句话总结出来?
我这样现场操作,让学生能从视觉上又一次证实了三角形的内角和不管形状和大小统统都是180°。
有人说:教育是一棵树摇动另一棵树,是一朵云推动另一朵云,一个心灵震撼另一个心灵。老师的一个眼神、一个微笑便能给孩子带来幸福和满足。适时的评价更能激起孩子思维的火花。当学生终于发现了三角形的内角和是180°这一秘密时,我会及时给学生评价:“同学们,你们经过画、量、剪、拼、折、观察等活动,自己发现并验证了三角形的内角和是180°(板书完整课题内角和是180°)这一重要规律,多了不起啊,老师由衷的为你们感到高兴。并祝贺你们孩子们。”我想得到老师这样的评价,学生们的高兴劲可想而知,解决问题的欲望也会更加强烈。拓展延伸。
在数学学习的研究中,常常有一些现实的、有趣的富有挑战性的题目呈现在孩子面前,有些题目带有明显的开放性,它把一个不确定的问题转化、分解为多个确定性的问题来解答。应该说这样的问题给孩子的思维空间是非常大的。
“下面三角形,剪掉一个40°的角,不改变其他角的度数,剩下图形的内角和是多少度?”我想会有学生利用自己的经验不假思索就会回答“140”,这时我不做任何评价,微笑着看着大家,“都同意这个答案吗?”引发了学生的再思考,我想最终一定会有学生发现“老师,剪掉这个40°的角以后,实际上就变成了一个四边形,要求四边形的内角和,就把它分割成两个三角形,一个三角形的内角和是180°,那两个三角形就是360°。我进而让学生引导“那么五边形的内角和又是多少度呢?”由于上一题的思路孩子们很快就会分割成三个三角形,即3个180°,共540°。“那六边形、七边形、一百边形的内角和又是多少度呢?”这时孩子会边画、边思考、边讨论,四边形能分割成两个三角形,五边形能分割成三个三角形,那六边形就能分割成四个三角形,最后孩子们终于发现了任意多边形的内角和等于边数减2的差乘180°。教学同时也是一门有遗憾的艺术。我认为对遗憾的态度应该约拿,并不断地探究、不断地改进,为此我思考着、探索着实践着。我想经过自己孜孜不倦的努力,一定会使预设的数学活动过程成为智慧和人格不断生成的过程。最后我希望每一个老师都能利用自己的人格魅力塑造出具有良好的习惯、健全的人格、坚定的信念、卓越成就的学生。布置作业。课后练一练1————5题
本课时间安排:检查上一课作业,练习3分钟。导入2分钟。新授25分钟。拓展,作业5分钟。在教学活动中及时了解学生掌握情况,随时调整教学方案,完成教学任务。
三角形内角和教案 篇7
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三、自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法:
1、教师取出三角形教具,把三个角撕下来,拼在一起,
2、师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四、巩固练习,知识升华。
1、完成课本第28页的“试一试”第三题。
2、想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3、有一个四边形,你能不用量角器而算出它的四个内角和吗?
意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
五、总结延伸
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教案 篇8
教学目标:
1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。
2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。
3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。
教学重、难点:
掌握三角形的内角和是180°。验证三角形的内角和是180°。
学生分析:
在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
教学流程:
一、创设情境,激发兴趣
(课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)
(学生小声议论着,争论着。)
师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?
生:可以把这两个三角形的内角比一比。
生:它们不是一个角在比较,可怎么比呀?
生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。
师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)
【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】
二、动手操作,探索新知
1、初步感知。
师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)
生汇报测量的结果:内角和约等于180°。
师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)
【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】
2、用拼角法验证。
师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?
生:我们手里有一些三角形,可以动手拼一拼。
生:还可以剪一剪。
师:那同学们就开始吧!
(学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)
生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。
生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。
生:钝角三角形的内角和也是180°。
(师板书:三角形的内角和是180°。)
【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】
三、巩固新知,拓展应用
1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。
2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。
通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。
3.师:(出示一个大三角形)它的内角和是多少度?
生:180 °。
师:(出示一个很小的三角形)它的内角和是多少度?
生:180 °。
师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)
师:哪个对?为什么?
生:180°对,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)
生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。
师:你真聪明。(课件演示。)
四、小结
师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)
师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?
五、探究性作业
求下面几个多边形的内角和。(图形略。)
【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】
反思:
1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。
2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设
三角形内角和教案 篇9
三角形的内角和
(卢芳珍)
教学内容 :课本P85例5
教学要求:1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
教学重点 三角形的内角和是180°的规律。
教学难点 使学生理解三角形的内角和是180°这一规律。
教学用具 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、引出课题
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.课件出示:长方形内角和引出直角三角形内角和。
思考:所有的三角形的内角和都是180°吗?
以小组为单位,拿出准备好的三种三角形卡片,选择自己喜欢的方法进行验证。
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
二、重点点拨:
1、可以把三个内角拼成一个角,就只需测量一次了。
课件出示拼角方法。
2.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
3.学生动手,拿一个锐角三角形纸片试试看,拼的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
4.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。
5.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
6.讨论交流:
A、你能画出一个有两个直角的三角形吗?说说原因!
B、可以画出一个有两个钝角的三角形吗?
C、一个三角形最多只能有()直角,或最多只能有
()钝角。最少有()锐角,最多有()个锐角。
7.出示教材85页做一做。让学生试做。
8.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2、88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88页第10题
四、课堂小结。
五、知识拓展
求多边形的内角和。
六、布置作业
三角形内角和教案 篇10
一、教材分析
(一)教学内容的地位
本节课是在研究了三角形的有关概念和学生在对“三角形的内角和等于1800”有感性认识的基础上,对该定理进行推理论证。它是进一步研究三角形及其它图形的重要基础,此外,在它的证明中引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。
(二)教学重点、难点:
三角形内角和等于180度,是三角形的一条重要性质,有着广泛的应用。虽然学生在小学已经知道这一结论,但没有从理论的角度进行推理论证,因此三角形内角和等于180度的证明及应用是本节课的重点。
另外,由于学生还没有正式学习几何证明,而三角形内角和等于180度的证明难度又较大,因此证明三角形内角和等于180度也是本节课的难点。
突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。
二.教学目标
基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。
(一)知识与技能目标:
会用平行线的性质与平角的定义证明三角形的内角和等于1800,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。
(二)过程与方法目标:
经历拼图试验、合作交流、推理论证的过程,发展学生的合情推理能力和逻辑思维能力。
(三)情感、态度价值观目标:
通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。
三、学情分析
七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了用三角形内角和等于180度这一结论,只是没有从理论的角度去研究它,学生通过前面的学习已经具备了简单说理的能力,同时已学习了平行线的性质和判定及平角的定义,这就为学生自主探究,动手实验,讨论交流,尝试说理做好了准备。
四、教学方法与学法指导:
根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作―观察实验―猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。我将教给学生通过动手实验、观察思考、抽象概括从而获得知识的学习方法,培养他们利用旧知识获取新知识的能力。
五.教学评价:
1、关注学生探索结论、分析思路和方法的过程。
2、关注学生说理的能力和水平。
3、关注学生参与教学活动的程度。
六.教学活动程序:(设计为四个环节:)
1、纠错、巩固
2、探索、交流
3、应用、提高
4、反思、总结
一、学生纠错,复习巩固:
找出下面一道题目证明过程中的错误。
已知:如图,直线AB、CD被直线EF所截,AB∥CD,MG平分∠AMN,NH平分∠MND.求证:MG∥NH
证明:∵AB∥CD
∴∠1=∠2
∴MG∥NH
提问:这个证明过程中存在哪些问题?
在纠错中,引导学生回忆证明的一般步骤是什么.【设计意图】:通过对命题证明过程的纠错,起到复习巩固知识的作用,明晰了证明命题的一般步骤及注意点;又调动了学生的积极性,激发他们的兴趣。
二、探索交流:
问题1:我们已经知道了“三角形的内角和等于180°”这个结论,如何证明这个命题呢?
一般步骤是什么?
【设计意图】:文字命题的证明是初中几何教学中的难点,通过问题1可使学生进一步掌握证明的一般步骤。
引导学生根据题意画出图形,写出已知、求证。
问题
2、小学里我们已经通过“测量法”“剪纸法”等实验的方法,得到了“三角形的内角和等于180°”这个结论.通过前面的学习,我们知道实验得到的结论并不一定正确,必须进行数学证明,那么如何证明呢?
这就是我们本节课要研究的主要问题,由此导入新课。
【设计意图】:通过 问题2及追问导入本节课研究的课题,学生进一步明确了证明的必要性,渗透了研究几何图形的一般套路(观察―猜想―验证),帮助学生积累研究问题的基本经验。
1、演示:用课件演示“剪纸法”把三角形的三个角拼在一起形成平角的过程。
提问:同学们能否从刚才的演示的过程中受到启发,用所学的数学知识证明“三角形的内角和等于180°”这个结论。请同学们先独立思考,再各小组交流讨论,看哪个组想的方法多。
2、学生小组交流,教师巡视指导。
【设计意图】:通过直观演示,给学生以直观体验,能够激起学生的求知热情,开阔学生的思维,激发学生的联想,促进学生主动思维。同时以小组合作交流的方式,通过生生互动,激发学生的探究欲望。由于方法较多,故学生讨论中又可以互相借鉴,极大地开阔了学生的视野。
3、小组汇报,教师板演,进一步规范证明的格式。在学生回答过程中,教师适时追问:你解决问题时作辅助线的目的是什么?你是怎么想的?
