搜索

锐角三角函数课件

发布时间: 2023.12.08

锐角三角函数课件汇编八篇。

资料一般指可供参考作为根据的材料。我们在平时的学习工作中,都会接触到很多资料。参考资料会让未来的学习或者工作做得更好!你是否收藏了一些有用的资料内容呢?为了让你在使用时更加简单方便,下面是小编整理的“锐角三角函数课件汇编八篇”,供大家参考借鉴,希望可以帮助到有需要的朋友。

锐角三角函数课件 篇1

1 、请同学们回忆一下,以前测量旗杆高度的方法,并说明这些方法的理论依据是什么?(相似三角形对应边成比例)

2 、问题:如果观测的角是任意的锐角,能否求出旗杆的高度呢?要解决这个问题,只要学完三角函数这节内容,你们就可得到答案。

1、① Rt △ ABC 中,∠ C=90° ,各边名称是什么?一般用什么字母表示,学生回答,老师在图形中标明。

2 、在以上测量旗杆高度的各种方法中,那些量是改变的,哪些量是不变的,它们之间有何联系?

学生活动:

学生思考,分组讨论,并归纳出以下结论(如果学生有缺漏,教师可点拨,同时鼓励表扬):

(1)、在 Rt △ ABC 中,当∠ A 不变时,三角形的形状可以改变,即各边可改变大小,但任两边的比值不变。

(2)、当∠ A 取其他固定值时,任两边的比值也有唯一确定值与之对应。

3、三角函数定义:由∠ A 取每一确定值,∠ A 的对边与斜边的比值有唯一确定值与之对应,我们把这两个变量之间这种函数关系用符号 “Sin” 表示即: SinA= ∠ A 的.对边 / 斜边

同理得出: COSA= ∠ A 的邻边 / 斜边tanA= ∠ A 的对边 / ∠ A 的邻边cotA= ∠ A 的邻边 / ∠ A 的对边

(2)、说出 SinA , cosA , tanA , coSA 值的范围,求 tA= ?

4、例题讲解:

例 1 、( P108 )由学生回答解题思路,再由学生自主完成。

在 Rt △ ABC 中,已知 sinA=4/5 ,求∠ A 的其他三角函数值,学生板书。

1 、了解三角函数是解决实际问题的一种方法。

2 、理解并熟记三角函数的定义。

3 、利用三角函数解决简单的问题。

锐角三角函数课件 篇2

1.能够把数学问题转化成数学问题。

2.能够错助于计算器进行有三角函数的计算,并能对结果的意义进行说明,发展数学的应用意识和解决问题的能力。

经历探索实际问题的过程,进一步三角函数在解决实际问题过程中的应用。

积极参与探索活动,并在探索过程中发表自己的见解,三角函数是解决实际问题的有效工具。

重点:能够把数学问题转化成数学问题,能够借助于计算器进行有三角函数的计算。

难点:能够把数学问题转化成解直角三角形问题,会正确选用适合的直角三角形的边角关系。

一、问题引入,了解仰角俯角的概念。

提出问题:某飞机在空中A处的高度AC=1500米,此时从飞机看地面目标B的俯角为18°,求A、B间的距离。

提问:1.俯角是什么样的角?,如果这时从地面B点看飞机呢,称∠ABC是什么角呢?这两个角有什么关系?

2.这个△ABC是什么三角形?图中的边角在实际问题中的意义是什么,求的是什么,在这个几何图形中已知什么,又是求哪条线段的长,选用什么方法?

教师通过问题的分析与讨论与学生共同学习也仰角与俯角的概念,也为运用新知识解决实际问题提供了一定的模式。

二、测量物体的高度或宽度问题.

我们学习中介绍过测量物高的一些方法,现在我们又学习了锐角三角函数,能不能利用新的知识来解决这些问题呢。

利用三角函数的前提条件是什么?那么如果要测旗杆的高度,你能设计一个方案来利用三角函数的知识来解决吗?

学生分组讨论体会用多种方法解决问题,解决问题需要适当的数学模型。

2.运用新方法,解决新问题.

⑴从1.5米高的测量仪上测得古塔顶端的仰角是30°,测量仪距古塔60米,则古塔高( )米。

⑵从山顶望地面正西方向有C、D两个地点,俯角分别是45°、30°,已知C、D相距100米,那么山高( )米。

⑶要测量河流某段的宽度,测量员在洒一岸选了一点A,在另一岸选了两个点B和C,且B、C相距200米,测得∠ACB=45°,∠ABC=60°,求河宽(精确到0.1米)。

在这一部分的练习中,引导学生正确来图,构造直角三角形解决实际问题,渗透建模的数学思想。

一艘渔船正以30海里/时的速度由西向东追赶鱼群,在A处看见小岛C在北偏东60°的方向上;40nin后,渔船行驶到B处,此时小岛C在船北偏东30°的方向上。已知以小岛C为中心,10海里为半径的范围内是多暗礁的危险区。这艘渔船如果继续向东追赶鱼群,有有进入危险区的可能?

⑵分析图中的线段与角的实际意义与要解决的问题,

⑶不存在直角三角形时需要做辅助线构造直角三角形,如何构造?

⑷选用适当的边角关系解决数学问题,

⑸按要求确定正确答案,说明结果的实际意义。

某景区有两景点A、B,为方便游客,风景管理处决定在相距2千米的A、B两景点之间修一条笔直的公路(即线段AB)。经测量在A点北偏东60°的方向上在B点北偏西45°的方向上,有一半径为0.7千米的小水潭,问水潭会不会影响公路的修建?为什么?