4、提问:这些方法是把三个角聚在了三角形的哪个位置?还可聚在哪个位置呢?如何证明请同学们课后继续研讨。
【设计意图】:通过追问,充分展示学生的思维过程。促进学生理解辅助线的作用,对证明方法做到“知其然更知其所以然”。正因为学生的激情被点燃,所以学生的思维不断闪光,因此会出现很多证明方法,“一题多解”得到了深化。
5、教师总结:(1)、通过证明,我们知道“三角形的内角和等于180°”是一个真命题,所以我们把这个真命题称为三角形内角和定理。
(2)、通过上面的研究发现,可以把三角形的三个角凑在三角形的边上、三角形的内部或三角形的外部,从而形成平角,来证明内角和定理;也可把三角形凑成一组平行线的同旁内角,形成互补关系。在这期间我们用到了一个非常重要的“工具”――辅助线。那么辅助线是怎么画的、它有什么作用呢?(1)辅助线是为了证明需要在原图上添画的线.(辅助线通常画成虚线)(2)它的作用是把分散的条件集中,把隐含的条件显现出来,起到牵线搭桥的作用.(3)添加辅助线,可构造新图形,形成新关系,找到联系已知与未知的桥梁,把问题转化,但辅助线的添法没有一定的规律,要根据需要而定,平时做题时要注意总结.【设计意图】:通过教师总结,进一步让学生体会到:不同的添辅助线方法,实质是相同的――就是把一个我们不会解的新问题转化为我们会解的问题,于潜移默化中培养了学生的转化思想
6、小试身手:
(1)、如图,在△ABC中,∠ACD是它的一个外角,请你完成下面的表格。
∠A=35° ∠B=40° ∠ACD=
________________________________________°
∠A+∠B=75° ∠ACD=
________________________________________°
∠A+∠B=
________________________________________° ∠ACD=131°
∠A=37° ∠B=
________________________________________° ∠ACD=125°
(2)、你有什么发现?三角形的外角等于与它不相邻的两个内角的和【设计意图】:通过以上练习,对三角形内角和定理及时巩固,同时通过表格的填写让学生一目了然地发现三角形的外角与它不相邻的两个内角之间的数量关系,为证明该定理作铺垫。还渗透了从“特殊”到“一般”的归纳思想。起到了承上启下的作用。
7、问题1:你会证明这个结论吗?(先请学生板演,再让学生评点。)
【设计意图】:通过学生板演,及时反馈,可充分暴露学生证明过程中存在的问题,及时纠正,通过学生点评,让学生当“小老师”,培养学生的语言表达能力,提高了学生课堂参与的主动性和积极性,活跃了课堂气氛。进一步规范证明的步骤和格式。
问题2:你还有其他证明方法吗?(教师出示图形,学生课后完成证明过程。)
【设计意图】:使学生了解到解决问题时可以从不同的角度思考,有不同的证明方法,通过问题的解决进一步渗透了转化的数学思想。
8、总结:像这样,由一个定理直接推出的正确结论,叫做这个定理的推论。它和定理一样,可以作为进一步证明的依据。三角形的外角等于与它不相邻的两个内角的和就叫做三角形内角和定理的推论。
三角形内角和定理的几何表述:
△ ABC中,∠A+∠B+∠C=180°
三角形内角和定理推论的几何表述:
∠ACD是△ABC的一个外角,∠ACD= ∠A+∠B
【设计意图】:通过教师总结,使学生了解定理和推论之间的逻辑关系。对定理运用时的符号语言进行规范。同时将“图形”进行适当变化,在图形的变化中促使学生认识定理的本质。
三:应用、提高
9、刚才,我们一起研究了三角形的内角和定理及推论的证明,发现了很多的证明方法,并且在相互学习、互相合作中加深了理解,得到了提升,那么三角形内角和定理及推论在解决数学问题时有哪些应用呢?
例、已知:如图,AC、BD相交于点O
求证:∠A+∠B=∠C+∠D
①、请同学独立思考、分析。
②、追问:你是怎样想到这种方法的?
③、(小结:这是三角形内角和定理的简单应用,同时这也是一个基本图形:当两个三角形的一组角互为对顶角时,剩余的两个角的和相等。)
【设计意图】:通过学生独立思考、分析、解答,培养学生独立结题的能力,同时教师通过追问。促使学生的思维进一步深化。
练一练:
1、抢答:(1)、三角形的一个内角一定小于180°吗?一定小于90°吗?
(2)、一个三角形中最多有几个直角?最多有几个钝角?最多有几个锐角?
(3)、一个三角形中最大角不会小于60°吗?最小角不会大于多少度?
(4)、直角三角形两锐角之和是多少度?
(5)、一个三角形不在同一个顶点的三个外角中,最多有几个钝角?至少有几个钝角?
【设计意图】:通过抢答这种形式,能充分调动学生的积极性。同时教师在学生抢答的过程中适时追问、总结,如问题(3)你是怎么想到的?渗透说明一个命题是假命题的方法(举反例),为下节课作铺垫。如通过问题(5),引导学生总结出化归思想,即将外角的问题转化为内角的问题来解决。
2、已知:如图,AD是△ABC的角平分线,E是BC延长线上一点,∠EAC=∠B.求证:∠ADE=∠DAE
(1)让学生独立思考。
(2)教师引导,出示问题:你会将要证的相等的两个角
与已知条件中相等的角联系起来吗?
(3)学生板演。
(4)追问:比较这道题目的解题思路与例题的解题思路有什么异同点。
【设计意图】:为体现学生的主体地位,先让学生独立思考。如果学生能够独立解决,教师追问:你是怎么想到的?通过追问帮助学生总结几何证明的一般策略:将未知与已知联系起来思考,积累解题经验;若学生感到困难,教师通过问题:“你会将要证的相等的两个角
与已知条件中相等的角联系起来吗?”启发学生思考。通过将该题的解题思路与例题相比较,进一步优化学生的思维。使学生学会“同中求异,异中求同”的比较策略。
3、延伸与拓展:
求∠A+∠B+∠C+∠D+∠E的和
你能想到几种方法?
【设计意图】:通过拓展题,体现分层,让学有余力的学生进行更深入的学习,尊重学生的个性化发展。同时通过一题多解,培养学生思维的灵活性。
四、总结收获 畅谈体会
反思小结:
通过本节课的学习,你取得了哪些成果,说出来与大家分享。
本节课我们学习了三角形内角和定理及推论的证明和应用,并且在研究证明的过程中掌握了很多的数学思想、方法。而且还提高了一题多解的能力。
【设计意图】:在独立思考和合作交流中,引导学生梳理本节课在知识和数学思想方法等方面的收获,形成知识网络,提升对数学思想方法的理性认识。在总结的同时让学生体验收获知识的快乐,培养敢于展示自我,敢说、敢问、自信的学习品质。
五、课后作业:补充习题97页――98页。
三角形内角和教案 篇11
探索三角形内角和的度数以及已知两个角度数求第三个角度数。
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
三。自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3。学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
试一试,看谁算得快。
师:谁来说说自己的计算过程?
角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是 180 度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是 180 度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生: ……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致, 想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起( 师鼓励: 你的想法很有创意, 等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师: 好啦, 老师相信咱们班的同学个个都是小数学家, 一定能找出更多的方法的, 请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
开始吧!(学生研究,师巡回指导)预设时间:5 分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
( 预设: 如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师: 那请你说一下你度量的结果好吗?
( 生汇报度量结果)
师: 刚才有的同学测量的结果是180 度,有的同学测量的结果是179 度,有的同学测量的结果是182 度,各不相同,但是这些结果都比较接近于多少?
生:180 度。
师:那到底三角形的内角和是不是180 度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗? 李 老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX 三角形的内角和是180 度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师: 你们听明白了吗? 李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击 FLASH :先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180 度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360 度,那么一个三角形的内角和就是180 度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是 180 度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生 1 :量的不准。
生 2 :有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是 180 度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180 度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生: 180 度)右边呢(生:也是 180 度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是 180 度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是 140 度,角三是 25 度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70 度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180 度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师: 同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错, 你们知道吗? 三角形的内角和等于 180 度是 法国著名的数学家帕斯卡 在 1635 年他 12 岁时独自发现的, 今天凭着同学们的聪明智慧也研究出了三角形的内角和是180 度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形内角和教案 篇12
一、学生知识状况分析
学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的.严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。
活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验。
二、教学任务分析
上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:
知识与技能:(1)掌握三角形内角和定理的证明及简单应用。
(2)灵活运用三角形内角和定理解决相关问题。
数学能力:用多种方法证明三角形定理,培养一题多解的能力。
情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
三、教学过程分析
本节课的设计分为四个环节:情境引入——探索新知——练习反馈——课堂小结
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理。
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6—38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1)(2)(3)(4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?
(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?
活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明。
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知
活动内容:
①用严谨的证明来论证三角形内角和定理。
②看哪个同学想的方法最多?
方法一:过A点作DE∥BC
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
方法二:作BC的延长线CD,过点C作射线CE∥BA。
∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。
教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
三角形内角和课件5篇
教案教具同样是教师职务的一环,因此我们的教师需要严肃看待它。教案也是反映学科研究与学生理智辨析的关键工具。工作总结之家小编为你精选的这篇“三角形内角和课件”文章相信绝对能吸引你的目光,有兴趣的伙伴们可以在此找到自己需要的内容!
三角形内角和课件 篇1
【教材分析】:
新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。
【教学目标】
知识与技能
1.理解和掌握三角形的内角和是180度。
2.运用三角形的内角和的知识解决实际问题。
过程与方法
经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。
情感态度与价值观
在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。
【教学重点】
重点:理解和掌握三角形的内角和是180度。
突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。
【教学难点】
用三角形的内角和解决实际问题。
突破方法:推理分析计算。运用推理,正确计算。
教法:质疑
【教学方法】
引导,演示讲解。
学法:实践操作,小组合作。
【教学准备】:
多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。
【教学时间】
一课时
【教学过程】
一.创设情境,引入新课
师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?
生:三类,分别为锐角三角形,直角三角形,钝角三角形。
师:嗯,真好,那么对边的分类呢?
生:俩类,分别为等腰三角形,等边三角形。
师:老师想让同学们帮老师画一个三角形,能做到吗?
生:能。
师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)
师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。
生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。
师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?
生:想。
师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)
(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)
二.探究新知
师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。
生1:锐角三角形。
生2:直角三角形。
生3:钝角三角形。
师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?
生:里面的三个角,可以用角1,角2,角3来表示。
师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?
生:三角形的内角和是180度。
师:那么我们能不能一起用一些好的办法来验证一下呢?
生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。
师:还有其他的办法吗?
生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。
生3:我可以用折的方法,把三个角的度数折在一起。
师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。
(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)
三.总结任意三角形的内角和是180度并做适当练习。
四.板书设计
三角形的内角和
量一量锐角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
钝角三角形:120度+38度+22度=180度
拼一拼图形呈现
折一折图形呈现
三角形内角和课件 篇2
教学内容:
人教版《义务教育课程标准试验教科书·数学》四年级下册第85页。例5。
教学目标:
知识与技能目标:让学生亲自动手,通过量、剪、拼等活动,发现、验证三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
过程与方法目标:让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
情感与态度目标:使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点::
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点:
验证“三角形内角和是180°”,以及这一知识的灵活运用。
教学过程:
一、开门见山,引入课题
1、课件出示课题。
师:知道我们今天要学习什么内容吗?
学生:三角形的内角和。(板书课题)
2、师拿出自己准备的三角形。谁来指一指这个三角形的内角在哪里?请你指给大家听。
师:什么是三角形的内角和呢?
生:三角形三个角的度数和就是三角形的内角和。
师:那你们知道三角形的内角和是多少度吗?
生:我知道。是180度。
4、师:今天三角形兄弟也来到我们的课堂上。听:他们正在为一个问题争吵呢?
二、创设情境,动画激趣。
三角形兄弟的动画配音。 哥哥:我长得又高又胖,我的三个内角的和肯定比你的大。
弟弟:是这样吗?
学生发表意见后,师:三角形的内角和到底是不是180度,用什么方法可以验证呢?通过今天的学习,我们就可以解决这个问题了。
三、合作探究,动手验证
1、出示例题,读懂要求
活动一、动手操作,初步探究。
例5 画几个不同类型的三角形。量一量、算一算,三角形三个内角的和各是多少度。
师:齐读一遍。问:谁来说说这个题目有几个要求?分别是什么?
为了方便同学们活动时记录和观察。每个小组长手里有这样一个活动记录表。
2、明确分工、合作探究。
师:要想很快的把不同类型的三角形内角和都测量出来。你们准备怎样合理的分工合作呢?
生:我们三人小组可以每人量一种类型。最后把自己量好的数据填在表格内,再算一算这三个角的度数和是多少。
生:我们可以这样合作。两个人量,组长负责记录量的数据。最后我们一起计算每个三角形的三个角一共是多少度。
师:好,下面我们就三人小组合作一起完成这个实验吧。
指明一个小组把实验结果填在大表格内。
老师在巡视的时候,发现有些学生量的度数加起来并不是准确的180度,但是为了凑成180度,就改变了自己量的度数。老师提示学生在实验的过程中要实事求是。)
3、汇报交流,形成初论。
完成后,让这个小组把自己的结果给大家读一读。分开读实验结果。再问其他学生:有不同的结果吗?(可能会出现与180 度比较接近的数)有什么发现?
(发现三角形的内角和是180度。)
教师小结:大家刚才算出的结果有的是180 度,有的不是180度。那么三角形的内角和到底是多少呢?就让我们一起来验证一下。
4、再次验证、得出结论。
1、 活动二:(电子课本)先把一个三角形的三个角剪下来,再拼一拼。看一看,拼成一个什么角。
生读活动要求。
活动步骤:
1、小组长拿出袋子里的三角形,给每位组员发一个。每位同学在小组内说说自己拿到的是什么三角形。
2、师:自己动手试一试吧。
提醒:如果在拼的时候出现困难,可以在课本85页寻求帮助。
3、指明学生把不同类型的三角形的三个角拼在实物投影上。
师问:你发现了什么?
生:发现三角形的三个内角拼成了一个平角,平角就是180度。所以三角形的内角和就是180 度。)(板书结论)
师:还有不同的方法吗?
生:我还可以用折一折的方法。
师:请你给大家演示一下吧。
我们一起看一看课件的演示,课件演示三个角折的过程。
5、师小结:通过刚才的学习,我们理解了三角形的一个重要的特点:三角形的内角和是180度。我们是用什么方法得出这一结论的呢?
生:我们用了动手实验。剪一剪,拼一拼的方法。还有折一折的方法。
6、师:为什么刚才有的同学测量的不是180度呢?
生:测量的时候出现了误差。我觉得拼一拼的方法很好,不易出现误差。
师:那么刚才三角形兄弟的争论,谁说的对呢?
生:我想对三角形哥哥说:不论三角形的大小、什么形状。所有三角形的内角和都是180度。
师:同学们掌握的这么好,一起进行练习。
四、实践运用、巩固内化
1、老师给大家准备了3个礼物盒。课件出示礼物盒的画面。你们想打开哪一个礼物盒呢?
生:打开礼物盒A。
(1)我的三条边相等,我的每个角分别是多少度?
(2)我是直。小组内互相说一说。谁来给大家汇报?
生:第一个三角形是一个等边三角形。等边三角形的三个角是60度。
生:第二个三角形是一个直角三角形,已经知道一个锐角是50度,那么另一个锐角就是40度。
打一个礼物盒的题目被我们轻松解决了。奖励大家一颗智慧型!
师:准备要打开第几个礼物盒呢?
2、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70 °.它的顶角是多少?
读题后,独立写在本子上。
然后指一学生汇报。还有不同意见吗?
师:同学们顺利完成第二个礼物盒的问题。给自己加上一个智慧星吧!我们一起看看第3个礼物盒里有什么样的问题。
3、根据三角形的内角和180°,你能求出下面四边形的内角和吗?五边形呢?
小组之间互相讨论一下该怎么计算呢?
小组交流后。指明汇报。
生:四边形的内角和是360度。因为把四边形分成两个三角形。所以四边的内角和是180°×2=360° 同样道理,五边形可以分成3个三角形,五边形的内角和就是180°×3=540°
师:那么六边形、七边形的内角和是多少呢?从我们刚才的讨论中你发现什么规律吗?同学们可以课下继续研究。
五、自主提炼,总结升华
师:1、今天这节课你学会了什么?
2、用哪些方法得出了三角形的内角和是180度?
先自己说一说,再汇报交流。
三角形的内角和
角1角2角3内角和
三角形的内角和等于180°。
反思:
这节课的知识本来很简单,就是要掌握三角形的内角和是180°。关键是在这一学习的过程中要学生学会如何学习。可以用什么方法学习。在学习的过程学生的收获仅仅是这一个知识点吗?基于这三个反面的思考。便有了三个想法。
1、活动教学贯穿始终。让活动为学习服务。学生的认知结构,只有在主动经历学习活动的过程中才能完成。只有学生本人的积极思考、主动探索,才能有所发现、有所创新。而学生也非常喜欢动手实践。所以在两个实践活动中,学生的学习兴趣很浓,始终自主探索。在第一个活动中,学生发现实践的结果并不是正确的,因为在量角的过程中会出现误差的情况。怎么办?继续动手验证。通过第二个活动,证实了这一结论是正确的。整节课,活动为教学服务,学生始终有目的的进行动手操作。而不是无序、盲目的活动。
2、在学习的过程中学会合作、学会交流。未来的学生不仅要学会学习,更要学会合作。所以我们的教学活动为学生提供合作的机会,让学生知道,合作能更好的完成任务。如在活动一中,学生通过合作,能把不同类型的三角形快速的结束实践。活动二中,学生验证结束,只能证明一种类型的三角形的三个角能拼成一个平角。通过交流,会发现不同类型的三角形都具备这一特点。这就说明了真理越辩越明。
3、在活动过程中掌握学习的方法。转化是学习数学非常重要的一种方法。在以后的学习中经常用到。所以把三角形的三个角转化成一个平角。不仅让学生知道通过这一转化验证了三角形内角和是多少。还通过这一过程体会到把新问题转化成可以解决的问题。还有把不同类型的三角形都可以转化成一个平角,让学生体会到总结结论,不能只通过一个例子来说明。要从不同的类型都进行验证才能说明这个结论。
三角形内角和课件 篇3
本课是三角形的内角和是北师大版四年级下册第二单元的内容,是三角形的一个重要性质,也是进一步学习几何的基础,经过第一学段以及本单元的学习,学生对于三角形已经有了直观的认识,这为感受、理解、归纳三角形内角和的概念打下坚实的基础,学好本课,对以后学习几何能起到承前启后的效果。
基于对教材以上的认识以及课程标准的要求,我拟定以下教学目标: 知识目标:使学生理解并掌握三角形内角和是180°。
能力目标:①通过学生画、量、猜、剪、拼、折、观察等活动,培养学生探索、发现、观察以及动手操作能力。
②能运用三角形内角和是180°解决实际问题。
情感目标:让学生体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角和都是180°的过程。让学生在动手实验中得到结论,感悟学习中的快乐
“授之于鱼不如授之于渔”,对于四年级的学生来说应进一步提高他们对问题的思考策略,在研究三角形的内角和是180°这一核心问题时,我先让学生独立思考、然后小组合作,通过量一量、剪一剪、拼一拼、折一折等活动来探究三角形内角和的秘密,完成了对新知识的建构,体现了学生动手实践、合作交流、自主探索的学习方法。既培养了学生的观察能力,同时又培养了学生的探索能力和创新精神。
长期以来,我们的教育进行的是颈部以上的学习,它只强调记忆、思维。荷兰教育家弗来登塔尔认为:数学学习是一种活动,这种活动与游泳、骑自行车一样,不经过亲身体验,仅仅看书本、听讲解、观察他人的演示是学不会的。因此将课堂还给学生,努力营造学生在教学活动中自主学习的时间,使他们课堂教学中重要的参与者,与创造者,学生动手实践、合作交流、自主探索的学习方法。本着这样的指导思想,在教学设计上,我力求充分体验以学生发展为本的教育理念,将教学思路拟定为:复习引入、猜想验证、巩固内化、拓展延伸。运用课件教学直观明了便于理解。
强调面向全体学生的同时,关注每个学生个体差异,因材施教、课堂遵循先易后难、先差生后优生的原则,完成大纲目标的同时,也去挖掘优生的潜能,全面提高学生的成绩。
教学的艺术不至于传授知识,而在于唤醒、激发和鼓励,上课伊始,我先让学生复习三角形的有关知识为切入点,以旧引新使学生明确学习方向。学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半甚至没有结果。这时我让学生大胆猜想,形成统一的认识,使后面的探索和验证活动有了明确的目标。为此我精心设计了以下三个问题:什么是三角形的内角?什么是三角形的内角和?同学们先猜一猜三角形的内角和是多少度?可能学生都会猜180°。“那每一个三角形的内角和都是这个度数吗?你敢肯定吗?你能用什么方法去说服别人吗?”估计学生都得把刚才量的三角形的三个角的度数加起来进行验证。根据学生的回答我一一板书。(板书180°、180°、182°、179°、178°)同学们请仔细观察这一个个数据,你有什么发现?可能有的同学会说我们用量的方法得到三角形的内角和有的是180°,有的比180°大,有的比180°小。为什么会出现这种情况:测量时有误差。
“那你还有其他的方法来验证三角形的内角和就是180°吗?请你们利用老师提供的学具先独立思考,然后小组合作验证。”
当学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的探究活动,在活动中,我把“放”和“引”有机的结合,鼓励学生积极开动脑筋,从不同途径探索解决问题的方法。通过一系列“动”的过程,在大量感知的基础上,使学生能自己发现并总结出知识的规律,内化这一活动,使之不仅知其过程而且知其结果,从感性认识上升到理性认识,完成了认识上的飞跃,实现了知识的再创造。
当学生验证有困难时,我会适时的引导。“既然你们都猜三角形的内角和是180°,能不能把它转化成我们上册学过的某个知识点呢?”由于学生已经有了角大小比较的经验,会有一些学生想到把三角形的三个角撕下来拼在一起与平角作比较,从而得到三角形的内角和是180°。我让这些孩子到前面展示并鼓励全班同学都动手做一做,使更多的学生明白这个猜想是正确的。“同学们你们把三角形的三个角撕下来拼在一起得到什么结论?”估计会有下面精彩的回答:各种形状的三角形内角和都是180°;我不用撕,直接折也能得到三角形的内角和都是180°;老师我在验证直角三角形的时候有一个更好的方法,只要把两个锐角折成一个直角与原来的直角相加不也是180°吗;(有创新)老师也用折角的方法验证了各种形状的三角形。(课件……)通过课件的直观演示,又一次证实了学生的猜想是正确的。,每个孩子都是独有的个体,在合作中互补,确实有利于难点的突破。验证三角形的内角和是本节课的难点,所以我让孩子们合作验证。在合作中交流,在合作中相互学习。“同学们,通过刚才的活动,你现在可以肯定的告诉老师三角形的内角和是多少度了吗?这个三角形的内角和是多少度?(出示一个大三角形)把它剪小后问:现在呢?(剪几次)那现在你对三角形的内角和是180°还有怀疑吗?谁能用一句话总结出来?