学生可以分组讨论来解决这一问题,提出不同的方法。

重点:灵活选择题目给定的条件,利用待定系数法确定函数解析式.

难点:会利用或找出给的条件设出函数解析式的一般形式.

考点:待定系数法是确定代数式中某些项的系数的重要数学方法,它是以代数式形式上的恒等变换的性质为依据,通过特定的已知条件,辩证地转化已知和未知的关系,从而求得代数式中某些系数的值,在中考题目中往往会有多处涉及,其中临沂市近几年中考题最后压轴的第一问多是利用待定系数法确定函数解析式.

通过训练,让学生熟练掌握待定系数法确定函数解析式.

1.如图1,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为( )

A.y=-x+2 B.y=x+2 C.y=x -2 D.y= -x-2

2.已知点A(m,1)在直线y=2x-1上,求m的方法 是 ,可得m= .

3.已知点B(-2,n)在直线y=2x-1上,求n的方法是 ,可得n= .

4.已知某一次函数的图象经过点P(3,5)和Q(-4,-9),求一次函数的解析式是一般先 ,再由已知条件可得 ,解得 ,∴满足已知条件的一次函数解析式是: ,这个一次函数解析式的图象与坐标轴交点坐标为: .

5.一次函数的图象经过反比例函数 的图象上的A、B两点,且点A的横坐标与点B的纵坐标都是2. 求这个一次函数的解析式.教师引入新课后,出示题目,学生自主完成.

教师巡视,及时发现学生完成的情况,记录下所出现的问题,以便集中处理.

教师要求学生在做题的同时,总结解决问题所运用的知识点、方法和规律.

找学生展示完成的情况,师生共同点评和分析,同时就检查过程中发现的问题进行处理,就本部分所用到的知识进行 方法总结.

【例1】如图2,抛物线经过 三点.求出抛物线的解析式.

【例2】如图3,一次函数 与反比例函数 的图像交与A(2,3)B(-3,n)两点.

(1)求一次函数与反比例函数的解式;

(2)根据所给条件,请直接写出不等式kx+b> 的解集: .

(3)过B点作BD⊥x轴,垂足为C,求△ABC的面积.

【变式练习】已知如图4,抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.求抛物线的解析式;

教师出示例题,学生开始思考,先独立分析,然后在小组内交流,解答.

教师巡视,了解学生的讨论情况或解答的情况,搜集要强调的知识点、解题的方法及易出错的地方等等.

学生讨论交流后,请3位学生讲解.

展示部分学生的解答练习.

师生共同评析.

1.点(2,4)在一次函数 的图象上,则 _____.

2.若反比例函数 的图象经过点 ,则该函数的解析式为_____.

3.函数 y=x2+bx+3 的图象经过点(-1, 0),则 b= .

4.已知二次函数 y=ax2+bx+c 的图象如图5,则这个二次函数的解析式是 y=___ .

6.抛物线 y=x2-4x+c 的顶点在 x 轴,则 c 的值是( )

教师巡视,了解学生的解答的情况,搜集要强调的知识点、解题的方法及易出错的地方等等.

学生展示自己的成果,教师点评分析,并及时地鼓励学生。

通过本节课的复习,你有哪些收获?还存在哪些疑惑?

教师提出问题,学生思考,总结,在小组内交流.

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七《反比例正函数》、第十八《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.

(1)理解二次根式的概念.

(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0).

(3)掌握 = (a≥0,b≥0), = ;

= (a≥0,b>0), = (a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

1.二次根式 (a≥0)的内涵. (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用.

2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.

1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式.

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

本单元教学时间约需11时,具体分配如下:

理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.

提出问题,根据问题给出概念,应用概念解决实际问题.

1.重点:形如 (a≥0)的式子叫做二次根式的概念;

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , ).

很明显 、 、 ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

2.0的算术平方根是多少?

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).

分析:二次根式应满足两个条:第一,有二次根号“ ”;第二,被开方数是正数或0.

解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

例2.当x是多少时, 在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.

例3.当x是多少时, + 在实数范围内有意义?

分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

当x≥- 且x≠-1时, + 在实数范围内有意义.

本节要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

1.教材P8复习巩固1、综合应用5.

A. B. C. D.

1.形如________的式子叫做二次根式.

2.面积为a的正方形的边长为________.

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时, +x2在实数范围内有意义?

3.若 + 有意义,则 =_______.

4.使式子 有意义的未知数x有( )个.

5.已知a、b为实数,且 +2 =b+4,求a、b的值.

三、1.设底面边长为x,则0.2x2=1,解答:x= .

∴当x>- 且x≠0时, +x2在实数范围内没有意义.

1. (a≥0)是一个非负数;

理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简.

通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题.

1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用.

2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0).

1.什么叫二次根式?

2.当a≥0时, 叫什么?当a

(a≥0)是一个什么数呢?

(a≥0)是一个非负数.

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

分析:我们可以直接利用( )2=a(a≥0)的结论解题.

解:( )2 = ,(3 )2 =32( )2=325=45,

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2≥0.

所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题.

又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

(4)∵4x2-12x+9=(2x)2-22x3+32=(2x-3)2

1. (a≥0)是一个非负数;

1.教材P8 复习巩固2.(1)、(2) P9 7.

1.下列各式中 、 、 、 、 、 ,二次根式的个数是( ).

2.数a没有算术平方根,则a的取值范围是( ).

1.(- )2=________.