我这样现场操作,让学生能从视觉上又一次证实了三角形的内角和不管形状和大小统统都是180°。
有人说:教育是一棵树摇动另一棵树,是一朵云推动另一朵云,一个心灵震撼另一个心灵。老师的一个眼神、一个微笑便能给孩子带来幸福和满足。适时的评价更能激起孩子思维的火花。当学生终于发现了三角形的内角和是180°这一秘密时,我会及时给学生评价:“同学们,你们经过画、量、剪、拼、折、观察等活动,自己发现并验证了三角形的内角和是180°(板书完整课题内角和是180°)这一重要规律,多了不起啊,老师由衷的为你们感到高兴。并祝贺你们孩子们。”我想得到老师这样的评价,学生们的高兴劲可想而知,解决问题的欲望也会更加强烈。拓展延伸。
在数学学习的研究中,常常有一些现实的、有趣的富有挑战性的题目呈现在孩子面前,有些题目带有明显的开放性,它把一个不确定的问题转化、分解为多个确定性的问题来解答。应该说这样的问题给孩子的思维空间是非常大的。
“下面三角形,剪掉一个40°的角,不改变其他角的度数,剩下图形的内角和是多少度?”我想会有学生利用自己的经验不假思索就会回答“140”,这时我不做任何评价,微笑着看着大家,“都同意这个答案吗?”引发了学生的再思考,我想最终一定会有学生发现“老师,剪掉这个40°的角以后,实际上就变成了一个四边形,要求四边形的内角和,就把它分割成两个三角形,一个三角形的内角和是180°,那两个三角形就是360°。我进而让学生引导“那么五边形的内角和又是多少度呢?”由于上一题的思路孩子们很快就会分割成三个三角形,即3个180°,共540°。“那六边形、七边形、一百边形的内角和又是多少度呢?”这时孩子会边画、边思考、边讨论,四边形能分割成两个三角形,五边形能分割成三个三角形,那六边形就能分割成四个三角形,最后孩子们终于发现了任意多边形的内角和等于边数减2的差乘180°。教学同时也是一门有遗憾的艺术。我认为对遗憾的态度应该约拿,并不断地探究、不断地改进,为此我思考着、探索着实践着。我想经过自己孜孜不倦的努力,一定会使预设的数学活动过程成为智慧和人格不断生成的过程。最后我希望每一个老师都能利用自己的人格魅力塑造出具有良好的习惯、健全的人格、坚定的信念、卓越成就的学生。布置作业。课后练一练1————5题
本课时间安排:检查上一课作业,练习3分钟。导入2分钟。新授25分钟。拓展,作业5分钟。在教学活动中及时了解学生掌握情况,随时调整教学方案,完成教学任务。
三角形内角和课件 篇4
三角形的内角和
各位评委老师,大家好,我是XX号考生,我今天说课的题目是《三角形的内角和》。下面我将从教材分析,学情分析,教法,学法,教学过程,及板书设计六个方面展开我的说课。
一》说教材。一切教学设计都基于教材,首先我来说一下教材分析,本节课是人教版八年级上册第11章第二节的内容,本节课研究三角形的内角和定理,它是小学学习的三角形有关知识的拓展,并为以后学习三角形的其他知识奠定了基础,因此本节课的学习是十分重要的。由以上分析,结合新课标的要求,我确定了以下三维教学目标:1.知识与技能目标:掌握三角形内角和定理的证明及简单应用。2.过程与方法目标:通过对三角形内角和定理的探索证明,培养学生的动手操作能力和独立思考的能力。3.情感态度与价值观目标:经历三角形内角和定理的探索过程,增强学习数学的兴趣,初步认识数学与人类的联系,体验数学活动充满着探索与研究。
根据以上对教学目标的分析,我将本节课的教学重点确定为:证明三角形内角和定理。教学难点:三角形内角和定理的应用。
二》说学情:作为一名老师,不仅要对教材进行分析,还要对学生的情况有清晰明了的掌握,这样才能做到因材施教,有的放矢。接下来,我将对学情进行分析:初中学生的思维已由形象思维向抽象思维发展,学生的观察力,记忆力,想象力也有一定的发展,但这一时期的学生活泼好动,记忆力容易分散,并且对知识的概括和应用也有一定的欠缺,这都是我在教学中应考虑的问题。
三》说教法:基于以上对教材和学情的分析,结合本节课的特点,我将采用以下教学方法:在教法上,采用引导发现法和练习法,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动,多观察,主动参与到整个教学活动中来。在学法上,学生们合作交流,自主学习,这种学习方式,有助于发展学生独立分析和探究的意识,培养学生养成良好的学习习惯。
四》说教学过程:关于本节课的教学过程,我从以下几方面入手:1.情境导入,激发兴趣。
我会问学生:同学们,你们听过内角三兄弟之争的故事吗?有的回答有,有的回答没有,我会说:“那今天我来给大家讲一讲吧。在一个直角三角形的家里住着内角三兄弟,平时他们三兄弟非常团结,可是有一天,老二突然不高兴,发起脾气来,他指着老大说:你凭什么度数最大,我也要和你一样大!“不行啊!老大说,“这是不可能的,否则我们就围不成一个家了。”“为什么呢?”老二很纳闷,同学们,你们知道其中的道理吗?设置悬疑,自然导入三角形内角和的学习,通过这样的设计,可以在一开始就吸引学生的注意力,激发学生的探求欲望。
2.合作交流,探索新知
在这一环节,首先由学生自己在纸上画一个三角形(板书画三角形),并将内角剪下,然后我引导学生 :试着拼一拼,看看会有发展思维的灵活性,创造性。然后,我会设问:从刚才的拼图过程中是不是剪下的内角可以拼成一个平角啊?那这说明什么呢?由学生举手回答:三角形的内角和为180度。为调动学生的积极性,我会对学生的回答给予肯定,然后我会想学生说明这种操作存有误差,需要我们给予证明,接下来由学生分组讨论证明方法,并交流方法,这样有助于丰富学生的思维,增强学生的合作意识,然后我会引导学生分析:首先过点A做边BC的平行线进而出现内错角角1=角B,角2=角C,然后请同学得出角1+角2+角CBA=180度,所以角A+B+C=180度,这样可以帮助学生更好的理解三角形内角和定理,培养浓厚的学习兴趣。接下来,仍借助多媒体出示例题,通过例题的分析,让学生体会分析问题的基本方法,进一步加深对定理的认识。
3.巩固练习,强化新知。对新知识的学习需要一定的练习来巩固,为此我借助多媒体设置了一些有层次的练习,通过这些练习,加深了对知识的理解,培养了学生思维的广阔性。
4.归纳小结,畅所欲言。
为了了解学生对本节课知识的掌握程度,我会请学生总结“本节课你的收获是什么呢?”并请学生提出存有疑问的地方,大家在解决问题的过程中继续巩固三角形内角和定理。
5.布置作业。
在布置作业时我注重了分层练习,设置了必做题和选做题,必做题为课本76页第3,5题,通过这些题目,继续巩固三角形内角和定理,选做题:继续生活中有关三角形的实例或趣味故事?这样既开阔了学生的视野,有更好的将生活与数学相结合。
6.说板书》
最后说一下我的板书设计,为帮助学生清晰明了的掌握本节知识,掌握重点,突破难点,我的板书设计如下:(看黑板)利用图形,符号表示更直观,形象,便于记忆。
我的说课到此结束,谢谢大家!
三角形内角和课件 篇5
教学内容:人教版小学数学第八册第85页例5及”做一做”
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想
3、在探索中体验发现的乐趣,增强学好数学的信心、
教学重点
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点 :
验证所有三角形的内角之和都是180°
教具准备:多媒体课件。
学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)
教学过程:
一、 设疑引思
1、 分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数、
2、 每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、
3、 设问:老师为什么能很快”猜” 出第三个角的度数呢?
三角形还有许多奥妙,等待我们去探索、
二、 探索交流,获取新知
1、 量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、
2、 折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度, 初步验证”三角形的内角和是180°”的结论、
3、 拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论、
4、 师利用课件演示将一个三角形的三个角拼成一个平角的过程、
5、 验证:FLASH演示三种三角形割补过程
发现1: 通过把直角三角形割补后,内角∠2,∠3 组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于( )度。
发现2:通过把钝角、锐角三角形割补后,三角组成了一个( )角,而( )角等于( )度。所以锐角三角形和钝角三角形的内角和都是180度。
6、 小结:刚才能过量一量折一折拼一拼,你发现了什么?
生说,师板书:三角形的内角和———180°
三、 应用练习,拓展提高
1、书例5后”做一做”
思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)
2、下面哪三个角会在同一个三角形中。
(1)30、60、45、90
(2)52、46、54、80
(3)61、38、44、98
3、走向生活:
(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?
(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)
四 作业:作业本
五 全课总结
总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?
板书设计:三角形的内角和
三角形的内角和———180°
三角形教案
资料所覆盖的面比较广,可以指学习资料。平常的学习工作中,我们会经常使用到一些资料。参考资料我们接下来的学习工作才会更加好!你是不是在寻找一些可以用到的资料呢?或许"三角形教案"是你正在寻找的内容,但愿对你的学习工作带来帮助。
三角形教案【篇1】
一、教材分析
本节教材是学生对小学阶段三角形有初步了解的基础上进一步认识三角形的特点和性质。三角形是最简单、最基本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。对学生更好地认识现实世界,拓展空间观念都有非常重要的作用,同时对今后学习三角形全等、相似和解直角三解形,解决相关的实际问题,都有不可低估的作用。
二、教学目标
1、结合实物和图形理解三角形定义
2、找到所有三角形的共同特点。
3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。
4、初步了解任意三角形三边之间的大小关系。
5、能应用所学知识解决日常生活中与三角形有关的实际问题。
6、初步感受三角形简单、广泛地适用性。
7、培养学生动手、动脑、合作、交流、探究意识。
三、教学重难点
重点:三角形共同特点的.理解及三角形三边关系性质的理解。
难点:应用三边关系性质解决简章的实际问题。
四、教具及材料准备
三角板、实物的三角形、包装带、剪刀、头钉、白纸、透明胶等(师生同备)
五、学生情况及教学构思
七年级学生年龄较小,思维正处在由具体形象思维向抽象逻辑思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际出发说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。
六、教学实施
1、师:在小学我们进一步了解了三角形,今天我们在一起进一步认识三角形的定义、记法及其相关性质,随之在黑板上板书课题(1 认识三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。
生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由许多三角形构成的。
师:在黑板上画出同学熟悉的屋顶框架图。
2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?
甲生:每一个三角形都有三个内角,三个顶点。
乙生:每一个三角形都由三条线段组成。
丙生:任意三角形的三内角之和都等于180°。
(同学们发言积极)
师:为了方便通常用三角形三顶点的大写字母来记一个三角形、并在三个大写字母前面加上符号“△”。如图中可记作“△ABC”,(并在黑板上板书 △ABC),同时规定每个顶点的大写字母所对边就用它的小写字母表示,顶点A所对的边BC用a表示,边AC、AB分别用b、c表示。
师:请同学们在屋顶框架图中至少找出5个不同的三角形,并用三个大写字母记出相关的三角形,并与同伴交流。
三角形教案【篇2】
1、关注学生学习研究过程。老师在教学三角形的意义时,没有直接把“由三条线段围成的图形叫做三角形”这个定义直接地呈现给学生,而是紧紧围绕三条线段”、“围成”这两个关键词进行教学,通过比较、判断等等手段使学生认识到三角形必须具备两个条件:
2、锐角三角形:三个角都小于60度,三个角度相加的总角度的和等于180度;
3、三角形按角分:锐角三角形,直角三角形,钝角三角形;
4、注重设计的趣味性。在最初的'定义学习之后,我们进入到本课的难点,画高。教师通过让学生自己来找高,以及自己动手画画高,到最后优生的演示,无一不是体现学生在课堂上的自主地位。虽然画高到最后的钝角的高,这个过程出来的比较曲折,但我相信真正思考该问题的学生对三角形的学习是非常深刻。这也符合我们新课程的教学理念:以学生为主体,充分发挥学生的探究精神。
5、等边三角形,三条边都相等的三角形,又叫做正三角形;
6、不过,我认为本课还是有值得改进的地方。比如,在画高的过程中,教师所呈现在黑板上的三角形不够大,导致三条高密密麻麻地堆在一起,影响学生更为直观地进行理解。同时,板书的排版还需要更为简洁、合理。
7、钝角三角形:有一个角大于90度,其余二个角都小于60度,三个角度相加的总角度的和等于180度。
8、三角形三条边不一定相等。
9、三角形小学数学高年级的内容之一。在本课之前,学生已经学习过一些相关的知识点,如线段、角、也能简单区分三角形和其他形状的区别,三角形的认识是平面图形知识的起点,是学习研究其他几何图形的基础,在实践中有着广泛的应用。本节课的教学主要包括三角形的定义、画高等内容。老师的这节课整个教学过程始终围绕教学目标展开,层次比较清楚,环节紧凑,并注意引导学生通过观察、分析、动手实践、自主探索、合作交流等活动,突出体现了学生对知识的获取和能力的培养。具体体现在以下几个方面:
10、二、是否围成封闭的图形。接着安排判断练习,从正反两方面,同时还出现用曲线围成的图形、用不封闭的线围成的图形等。进一步加深对三角形意义的理解。
11、三角形按边分:等边三角形和非等边三角形,非等边三角形又可分为等腰三角形和三条边都不相等的三角形;
12、参考资料人民教育出版社
13、当然,作为一名非专职的数学老师去听课,我的观点可能还是比较肤浅或不够正确,但老师的教态自然、大方,教学设计紧凑等方面仍是值得我们学习的。
14、等腰三角形,有两条边相等的三角形,
15、应该是:三角形任两边之差小于第三边。它是由三角形任意两边和大于第三边变形得到的。
16、拓展资料
17、直角三角形:有一个角等于90度,其余二个角的角度相加的总角度的和等于90度;
18、一、是否具有三条线段;
19、三条边都不相等的三角形
20、《三角形三边的关系》教学设计
三角形教案【篇3】
难点名称
幼儿能够在生活中很好的应用三角形并能够进行创意。
难点分析
从知识角度分析为什么难
幼儿能够在生活中很好的应用三角形及创意绘画,需要幼儿掌握三角形的特点及其组成部分,平时认真仔细观察生活,并加以想象创作,对幼儿来说具有一定的难度。
从学生角度分析为什么难对幼儿来说都能够认识三角形,但是要能够运用并进行创意绘画,需要幼儿具有丰富的想象力和创造力,并且具有一定的绘画能力,对幼儿有一定难度。
难点教学方法
1、通过生活照片直观演示引导幼儿观察了解三角形在生活中的应用
2、通过教师示范创意三角形,引导幼儿边唱边绘画
教学过程
导入
1、游戏导入:教师通过点击游戏直接导入主题,小朋友们好,今天咱们来认识一个新的图形宝宝“三角形”;你们认识三角形吗?让我们玩一个点击小游戏考一考自己吧!
2、提出问题:请小朋友们仔细观察想一想,到底什么样的图形才是三角形呢?幼儿试着说一说。
知识讲解
(难点突破)
2、三角形定义:由三条线段首尾相接围成的图形叫做三角形。
3、线段:一条直直的线有两个端点。
3、首尾相接:一条线段的开头端点与前一条线段的尾点连接重合,叫做首位相接。
4、三角形特点:每个三角形都有三个顶点、三条边和三个角组成。
课堂练习
(难点巩固)
5、快速判断:请小朋友们看一看下图中哪个是三角形?
6、连一连:图上有四个点,请小朋友任选三个点,画出三角形吧!
7、游戏“小猴过河”:小朋友们,小猴想要过河,可是桥上有很多的图形宝宝,只有踩着三角形宝宝,小猴才能顺利地过河,小猴不认识三角形,这可把小猴难住了。小朋友,请你来帮助小猴找到过河的三角形路线吧!
8、生活应用
①提问:小朋友们,在我们的.日常生活中也有很多常见的三角形宝宝,请你来说一说你都见过什么呢?
②三角形的特点:美观性、稳定性(教师出示图片,引导幼儿观看三角形美观、稳定性在生活中的应用。)
9、创意绘画:
①提问:小朋友们,通过给三角形添画,你可以把三角形变成什么呢?
②三角形创意演示(边唱边出示图片):三角形,变变变,变个风筝天上飞,变个风筝天上飞,我是三角形好宝宝;三角形,变变变,边条鱼儿水中游,变条鱼儿水中游,我是三角形好宝宝。
③出示三角形创意简笔画:比如说,三角形可以变成一只小鸡,变成一块西瓜,变成一条章鱼,等等。
小结小朋友们,快来大胆想象一下,尝试着把三角形画一画、唱一唱吧!
三角形教案【篇4】
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
2、判断
(1)一个三角形中最多有两个直角。 ( )
(2)锐角三角形任意两个内角的和大于90。 ( )
(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )
(4)三角形任意两个内角的和都大于第三个内角。 ( )
(5)直角三角形中的两个锐角的和等于90。 ( )
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形教案【篇5】
教学目标:
知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
过程与方法:.积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。.能根据三角形三边的关系解释生活中的现象
情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学重点:三角形三边关系的实验与探究。
教学难点:利用三角形三条边之间的关系解决实际问题。
教具准备:三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt
教学过程:
一、导入。
1、谈话创设情境:
这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)
2、复习旧知:
(1)(欣赏图片)你看到了什么?