2.已知 有意义,那么是一个_______数.

(1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

2.把下列非负数写成一个数的平方的'形式:

3.已知 + =0,求xy的值.

4.在实数范围内分解下列因式:

三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6=

(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )

如图:AB是直径(弦AB过圆点),CD是弦,且CD⊥AB于P,你能在图中找到其他相等的量吗?

在垂径定理中,题设与结论共有5个语句,分别是:

(1)弦AB过圆心O(AB是直径);(2)弦AB垂直于弦CD(AB⊥CD);

(3)弦AB平分弦CD(DP=CP);(4)弦AB平分 ( );

(5)弦AB平分 ( );

其中用任两个作为条件,都可以推出其他三个结论.

例1:在⊙O中,弦AB的长为16cm,圆的半径是10cm,求圆心O到AB的距离。

的度数是120°, 的度数是240°,则CE= ,

ED= ,

2、在⊙O中,半径OA=30,弦AB长30,求点O到AB的距离。

分析:(1)点O到AB的距离是过点O作AB的 线,垂足为 ,此时线段 为点O到AB的距离。

(2)要求点O到AB的距离,即求线段 的长,此时线段在什么图形中?

已知什么条件,可用什么方法?

3、图1:在⊙O中,AB是直径,AB⊥CD于E,若CD=16,圆的半径为10,则圆心到弦CD的距离是

4、图1:在⊙O中,若 , ,则弦AB必经过 ,且DE=

5、图1:在⊙O中,OE=5,弦CD=24,AB⊥CD于E,则⊙O的半径为

6、如图,MN是⊙O的直径,C是AB的中点,AB=6,OC=4,求OA及直径MN

∴AC=

7、如图,在⊙O中,AB是弦,∠AOB=120°,OA=5cm,则圆心O到AB的距离和弦AB的长。

解:

8、如图:在半径为5cm的圆中,AC是直径,弦AB⊥BC,OD⊥AB于D,若BC=6cm,求OD和AB的长.

9、如图⊙O的半径是5cm,AB和CD是两条弦,且AB∥CD,AB=6 cm,CD=8 cm,求AB和CD的距离。

解:

10、右图是我国隋代建造的赵州桥,我们可以很方便地量出它的跨度为37.4米,拱高为7.2米,我们怎样通过跨度和拱高求出桥拱的半径?

目标进一步掌握推理证明的方法,发展演绎推理能力;

重点了解勾股定理及其逆定理的证明方法;

难点结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。

它的条是:______ _______________________ _________;

结论是:______________ ________________。

3、将勾股定理的条和结论分别变成结论和条,其内容是:

下面我们试着将上述命题证明:

分析:要△ABC是直角三角形,只须∠A=90°,单独只有一个三角形不能得出结论,那就需用另外作一个Rt△A′B′C′,使∠A′=90°, A′B′=AB, A′C′=AC,通过证三角形全等得到结论。

证明:

定理:如果三角形两边的__________等于______ _ ___,那么这个三角形是直角三角形。

四、合作交流:

1、观察勾股定理及上述定理,它们的条和结论之间有怎样的关系?然后观察下列每组命题,是否也在类似关系。

(1)如果两个角是对顶角,那么它们相等。

如果两个角相等,那么它们是对顶角。

(2)如果小明患了肺炎,那么他一定会发烧。

如果小明发烧,那么他一定患了肺炎。

(3)三角形中相等的边所对的角相等。

三角形中相等的角所对的边相等。

像上述每组命题我们称为互逆命题,即一个命的条和结论分别是另一个命题的__________和__________。

2、“想一想”,回答下列问题:

(1)写出命题“如果两个有理数相等,那么它们的平方相等”的逆命题。它们都是真命题吗?

(2)一个命题是真命题,那么它的逆命题也一定是真命题吗?

互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。

(4)是否任何定理都有逆定理?

(5) 思考我们学过哪些互逆定理?

①8、15、17 ②4、5、6、 ③7.5、4、8.5 ④ 24、25、7 ⑤ 5、8、10

A、两底角相等的两个三角形是等腰三角形。

B、全等三角形的对应角相等。

C、两直线平行,内对角相等。

D、直角三角形两锐角互等。

_______________________________________________

4、已知直角三角形两直角边长分别为6和8,则斜边长为________,斜边上的高为_________。

5、写出下列命题的逆命题,并判断每对命题的真假:

A、五边形是多边形。

B、两直线平行,同位角相等。

C、如果两个角是对顶角,那么它们相等。

D、如果AB=0,那么A=0,B=0。

6、公园中景点A、B间相距50,景点A、C间相距40,景点B、C间相距30,由这三个景点构成的三角形一定是直角三角形吗?为什么?

7、台风过后,某小学旗杆在B处断裂,旗杆顶A落在离旗杆底部C点8处,已知旗杆原长16,则旗杆在距底部几米处断裂。

8、小明将长2.5的梯子斜靠在竖直的墙上,这时梯子底端B到墙根C的距离是0.7,如果梯子的顶端垂直下滑0.4,那么梯子的底端B将向外移动多少米。

中考真题:用四个全等的直角三角形拼成了一个如图所示的图形,其中a表示较短,直角三角形,b表示较长的直角边,c表示斜边,你能用这个图形证明勾股定理吗?