(2)那你能说一说,你对三角形都有哪些了解?
(3)三个顶点,三个角,三条边,三角形具有稳定性;
(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。
3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课
二、动手操作、探究新知。
(一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?
操作要求:
1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员
2、测量员量出你所选择的纸条的长度;
3、记录员做记录;
4、操作员动手拼三角形,把你拼出来的图形贴在下面;
5、组长汇报结果。
注意:相邻的两条线段要端点相连。
(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。
展示操作结果:
试验次数三边长度(cm)结果三角形三条边的长度关系
(1)3、5、9否较短的两条边长度之和小于第三边3+5
(2)3、6、9否较短的两条边长度之和等于第三边3+6=9
(3)3、5、7是较短的两条边长度之和大于第三边3+5>7
(4)5、6、7是较短的两条边长度之和小于第三边5+6>7
(5)5,8,13否较短的两条边长度之和等于第三边5+8=13
(6)7,11,12是较短的两条边长度之和大于第三边7+11>12
(7)18,7,5否较短的两条边长度之和小于第三边5+7
(8)11,4,15否较短的两条边长度之和等于第三边4+11=15
(三)引导学生发现特性:(课件演示)
1、两条边的长度之和小于或等于第三条边的长度不能围成三角形
2、较短的两条边的长度之和大于第三条边的长度能围成三角形
3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)
4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?
三、精彩练习、拓展提升。(课件出示)
在能围成三角形的各组小棒下面画“√”。(单位:厘米)
(5)1cm2cm3cm()(6)4cm2cm3cm()
(7)3cm4cm5cm()(8)3cm3cm5cm()
四、学以致用。
(一)、课件出示:课本82页例3情境图。
1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?
2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?
3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)
(二)完善表格。
小棒长度(厘米)能否围成三角形
第一根第二根第三根
35
35
35
35
35
35
35
35
五、课堂总结。
同学们,通过今天的研究你有什么收获吗?
1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。
2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
板书设计:
三角形三边关系
三角形任意两边之和大于第三边。
两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
三角形教案【篇6】
教学内容:
人教版《义务教育课程标准实验教科书。数学》四年级下册第59页60页。
教学目标:
1、通过学习使学生认识三角形,知道三角形各部分的名称,能用字母表示三角形;理解三角形底和高的对应关系,会在三角形内画高初步了解三角形的外高。
2、在找一找、画一画、说一说的过程中感知三角形的表象,在画高的过程中感受三角形底与高的相互依存关系。
3、通过教学培养学生的观察能力、作图能力,数学语言表达能力。积累抽象概括及画高等数学活动经验。养成学生用数学的眼光观察生活的好习惯。体验数学与生活的密切联系,培养学生的空间观念。
4、通过使用iPad辅助教学,提高学生的参与度。体会在现代信息技术的支持下,学习可以无处不在。
教学重点:
理解三角形的概念、认识三角形各部分的名称。
学生准备:课前在网上搜索,生活中拍摄与三角形有关的物体图片。三角板,铅笔,白纸。
课件出示谜面:形状似座山,三竿首尾连。拐角尖又尖,学问不简单。
指名学生读一读。
你猜可能是什么?它是人类智慧的象征。今天我们将一起来认识三角形。
从古到今三角形在我们的生活中都有着广泛的应用,课件出示古金字塔和安康汉江三桥画面。(课件出示抽象画面中的三角形)
打开iPad,小组交流你搜集的有关生活中三角形的图片。指一指三角形都在哪?指名小组汇报,说一说搜集的结果。
现在知道三角形是什么样了吗?在练习纸上画一画吧。(师在黑板上画)
跟同桌或小组里的同学说一说,你是怎么画的?什么样的图形叫三角形?
画好以后在你画的三角形的上面写上自己的名字,用iPad拍照后发班级QQ群,大家互相欣赏,举手评价,学生评价时老师点击放大该学生的作品。
课件出示判断:
来看看下面这些图形,哪些是三角形?这些为什么不是?(相机板书:3条线段,每相邻两条线段的端点相连)
说一说,什么样的图形叫三角形?
课件出示:由3条线段围成的图形叫做三角形。你觉得这里的“围成”是什么意思?(完善板书)
1、引导观察并讲述:(课件出示)围成三角形的这三条线段就是这个三角形的边,每相邻两边相连的端点叫做顶点,由一个顶点出发的两条边所组成的图形就是角。三角形有几条边,几个顶点,几个角?
练习:找个同学上来指一指黑板上这个三角形各部分的名称。
都理解了吗?再找个同学上来指一指:这回老师说你来指好吗?“那个顶点”,学生指哪个都摇头 .
师:为了更好的区分它们,我们可以用字母A,B ,C分别表示这三个顶点。这个顶点就读作“顶点A”读,(指B,C)这个是?这样一来这条边就叫AB边。(指另外两条)。这个角就是——角A.
师:整个三角形就可以叫做——三角形ABC.真会类推!快动手把你的三角形也用字母表示出来。
练习并过渡:(课件出示同底不等高的三角形)现在会用字母表示三角形了吗?
师:这是个三角形家族,如果用ABC表示这个蓝色的三角形的话,这个绿色的三角形可以表示为AB——D.这个红色的就是——三角形ABE.
师:看样子三角形也是有高的,而且这个高还影响着三角形的.大小。
师:如果三角形有高的话,那这个高应该在哪儿呢?(停顿一下出示课件)看看下面哪个三角形画出了你心目中的高?
你的感觉到底对不对呢?请打开课本60页,在书中去找一找。
谁来读一读?
演示画高:指着黑板上画的三角形:它有高吗?那咱们一起来给它画出来好吗?过点A做BC边的高。对边在哪?怎么画?
全体学生尝试独立画自己所画的三角形的高。
老师拍典型图片,用iPad展示,画得好的同学汇报自己的画法。同桌用三角尺互查,画得是否标准。总结用三角板画高的方法。
(可能会有画三条高的,进行展示)课件出示三条高,理解高和底的对应关系,知道三角形有三条高。
练习画高:会画高的同学把手举起来我看看!都会画呀!请打开课本60页,完成下面的“做一做”.(课件出示)
用iPad展示,指名学生推送作品。在学生的作业点评中巩固画高的方法,理解直角三角形两条直角边互为底和高。
三、了解形外高。
如图:先给出ABCD四个点,让学生观察,如果连线组成三角形的话,你觉得可以组成哪些三角形?
课件演示过A点做BC边的垂线AE.观察你觉得AE是哪些三角形哪条边上的高?了解钝角三角形的形外高。
今天我们对三角形进行了更为深入的学习,生活中有三角形吗?
来学校的路上我发现了一个三角形,想知道是什么吗?大家说是直接出示图片还是给一些线索大家来猜一猜?课件出示:高40厘米,底50厘米。这个三角形可能是什么?先把你的想法与同桌比划比划,再全班交流。
三角形教案【篇7】
教学目标:
1.通过观察、操作活动,认识三角形各部分名称以及底和高的含义,会在三角形内画高。
2.通过实验,积累认识图形的经验和方法。
3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4.体验数学与生活的联系,培养学生学习数学的兴趣。
教学重难点:
教学重点:概括三角形的概念,认识三角形各部分的名称,知道三角形的底和高。
教学难点:会画三角形的高。
教学准备:
课件、磁条。
教学过程
(一)引入
1.
课前谈话引入:
板书:认识三角形
老师带来了一些图片,你能从中找出三角形吗?出示生活中的三角形图片,学生说说生活中的三角形(生活中有哪些物体上有三角形)
(二)探究
1.学生动手操作、老师黑板摆三角形。
(1)师:刚才我们看了这么多的三角形,你能动手画一个吗?
师:这里有同学们画的一些三角形,老师在黑板上也创作了一个三角形,请同学们仔细观察,这些三角形有共同的特点吗?先想一想,再和你的同桌说一说。
哪一位同学来说一说你的发现,
你能找出三角形的3个顶点、3个角、3条边分别在哪里?跟同桌说一说。
利用学生错误资源,出示未首尾相连的图,你能用完整的语言来说一说什么是三角形了吗?
引导学生归纳总结:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。(并板书)
2.
试一试:
刚才同学们都很厉害,你会在方格纸上画三角形吗?先让学生说一说任选三个点是什么意思,再按要求画一画。尽可能多画几个。
思考:都能画出一个三角形吗?
得出结论:三角形的三个顶点不能在同一条直线上。
3.认识三角形的底和高(同学们非常了不起)
(1)同学们,请看这幅图,这是一个人字梁,是建造房屋时房顶的结构,你能量出图中人字梁的高度吗?你量的是哪条线段?它和底边有什么样的位置关系?
(2)学生独立思考,然后小组交流,指名说一说量的是哪一条线段,和下面的横梁在位置上有什么关系。
(3)测量人字梁的高。学生在书上独立测量人字梁的高,交流测量方法及高是多少。
(4)画三角形的高
如果我们把人字梁所表示的三角形画下来,就可以这样表示出它的高和底。(课件出示三角形的高的变化动画,让学生说一说高是如何变化的)
从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。课件出示概念
怎样利用工具规范的画出三角形的一条高呢,请看屏幕演示。(课件)看清楚了吗?
5.
学生做作业纸,不同的边做为底作高,得出三角形也有三条高。
展台展示学生作业,观察你有什么发现?(三条底对应三条高)
(三)巩固
1.
填空
2.
判断
3.
书本量高
4.
书本作高
(四)总结延伸
1.
通过今天的学习,你有哪些收获?
2.
好,同学们请看,老师将三角形的一条边变化一下,还能围成一个三角形吗?