切线的判定是九年制义务教育课本数学九年级第二学期第三十五章“圆”中的内容之一,是在学完直线和圆三种位置关系概念的基础上进一步研究直线和圆相切的特性,是“圆”这一章的重点之一,是学习圆的切线长和切线长定理等知识的基础。

“切线的判定和性质”共两个课时,课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时。为了突出本节课的重点、突破难点,我没有采用教材安排的顺序,而是依据初三学生认知特点,将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,让呈现一个循序渐进、温过知新的过程。

本节课主要有三部分内容:(1)切线的判定定理(2)切线的判定定理的应用(3)切线的两种判定方法。教学重点是切线的判定定理及其应用。教学难点是切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。

在学习本节内容之前学生已经掌握了圆的切线的定义,直线和圆的三种位置关系和一种直线与圆相切的判定方法(用d=r)。在学习用d=r来判定直线与圆相切的内容时曾为本节内容打过伏笔,设置过悬念,所以学生对本节内容的学习充满期待的。

为了实现教学目标,本节课我主要突出抓好以下五个环节:

1.复习提问??打好基础,为新课作铺垫。

问题1是例2的基础,问题2则起着复旧孕新、引入新课的作用。

2.发现、证明、理解定理??学好基础知识。

根据初三学生有一定创造、自学能力的特点,在教学中,教师通过启发和指导学生阅 读教材,教会学生通过自己观察,发现结论,再设法证明结论的学习方法,同时也强化了学生的阅读、自学能力。

3.应用定理??培养基本技能。

定理是基础,应用是目的。本环节首先给出两道判断题,目的是为了让学生更好地明确此定理的使用条件,然后在此基础上讲解例1。讲解时,我抓住教材本身的特点,用两头凑的办法揭示证题思路,显示证题的书写程序,较好地解决了本课的难点。之后,做两个练习加以巩固,最后由师生共同完成例2,总结出判定切线常用的两种添辅助线的方法。

通过小结,进一步帮助学生明确本节课的重点内容。拓展题是本节内容的提升,不是很难,但有助于培养学生的数学思想以及良好的思维习惯,激发学习的积极性。

5.布置作业??充分发挥家庭作业的 巩固知识、形成技能的作用。作业的分层布置,使每一位学生都有难度适 宜的作业,不但能培养优生,而且可以照顾到后进生,充分体现了因材施教的教学原则。

2、知道判定切线常用的方法有两种,初步掌握方法的选择。

教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一.

【教师】问题1.怎样过直线l上一点P作已知直线的垂线?

问题2.直线和圆有几种位置关系?

问题3.如何判定直线l是⊙O的切线?

(2)圆心O到直线L的距离与半径的数量关系 如何?

学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)

再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)

【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。

证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。

定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,

∴直线l为⊙O的切线。

是非题:

例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。

∴直线AB是⊙O的切线。

练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。

练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。

例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。

思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?

1.切线的判定定理。

2.判定一条直线是圆的切线的方法:

②数量关系:直线到圆心的距离等于该圆半径(即d = r)。

③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。

3.证明一条直线是圆的切线的辅助线和证法规律。

凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是“连结”圆心和公共点,证明“垂直”(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。

本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:

这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。

数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。

不足之处:

一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。

二、课的引入太直截了当,脱离不了应试教学的味道。

三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。

目标(知识、能力、教育)1.掌握列方程和方程组解应用题的方法步骤,能够熟练地列方程和方程组解行程问题和工程问题。培养学生分析、解决问题的能力。

2. 掌握列方程(组)解应用题的方法和步骤,并能灵活运用不等式(组)、函数、几何等数学知识,解决有关数字问题、增长率问题及生活中有关应用问题。

重点掌握工程问题、行程问题、增长率问题、盈亏问题、 商品打折、商品利润(率)、储蓄问题中的一些基本数量关系。

相等关系:各部分量之和=总量。设其中一分为 ,由已知各部分量在总量中所占的比例,可得各部分量的代数式

年龄问题大小两个年龄差不会变抓住年龄增长,一年一岁,人人平等。

路程、速度、时间的关系:

2:同时不同地出发 :前者走的路程+两地间的距离=追击者走的路程

逆水(风)速度=静水(风)速度-水流(风)速度1:与追击、相遇问题的思路方法类似

2:抓住两地距离不变,静水(风)速度不变的特点考虑相等关系。

数字问题多位数的表示方法: 是一个多位数可以表示为 (其中0<a、b、c<10的整数)1:抓住数字间或新数、原数间的关系寻找相等关系。

首先确定售价、进价,再看利润率,其次应理解打折、降 价等含义。

2.列方程解应用题的步骤:

(1)审题:仔细阅读题,弄清题意; (2)设未知数:直接设或间接设未知数;

(3)列方程:把所设未知数当作已知数,在题目中寻找等量关系,列方程;

(4 )解方程; (5)检验:所求的解是否是所列方程的解,是否符合题意;

1. 某商品标价为165元,若降价以九折出售(即优惠 10%),仍可获利10%(相对于进货价),则该商品的进货价是

2. 甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,已知甲与乙投资额的比例为3:4,首年的利润为38500元,则甲、乙二人可获得利润分别为 元和 元

3. 某公司出口创收135万美元,、每年都比上一年增加a%,那么,19这个公司出口创汇 万美元

4. 某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数,若设城镇现有人口数为x万,农村现有人口y万,则所列方程组为

5. 一个批发与零售兼营的具店规定,凡是一次购买铅笔301支以上(包括301支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有学生小王购买铅笔,如果给学校初三年级学生每人买1支,则只能按零售价付款,需用(m2-1)元(m为正整数,且m2-1>100);如果多买60支,则可以按批发价付款,同样需用(m2-1)元.设这个学校初三年级共有x名学生,则①x的取值范围应为 ②铅笔的零售价每支应为 元,批发价每支应为 元

1. A、B两地相距64千米,甲骑车比乙骑车每小时少行4千米,如果甲乙二人分别从A、

B两地相向而行,甲比乙先行40分钟,两人相遇时所行路程正好相等,求甲乙二人

的骑车速度.

行程问题即为时间、路程、速度三者之间的关系问题,在分析题意时,先画出示意

图(数形结合思想),然后设未知数,再列表,第一列填含未知数的量,第二列填题

目中最好找的量,第三列不再在题目中找,而是用前面两个量表示,往往等量关系

就在第三列所表示的量中.解完方程时要注意双重检验.

2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路。为

使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少个月?

分析:工程量不明确,一般视为1,设原计划完成这项工程用x个月,实际只用了(x-3)

个月.等量关系:

实际工效=原计划工效×(1+12%).

方程:

3.某商场销售一批名牌衬衫,平均每天可售出20,每盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每衬衫每降价1元,商场平均每天可多售出2。

(1)若商场平均每天要盈利1200 元,每衬衫应降价多少元?

(2)每衬衫应降价多少元时,商场平均每天盈利最多?

注意“尽快减少库存”决定取舍。(2)当 取不同的值时,盈利随 变化,可配方为: 求最大值。但若联系二次函数的最值求解,可设: 结合图象用顶点坐标公式解,思维能力就更上档次了。所以 在应用问题中要发散思维,自觉联系学过的所有数学知识,灵活解决问题。答案:(1)每衬衫应降价20元;(2)每衬衫应降价15元时,商场平均每天盈利最高。

4.某音乐厅5月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,

其中团体票占总票数的 .若提前购票, 则给予不同程度的优惠,在5月份内,团体

票每张12元,共售出团体票数的 , 零售票每张16元,共售出零售票数的一半.如果在6月份内,团体票要按每张16元出售,并计划在6月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?

分析:这样的题字一大堆,看到头就发胀,同学们不要怕,要有信心,一定要仔细读题,当你读懂题后事实上这类题还是比较简单的,学数学的目的就是解决现实生活中的实际问题.

因为总票数不明确,所以看为1,设6月零售票每张定价 元.

方程 .

5.要建一个面积为150m2的长方形养鸡场,为了节约材料,

1.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:①

年的利润率比的利润率高2%;②的利润率比的利润率高8%;

③这三年的利润率14%;④这三年中20的利润率最高。其中正确的结论共有( )

2.北京至石家庄的铁路长392千米,为适应经济发展,自月21日起,某客

运列车的行车速度每小时比原增加40千米,使得石家庄至北京的行车时间缩短了1

小时,求列车提速前 的速度(只列方程).

3.春天,在党和政府的领导下,我国 进行了一场抗击“非典”的战争.为了控制

疫情的蔓延,某卫生材料厂接到上 级下达赶制19.2万只加浓抗病毒口罩的任务,为使抗

病毒口罩早日到达防疫第一线,开工后每天比原计划多加工0.4万只,结果提前4天完

成任务,该厂原计划每天加工多少万只口罩?

4.一水池有甲、乙两水管,已知单独打开甲管比单独打开乙管灌满水池需多用10小时.现

在首先打开乙管10小时,然后再打开甲管,共同再灌6小时,可将水池注满,如果一开

始就把两管一同打开,那么需要几小时就能将水池注满?

5.某公司向银行贷款40万元,用生产某种新产品,已知该贷款的年利率为15%

(不计复利,即还贷前每年息不重复计息),每个新产品的成本是2.3元,售价是4元,

应纳税款为销售额的10%。如果每年生产该种产品20万个,并把所得利润(利润=

销售额-成本-应纳税款)用归还贷款,问需几年后能一次还清?

6.某商店1995年实现利税40万元(利税=销售金额-成本),19由于在销售管

理上 进行了一系列改革,销售金额增加到154万元,成本却下降到90万元,

(1)这个商店利税年比1995年增长百分之几?

(2)若这个商店1996年比1995年销售金额增长的百分数和成本下降的百分数相同,

求这个商店销售金额1996年比1995年增长百分之几?

锐角三角函数课件 篇3

教学三维目标:

一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaa、cosa、tana表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。

2.教学难点:用含有几个字母的符号组siaa、cosa、tana表示正弦,余弦,正切

1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数定义。

siaa= ,cosa= ,tana=

3例1.求如图所示的rt ⊿abc中的siaa,cosa,tana的值。

1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45°     tan60°

30°

(1)sia 30°+cos30°(2) sia 45°- cos30°(3) +ta60°-tan30°

三.拓展提高p82例4.(略)

1.     如图在⊿abc中,∠a=30°,tanb= ,ac=2 ,求ab

锐角三角函数课件 篇4

本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方位角建立联系,解决问题。本章是中考必考的知识点,特别是特殊角的三角函数值,一定要熟记。本节课虽考虑到本班学生自从分班以后,学习氛围不浓,而基础又较差,因而必须将难度降低想办法调动学生的学习积极性;但在引入时,既用了直角三角形在数学中的重要地位,用:“黑夜给了我一个黑色的眼睛,我用它来寻找光明”类比数学中的“上帝给了我一双黑色的眼睛,我用它来寻找直角三角形”说明寻找直角三角形对解决数学问题的重要性;然后又引入用学生最近反应学习苦,学习累和不爱护公共财物的情况,从引入课桌要到了到其他贫困地区孩子午休谁桌子下的情况引入爱护公共财物,今儿从而引出本节课相关的知识。虽然大家都在说这节课的亮点就是将德育与数学知识结合起来,注重学科之间的联系。但我始终觉得这样的结合不免显得优点牵强,下来我将在思考如何让本节课的引入与内容结合得更好。