板书设计
认识三角形
三条线段首尾相接围成的图形叫作三角形
3条边
(底)
3个顶点
3个角
高
三角形教案【篇8】
【教学内容】
苏教版小学数学四年级下册第22~23页,第24页“想想做做”第1~3题。
【教材简析】
这节课的教学内容是“空间与图形”的重要内容之一。通过学习可以加深和拓展学生对三角形的认识,同时也可以让学生积累一些认识图形的经验与方法。例题1首先提供现实背景让学生从中找三角形,并说说生活中看到过的三角形,从整体上初步感知三角形。接着让学生动手做出一个三角形,从而体会三角形是由三条线段围成的,并抽象出图形,进而介绍三角形各部分的名称,形成三角型概念。例题2则是让学生在活动中感受三角形三条边的长度关系,发现三角形两条边的长度和大于第三边。教材还安排来“想想做做”,让学生通过画图、观察、操作及时巩固所学的知识。
【教学目标】
1、通过观察、操作、交流等活动,进一步认识三角形;让学生经历合作探究的过程,自主发现三角形的三边关系,并能利用关系解决简单实际问题。
2、引导学生经历探索、发现、创造、交流等有趣的数学活动过程,培养学生的观察理解能力、动手操作能力、合作交流能力、分析概括能力,进一步发展空间观念,提高学生运用知识解决问题的能力,增强学生的创新意识。
3、激发学生对数学的好奇心,增强学生学习数学的兴趣,培养学生用数学的眼光去判断、解决生活中的问题,使其产生对生活的理性思维的数学习惯。
【教学重点】
认识三角形的特征。
【教学难点】
探究三角形三条边之间的关系。
【设计思路】
在学习活动中,学生对于一个知识点更多的是关注它是什么,而忽视它为什么是这样。因此在教学中添加了从以前学过的旧知识“角”中引出三角形,找到新旧知识间的生长点。在教学三角形的特征后,回过来让学生给三角形取名,让学生明白“三角形”名称存在的理由。既开阔了学生的知识视野,又加深了学生的知识理解。
【教学过程】
一、课前谈话,激发兴趣
1、图形王国里有许多图形,今天老师要带大家认识一个新的图形(板书:认识)
2、你想通过这堂课的学习,了解这个新图形的哪些方面呢?
【设计意图:认识图形正如认识人一样,一般要知道它的名称、形状、特征。三角形的名称和形状,学生以前的学习中已经初步认识,本课教学的重点在认识三角形的特征。课前活动通过把“人”“物”进行关联,有助于学生明白需要认识三角形的哪些方面。】
二、联系实际,引入课题
1、同学们,赵老师要来看看谁的眼睛最亮,谁的记性最好,准备好了吗?
2、多媒体出示长方形、直角三角形、正方形、锐角三角形、圆。(2秒后隐去)提问:刚才出现的图形中哪种图形最多?再看一遍
3、继续看下去,多媒体出示:长方形、正方形、圆。(2秒后隐去)
提问:和第一次比少了什么图形?再看一遍
4、同学们,在以前的学习中我们已经初步认识了三角形。(补充板书:三角形)
【设计意图:学生已经认识了三角形的名称和形状,通过这样一个“比眼力”和“比记性”的游戏活动,既让学生一下子集中了注意力,又巧妙地在“多”与“少”的比较中一下子推出了“主人公”——三角形。】
5、(出示例题1的图片)你能在这张图片中找到三角形吗?
在我们身边你能找到三角形吗?(指名说)在教室里你能找到三角形吗?
6、谈话:生活中的许多物体上都有三角形,一起来看看。
【设计意图:从在游戏中找平面图形中的三角形,到找实际照片中的三角形,到找身边生活中的三角形,强化了学生对三角形的视觉印象。】
三、动手操作、探索新知
1、感受三角形的边角特征。
(1)谈话:刚才同学们在生活中找到了许多三角形,那你能用老师提供的材料想办法做出一个三角形吗?(小组活动)谁来说说你是怎么做的?
(2)交流:谁来说说你是怎么做的?
①用小棒摆的。(你用了几根小棒围成的?)(板书:3根小棒)
②在钉子板上围的。(把橡皮筋分成了几段?)(板书:3段)
③沿三角尺的边画的。(你画了几条首尾相接的线段?)(板书:3条线段)
④用直尺在方格纸上画的。(你画了几条首尾相接的线段?)(板书:3条线段)
(3)同学们真棒,都能用自己的方法做出了三角形。请看黑板,这个图形认识吗?请说出角各部分的'名称。你能把它变成一个三角形吗?(指名到黑板上画)
(4)你会把角变成一个三角形吗?由角的各部分名称,你能说说三角形各部分的名称吗?(板书:3条边、3个角、3个顶点)
(5)通过刚才的做一做和现在的变一变,你知道三角形有哪些特征?现在你知道为什么这个图形的名字是三角形了吧?
(6)你认为还可以给它取个什么名字?(板书:三边形)
不过啊,我们生活中还是习惯叫它三角形。
【设计意图:在学生做三角形活动中,更多的是让学生在汇报怎样做三角形中能够关注到三角形的构造。通过让学生把以前学过的角变成三角形的环节,沟通了知识之间的联系,让学生明白三角形不仅可以来自生活的抽象,还可以来自知识的演变。更重要的是,从角过渡到三角形,学生很容易得到三角形各部分的名称。另外,让学生自己思考三角形名称的由来,不仅扩大了学生的知识面,而且借此进一步强化了三角形的边角特征。】
2、巩固与过渡
(1)同学们会做三角形了,下面我们要在点子图上画出两个不同的三角形。(出示想想做做第1题)
师拿学生作业交流:你是怎么画的?(画三角形时我们可以先确定它的三个顶点。)
(2)这三个点能画在同一条直线上吗?看来啊,只要三个点不在同一条直线上,两两相连就能够画出三角形,那么是不是任意的三条线段都能围成三角形呢?
3、研究三角形三条边的关系。
(1)谈话:老师给大家准备了长度分别为10厘米、6厘米、5厘米、4厘米的四根小棒,任意选三根围一围,看看能否围成三角形。可以把每一次所用小棒的数据记录在作业纸的表格中。
(2)交流:谁来说说你选了哪三根小棒,能围成三角形吗?
(3)同学们每次都是选三根小棒,为什么有的能围成三角形,有的不能围成三角形呢,这里面又有怎样的奥秘呢?我们先来观察这个三角形(6cm5cm10cm)。
(4)仔细观察,比较三根小棒的长度,说说你有什么发现?可以和你的同桌交流交流。引导学生发现:6+5>106+10>55+10>6
(板书:三角形两条边长度的和大于第三边)
(5)是不是这样呢?我们来看这个三角形(4cm5cm6cm)的三条边是不是也有这样的关系?
指名交流:4+5>64+6>55+6>4
(6)现在我们来看看这三根小棒为什么不能围成三角形?(出示6cm4cm10cm)
(7)出示(4cm5cm10cm):指出:再次说明两条边的长度和要大于第三边,但现在有两条边的长度和等小于第三边,所以不能围成三角形。
请同学们思考:在判断任意的三条线段能不能围成三角形时,是不是要把所有的两边之和都算出来和第三边作比较?
【设计意图:探究三角形三条边之间的关系是本课的教学重点,通过让学生凭借自己的探索发现三角形三条边的关系,既理解了知识、又培养了学生的探索意识,学生也能对这部分知识有深刻的印象。可谓一举数得。】
三、综合练习,巩固深化
1、老师这里还有几组线段要请同学们来判断一下能不能围成三角形。下面我们要采取抢答的形式,老师说开始,你就可以站起来回答,看看哪位同学的反应最快。好吗?
①6cm9cm3cm②7m6m5m③4dm10dm8dm
【设计意图:此题采用抢答形式,强化了学生自觉运用三角形围成的快捷判断方法的意识。其中,变化了数据后的单位名称,用意是扩大知识的应用范围。】
2、放学后老师还要去趟少年宫,请看(出示地图),从学校到少年宫有几条路线?走哪一条路最近呢?你是怎么想的,能用今天的知识来解释吗?
3、拓展
(1)有一个活动角,已知这条边是2cm,这条边是5cm,请问第三条边可以是几厘米(填整数)?
(2)如果一个三角形的最短边是5cm,另外两条边可以是几厘米?
(3)如果三条边的和是5cm,三条边分别是几厘米?
【设计意图:这一题是开放题,有效地训练了学生思维的广阔性。另外,第(1)小题的设计与新授过程中“由角演变成三角形”这一教学环节相呼应,又使他们进一步体会三角形三条边的关系。】
四、全课总结
刚才同学们都想了解新图形的名字、样子、特征,现在都了解了吗?谁愿意把你了解的知识介绍给同学听一听。
三角形教案【篇9】
一、教学目标:
(一)知识目标
1、让学生通过观察、操作、讨论探索出三角形的内角和等于180及3条边之间的关系,体验解决问题方法的多样性。
2、在活动中,使学生初步学会与同学合作探索问题。
3、培养学生的语言表达能力和说普通话的能力。
(二)能力目标
通过让学生猜测验证三角形的内角和的过程中,培养学生探究、解决问题的能力。
二、教学重点:
三角形的内角和及三角形的三条边之间的关系。
三、教学难点:
验证三角形的内角和等于180。
四、教具准备:
三角板2个、量角器、不同类型的三角形。
五、学具准备:
三角板、量角器
六、教学过程:
(1)活动一:复习导入
师:上节课我们学习了三角形的有关知识,谁能说一说?
指名交流,说出三角形的稳定性和三角形的分类。
学生表述的质量。
(2)活动二:探究新知
师:两个三角板它们都是三角形,都有几个内角?
量一量它们的内角的和是多少度?
等边三角形的内角和是多少度?
小组合作进行,量出一个三角形的内角和是:60+30+90=180,第二个内角和也是:45+45+90=180。
等边三角形的内角和室60+60+60=180。
小结:这山种特殊的三角形的内角和都是180。
给学生提供充分的空间进行探究。
关注学生的结论。
(3)活动三:操作验证
师:是否所有的三角形的内角和都是180呢?用你喜欢的方法验证,比一比哪个小组性的方法多。
结论:三角形的内角和是180。
学生拿出事先准备的三角形和必要的工具进行验证,可以用折叠的方法,也可以用量角器量的方法,还可以用剪拼的方法等。小组探索,全班交流并总结。
让每个学生都参入活动中。
关注学生的验证过程。
(4)活动四:探究三条边之间的关系
师:三角形的三条边之间有什么关系呢?可以摆一摆,量一量。你有什么发现?
师:板书:三角形的任意两条边之和大于第三边。
同桌俩合作进行,三角形的两条边的和大于第三边。
指名交流,集体总结:三角形任意两边之和大于第三边。
关注学生的验证方法。
(5)活动五:巩固练习
师:做教材45—46页的6、7、8、9题。
让学生独立完成,然后全班交流订正。
公主学生交流的质量,给予一定的评价。
(6)活动六:课堂小结
说一说这节课你有什么收获?
学生的知识进行回顾总结。
鼓励学生用自己的语言进行总结。
创意作业:在自己周围找一找与课本类似的铁塔,并找出不同的三角形。
七、板书设计:
(1)三角形的三个内角的和是180度
(2)三角形任意两边之和大于第三边
八、教学反思:
三角形是最简单的多边形,学生对三角形已有一定的感性认识,因为在生活中他们经常会接触到。本节三角形的认识是学生在角的认识的基础上进行教学的,它又是进一步学习三角形有关知识的重要基础。本节课的教学主要包括三角形的意义、特征、特性,三角形的分类和三角形之间的关系等内容。
我在教学中贯彻让学生经历知识的形成过程为原则,整个教学过程始终围绕教学目标展开,力求做到层次清楚,环节紧凑,并注意引导学生通过观察、实验和操作,突出体现了学生对知识的获取和能力的培养。
现代心理学、教育学认为,语言的准确性体现着思维的周密性,语言的层次连贯性体现着思维的逻辑性,语言的多样性体现着思维的丰富性。众所周知能力和思维相辅相成,而思维的发展同语言的发展又紧密相关,这说明要提高学生思维能力,就必须培养学生的语言表达能力,从而提高学生的口语能力,提高说规范话、说普通话的水平。
三角形教案【篇10】
教学内容:
义务教育课程标准实验教科书数学四年级下册80~81页的例1、例2
教学目标:
1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形的高和底的含义,会在三角形内画高。
2、培养学生观察、操作、自学的能力和应用数学知识解决实际问题的能力。
3、体验数学和生活的联系,培养学生学习数学的兴趣。
教学重点:
1、理解三角形的特性。
2、在三角形内画高。
教学难点:
理解三角形高和底的含义,会在三角形内画高。
教学准备:
多媒体课件、投影。
教学过程:
一、谈话引入。
师:我们学过哪些平面图形?
师:说一说你对三角形有哪些认识?
师:同学们对三角形已经有了初步的了解,这节课我们继续研究和三角形有关的知识。
(板书课题:三角形的特性)
二、探究新知。
1、三角形的特征。
(1)画一画。
师:请你在纸上画一个自己喜欢的三角形。并和同桌边指边说一说三角形有几条边?几个角?几个顶点?
师黑板上画一个三角形,让学生说出各部分的名称师板书。(教师板书各部分名称)
(2)摆一摆。
师:每根小棒相当于一条线段。请你动手用三根小棒摆一个三角形。
找一学生上投影前摆一摆,并说一说是怎么摆的?
(3)看一看。
老师也摆了一个三角形,课件出示。
你们有什么看法?
教师用课件演示并强调:有三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
(4)找一找。
下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。(学生一起用手势表示)
2、三角形的特性。
(1)动手操作发现三角形的特性。
师生拿出平行四边形框架。
师:用手拉动,说一说有什么发现?(容易变形,不稳定。)
指导学生操作:去掉一条边,再扣上拼组成三角形框架。
师:再拉一拉有什么感觉?
师:想一想这说明三角形具备什么特性?(稳定性)
(2)生活中寻找三角形的特性。
师:三角形的稳定性在生活中的用处很大,你能举个例子吗?
课件出示例2的主题图,请你找出各图中哪有三角形?说一说它们有什么作用?
3、认识三角形的底和高。
(1)情境引入。
故事引入,两个三角形争论谁的个高。课件出示
让学生说一说怎样比较这两个三角形的高,并准备好相应的两个三角形学具试着让学生前面来分别指一指它们的高,并比一比。
师:请你拿出(指锐角三角形)这样一个三角形,试着指一指它的高。
(2)看书自学。
师:什么是三角形的高?怎样正确的画出三角形的高呢?请打开书81页,看看书上是怎样说的,又是怎样画的,和你的想法一样吗?
师:谁来说一说?
请你在刚才的三角形中画出三角形的一条高,并标出它所对应的底。
(3)教师板演。
我把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC。想想怎样以AC边为底画出这个三角形的高?
生说高的画法,师板演,并强调用三角板画高的方法。
(4)进一步认识三角形的高。
在三角形中标上字母ABC,和同桌说一说刚才画的高是以哪条边为底画的?
师:刚才我们画了三角形的一组底和高,想一想一个三角形只有一组底和高吗?为什么?
(三)应用练习。
1、填空:
三角形有()个顶点,()条边,()个角。
2、学校的椅子坏了,课件演示,怎样加固它呢?(教材86页第2题)
3、小明画了三角形的一条高,你说他画的对吗?为什么?
(四)课堂小结。
通过这节课的学习,你对三角形又有了哪些新的认识?
你还想了解和三角形有关的哪些知识?
三角形教案【篇11】
在观察、操作活动中,概括三角形的特征,认识各部分名称以及底和高的含义,会在三角形内画高,用字母表示三角形。
在观察、操作活动、概括中,积累认识图形的经验和方法。
体验数学与生活的联系,培养学生学习数学的兴趣。
教学重点:概括三角形的概念,认识三角形各部分的名称,知道三角形的底和高。
1.出示主题图。
教师:同学们,你们知道这是哪儿吗?你能找出图中的三角形吗?
2.生活中的三角形。
3.引入。
教师:真会观察,生活中的很多地方都会用到三角形,今天我们就一起走进三角形的世界。
【设计意图】关注学生已有的知识经验,让学生在熟悉的情境中找三角形,列举生活中的三角形,唤起旧知,调动学生已有的生活经验,丰富了三角形的表象,同时体会三角形与生活的密切联系。
1.教学三角形的含义。
(1)教师:我们在生活中找到了三角形,现在请你画一个三角形。
(2)订正:谁来展示一下自己画出的三角形?说说你是怎么画的。(先画一条线段,从这条线段的一个端点出发,再画一条线段,把两条线段的端点连接起来)
预设:学生会画出不同的三角形。在说画法的过程中体会“围成”。
(3)课件出示:
教师:大家看,这两个是三角形吗?为什么?(有两条线段的端点没有连上)
教师:大家说得非常好,三角形每相邻两条线段的端点必须相连,这样相连的三条线段就是“围成”。
(4)教师总结:说说什么是三角形?(由3条线段围成的图形叫做三角形)
【设计意图】在画三角形、说画法、辨析交流的过程中,理解“围成”的含义,概括三角形的含义。培养学生的观察能力和语言表达能力。
2.三角形各部分名称。
(1)教师:你画的三角形有几条边?几个角?几个顶点?标在图上。
(2)汇报:
教师:大家画的三角形样子各不相同,但它们都有3个顶点、3条边和3个角。
(3)教师:如果在三角形的三个顶点上分别写上三个不同的大写字母,如:A、B、C,那么这个三角形就是“三角形ABC”,也可以称为“三角形ACB”或“三角形BAC”等。
教师:再说说,三角形ABC的3条边、3个角、3个顶点分别是什么?
【设计意图】在说、指、写三角形各部分名称的活动中, 认识三角形的基本特征,建立三角形表象。
3.三角形的高和底。
(1)认识三角形的高和底。
教师:三角形除了有3个顶点、3个角和3条边以外,它和平行四边形、梯形一样,也有底和高。什么是三角形的高?什么又是三角形的底呢?请打开教材阅读第60页上的内容。
教师指定学生,说说什么是三角形的高,什么是三角形的底。
(2)画三角形的高。
教师:在刚才画的三角形内,画出一条高,比一比,看谁画得最规范。
订正:画好了吗?老师这里有几位同学画的。(在实物投影仪上展示)这样画对不对?
教师:正确的高怎样画呢?谁愿意画出黑板上这个三角形的高?边画边说怎么画。
学生:以BC边为底画一条高,先用三角板的一条直角边与BC边重合,另一条直角边通过A点,然后从A点向它的对边画一条垂线,用虚线表示,标出直角符号,顶点与垂足之间的线段就是三角形的高。写上高,这条对边叫做三角形的底,写上底。
教师:仔细观察你画的三角形的底和高,它们的位置有什么特点?(互相垂直)
教师:三角形的底和高是一组互相垂直的线段。画三角形的高实际上就是我们学过的过直线外一点,画已知直线的垂线段。
教师:还能在你的三角形中画出其他的高吗?还能通过哪个顶点向它的对边作垂线画高?试一试。
学生自己动手画一画三角形的高。
教师:谁来展示一下自己的作品。说说你画出了几条高?
预设:锐角三角形有3条高,钝角三角形和直角三角形都只有1条高。
预设1:直角三角形的一条高在三角形内,两条直角边互为底和高(课件演示),所以,直角三角形还有两条高在三角形边上。
预设2:钝角三角形的一条高在三角形内,还有两条高的垂足落在钝角两边的延长线上(课件演示),所以,钝角三角形还有两条高在三角形外面。
【设计意图】通过自已阅读教材了解三角形底和高的知识,在动手操作尝试画高、辨析交流、学生演示和再尝试的过程中,认识三角形的底和高,学会画三角形的高。培养学生的观察和动手操作能力。
1.填一填。
(1)由三条( )围成的图形叫做三角形。一个三角形有( )条边,( )个角,( )个顶点。
(2)从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的( ),这条对边叫做三角形的( )。任意一个三角形都有( )条高。
【设计意图】考查学生基本概念的掌握情况。
2.教材第60页做一做。
【设计意图】考查学生能否画出三角形指定边上的高。