还有一个问题就是我在设计教学时,想到学生函数的基础不好,很怕函数,没有考虑到和函数的定义联系起来,而学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。

锐角三角函数课件 篇5

本学期我上了一堂锐角三角函数的复习课,按照考纲锐角三角函数难度应该不是很大,自己在了解学生的学情情况下,从锐角三角比的定义、特殊角三角函数值、会解直角三角形等几个方面来着手复习;为了巩固学生对特殊角的三角函数值掌握,给出了一个表格让学生回答30°,45°,60°角的三角函数值,其实可能还有很多学生都没有巩固,集体回答也可能就是走了一下形式罢了,如果当时采用作业的`形式课前发给学生做练习,效果可能会截然不同。

上复习课时所取的题目还是过多,内容也太多,让复习课成为练习课,复习的时候没有注意到知识的综合运用,对于一个问题没有讲精讲透。如这堂复习课我准备了3题解直角三角形,又准备了3题构造直角三角形解决数学问题,最后还拿了一题生活应用题,感觉还是以做题目来达到复习的目的。

在分析题目时候还是以老师讲为主,没有给予学生足够的思考时间,拿到题目后,就帮助学生分析题目,让学生的思路朝自己预设的方向发展。而且对于这样的一个实际问题,拿出问题后就给学生画好图,这样降低了学生解题的难度,可是将一个实际问题转化为数学问题往往是学生的难点。此题应该让学生自己动手将题目中的已知条件转化为数学问题。

最后就是做为一个教初三的老师,上课时候总喜欢面面俱到,生怕自己讲得太少,讲得不够到位。拿到题目都是急着替学生分析,这样会使学生思路狭隘,甚至平时不愿意去自己分析。所以以后我会试着改变自己的教学方式,多让学生讲,让学生自己讲怎样把题目分解,找到突破口。教学中我也会注意不要为了完成自己的教学任务而忽略学生,我会更加注重分析学生学情,备好学生和教材,让每一节课都能让每个学生有收获,还要注重课堂的气氛,给学生营造一个舒适的学习环境,让学生喜欢数学,愿意认真投入的学。

锐角三角函数课件 篇6

教学目标:

1、使同学体会三种角的特点,会识别直角、钝角、锐角,能够尺子画角。

2、渗透比较角的大小的方法,能在生活中找出三种角。

3、培养同学的动手操作,交流探索的能力。

教学重难点:

通过与直角比较识别锐角和钝角。

1、老师穿西服(很多角)出现在课堂上,今天老师带了一个我们以前学过的数学知识来到教室里,这个老朋友就在老师的衣服上,请你仔细观察。

1、让同学说说角是由哪些局部组成的,都有些什么特点。

1、请同学观察主题图。说说你看到了什么?有角吗?说说在哪里。

2、除了我们认识过的过的直角,还有什么些什么样子的角?

1、请你用身体来表示出这些角来。

2、用三角板的直角比较一下主题图上这些角,你发现可以把图上的这些分分成几类?

3、这些比直角要小的角书上把它们叫作什么角?比直角要大的这些角叫什么角?

4、那你能用纸折出锐角吗?你怎么知你折的角就是锐角?让同学边比边说。

6、找出生活中的三种角。

1、动手试画,说说你是怎么样画角的。要注意什么。

2、根据老师的要求画角。

五、完成39页第2题。

六、用三角板拼出钝角,看谁拼的多。

锐角三角函数课件 篇7

本节课王老师针对中考要求、中考体型,对锐角三角函数作了系统的复习。从特殊角三角函数和单一的锐角三角函数到新体型与综合性较强的体型,都配有相应的练习与思考。在教学中,教师以指导为主,学生能积极的参与到学习活动中。题量大,内容广,而学生的能力显示也很强,从中可以看出学生在这方面的基础相当扎实,本节课多媒体体现了很大的优点。

纵贯全过程,这么大的体量及体型,也只有象三(2)班这样的班级才能实施,王老师抓住了班级实际情况,因材施教。从目前中考来看,好象难度没有这么大,略显过难。对于有些题还有多种解法,为让学生充分发挥,涉及实际应用的问题也没有设置,有点赶时间的感觉。

这节课针对以中考考纲中“三角函数”的内容、要求为基础,突出考题热点的形式。细仔地考虑了从基本概念、基础知识、技巧技能方面入手,列举了学生难以理解及易出错的题型(应用练习中确定值的范围)和近几年对“三角函数”这一节以开放题的形式出现的例题。把新旧知识融为一体,通过数形结合方法使学生从感性认识进一步到理性认识,对知识的重点和难点有进一步的突破。

本节课还体现了以“教为主导,学为主体”和“认识过程”的两个原则,引导学生积极参与教学活动的意识,让学生成为教学的主体。达到发展学生个性的目的;通过问题的情境设计――探索――应用,让学生经历认知过程,学生学科能力。这也是符合学生的心理特点。课堂气氛活跃,老师通过启发、点拨、纠偏等方法,调动学生的创造和发散思维能力。能运用多媒体辅助教学,增强课堂容量,提高效益。

本人认为这一节课不论从设计(过程、例题选择)、教学(教法、学法)以及学生所掌握的知识等方面分析评价是成功的。

有几点与王老师共商:

在应用练习中确定值范围是否可结合三角函数表的变化规律来选择;

说明siaα+cosα>1时,直接用定义更简单;

(3)已知tana=2,则sina-cosasina+cosa 的值为 。可用多种方法开拓学生思路。

中考复习的第一轮以基础知识的复习、基本技能的训练为主,王老师从锐角三角函数的定义、同角(余角)三角函数关系、特殊角三角函数值展开知识点的复习,然后紧跟教学大纲,选择了几个典型例题,检查所学知识点的好与坏,而后根据中考新趋势,选择了几题新题型,开拓学生的知识面,丰富了学生的题型结构。

1、几个典型例题的选择,紧紧围绕知识点的应用,并且向学生进行了一题多种解法思想的渗透,这样活跃了学生的思维,丰富了学生的知识内涵。

2、阅读理解题的布置符合中考的新形势,要求学生灵活应用知识点,培养学生的创新意识,同时可以检验学生驾驭学生知识的能力。

3、例题的选择合理、新颖且有难度,即有常见的基本计算与证明,也有一定难度的探索型、操作型问题,更有对于知识点综合应用的综合题,层次鲜明,满足了不同奋斗目标学生的不同要求。

4、缺少在课堂上检查学生对于所学知识的掌握和理解程度,可以适当的请学生来叙述和板演。

锐角三角函数课件 篇8

教学反思:

锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。

在今后教学过程中,自己还要多注意以下两点:

(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的.注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。

GZ85.com延伸阅读

最新解直角三角形课件(汇编10篇)


在教学过程中,老师的首要任务是准备好教案和课件。撰写教案和课件是每位老师都必须做的事情。教案是促进学生全面素质提升的有效方法,那么什么样的教案才算是好的课件呢?为了让您更好地了解“解直角三角形课件”,我们的编辑对相关信息进行了系统整理。如果您想了解更多相关的信息,请务必访问我们的网站!

解直角三角形课件 篇1

课本116页练习题的第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)

目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。

(四)课堂小结

让学生自己小结这节课的收获,教师补充、纠正。

1、“解直角三角形”是求出直角三角形的所有元素。

2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。

3、解直角三角形的方法:

(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);

(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;

(3)已知一个锐角求另一个锐角时,用两锐角互余。

目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。

(五)学生作业(此环节用时约6分钟)

课本120页习题4、3A组第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。

四、教学评价

《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。

解直角三角形课件 篇2

教学目标:

1.认识和辨别锐角三角形、直角三角形和钝角三角形。

2.知道三角形可以按角分为锐角三角形、直角三角形和钝角三角形。

3.通过操作、观察、比较、分类等数学活动培养学生主动探究数学知识的意识。

4.在活动中培养小组合作的意识,学习用自己的语言表达数学概念的本领。

教学重点:

能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。

教学难点:

辨别锐角三角形、钝角三角形和直角三角形。

教学准备:

多媒体、三角尺、彩纸、卡纸、记号笔。

教学过程:

一、复习引入阶段

(1)师:指出下面各是什么角?角有什么共同的特征?(一个顶点和两条直边)

(2)我们已经学习过了线段和角,如果把角的两条边看作线段,把角的两个端点连起来会出现什么图形?(三角形)那你能告诉老师,这些在三角形里的角分别是什么角吗?(PPT边演示,边提问)

(3)同学们说得真不错,今天我们就一起进一步学习研究三角形。(板书课题:三角形)

二、探究阶段

(1)老师请你们动手在小卡片上任意的画一个三角形,画完后标一标你画的那个三角形内的每个角分别是什么角。

(2)老师请同学上来展示一下他画的作品。

(3)观察黑板上你们画的三角形,想一想,是不是可以把它们分分类呢?可以怎么分?(小组内讨论一下)

(4)师:请一个学生代表上台汇报他们小组的发现和讨论出的分类结果。

设疑:这样的分类能把我们所画的三角形全分完吗?有没有第四类?看看你手中画的三角形,有没有不属于这三类中的任何一类?有没有两处都可以放的三角形?如果没有,请几位同学也将自己画的三角形展示在黑板上,并归类,你能找到相应的位置吗?

(5)就像我们的同学都有自己的名字一样,你能给每一类的三角形取一个名字吗?理由?(直角是这类三角形与其它两类三角形的主要特征)你能给其余两类三角形取个名字吗?名字可以任意取,但是要求取的名字要能反映出该类三角形的主要特征。(锐角三角形、钝角三角形)

(6)补充课题。锐角三角形、直角三角形、钝角三角形

(7)定义

师:那谁能根据我们前面分类时的标准尝试着定义什么是锐角三角形、直角三角形和钝角三角形呢?

板书:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。

(8)小结

刚才我们通过观察、比较发现了三角形的形状、大小虽然各不相同,但是根据三角形角的特征只能将其分成锐角三角形,直角三角形和钝角三角形这三种。

(9)三角形的关系

我们可以用集合图表示这三种三角形之间的关系。把所有三角形看做一个整体,用一个圆圈表示,好像是一个大家庭;因为三角形按角来分可以分成三类,那就好像是包含三个小家庭。(边说边把集合图展示在黑板上)每种三角形就是整体的一部分,反过来说,这三种三角形正好组成了所有的三角形。

(10)判断三角形(ppt):生活中的三角形

(11)开放性练习:

①游戏:如果只让你看到三角形中的一个角,你能迅速判断出它是什么三角形吗?这些可能是什么三角形?

(老师手拿小信封,遮去部分,露一个角)

结果:(1)一个直角直角三角形

(2)一个钝角钝角三角形

(3)一个锐角(三种都可能)

师小结:我们在判断时不能盲目的去猜,而应运用概念去思考,以作出正确的判断。

②出示一个直角梯形,只允许剪一刀,你能剪成两个什么样的三角形呢?请你动手折一折。

学生动手操作尝试,老师媒体演示。

三、全课总结,谈收获。

你今天这节课有什么收获?

解直角三角形课件 篇3

一、教学目标

(一)知识教学点

使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.

(二)能力训练点

通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.

(三)德育渗透点

渗透数形结合的数学思想,培养学生良好的学习习惯.

二、教学重点、难点和疑点

1.重点:直角三角形的解法.

2.难点:三角函数在解直角三角形中的灵活运用.

3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.

三、教学过程

(一)明确目标

1.在三角形中共有几个元素?

2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?

(1)边角之间关系

如果用表示直角三角形的一个锐角,那上述式子就可以写成.

(2)三边之间关系

a2+b2=c2(勾股定理)

(3)锐角之间关系∠A+∠B=90°.

以上三点正是解直角三角形的依据,通过复习,使学生便于应用.

(二)整体感知

教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.

(三)重点、难点的学习与目标完成过程

1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).

3.例题

例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好

完成之后引导学生小结“已知一边一角,如何解直角三角形?”

答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.

例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.

在学生独立完成之后,选出最好方法,教师板书.

4.巩固练习

解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.

说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.

(四)总结与扩展

1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.

2.出示图表,请学生完成

abcAB

1√√

2√√

3√b=acotA√

4√b=atanB√

5√√

6a=btanA√√

7a=bcotB√√

8a=csinAb=ccosA√√

9a=ccosBb=csinB√√

10不可求不可求不可求√√

注:上表中“√”表示已知。

四、布置作业

解直角三角形课件 篇4

一、教材分析

(一)、教材的地位与作用

本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的'对学生进行这方面的能力培养。

(二)教学重点

本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。

(三)、教学难点

由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。

(四)、教学目标分析

1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。

2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。

3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。

二、教法设计与学法指导

(一)、教法分析

本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。

教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。

(二)、学法分析

通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。

学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。

(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。

三、教学过程设计

本节课我将围绕复习导入、探究新知、巩固练习、课堂小结、学生作业这五个环节展开我的教学,具体步骤是:

(一)复习导入

师:前面的课时中,我们学习了直角三角形的边角关系,下面老师来看看大家掌握得怎样?

1、直角三角形三边之间的关系?(a2+b2=c2,勾股定理)

2、直角三角形两锐角之间的关系?(∠A+∠B=900)

3、直角三角形的边和锐角之间的关系?

生:学生回忆旧知,逐一回答。

目的:温故而知新,使学生能用直角三角形的边角关系去解直角三角形。

师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的实际问题了,这节课我们学习“解直角三角形及其应用”,此环节用时约5分钟。

(二)探究新知

在这一环节中,我分如下三步进行教学,第一步:例题引入新课,得出解直角三角形的概念。

例1(课件展示)、如图,一棵大树在一次强烈的地震中于离地面10米折断倒下,树顶在离树根24米处,大树在折断之前高多少?

师:a或c还可以用哪种方法求?

生:学生讨论得出方法,分析比较,从而得出——使用题目中原有的条件,可使结果更精确。

师:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?

生:学生讨论分析,得出结论。

目的:使学生体会到(课件展示)“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”,此步骤用时约10分钟。

第三步:师生共同总结出解直角三角形的条件及类型。

师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?

生:学生交流讨论归纳(课件展示):解直角三角形,只有下面两种情况:

(1)已知两条边;

(2)已知一条边和一个锐角。

目的:培养学生善总结,会总结的习惯和方法,使不同层次的学生得到不同的发展,此步骤用时约3分钟。

(三)课堂练习:

课本116页练习题的第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠B=53046’,b=3cm,求∠A、a、c(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,a=5.82cm,c=9.60cm,求b、∠A、∠B(角度精确到1’,长度精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,∠A=38012’,c=15.68cm,求∠B、a、b(精确到0.01cm)

目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。

(四)课堂小结

让学生自己小结这节课的收获,教师补充、纠正。

1、“解直角三角形”是求出直角三角形的所有元素。

2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。

3、解直角三角形的方法:

(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);

(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;

(3)已知一个锐角求另一个锐角时,用两锐角互余。

目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。

(五)学生作业(此环节用时约6分钟)

课本120页习题4、3A组第1、2、3题。

1、在Rt△ABC中,∠C=90°,∠A=28032’,c=7.92cm,求∠B(精确到1’),a、b(精确到0.01cm)。

2、在Rt△ABC中,∠C=90°,∠B=46054’,a=12.36cm,求∠A(精确到1’),b、c(精确到0.01cm)。

3、在Rt△ABC中,∠C=90°,a=3.68cm,b=5.24cm,求c(精确到0、01cm)以及∠A、∠B(精确到1’)。

四、教学评价

《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。

解直角三角形课件 篇5

一、教材分析

(一)教材地位

直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用、《解直角三角形的应用》是第28章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。

(二)教学目标

这节课,我说面对的是初三学生,从人的认知规律看,他们已经具有初步的探究能力和逻辑思维能力。但直角三角形的应用题型较多,他们对建立直角三角形模型上可能会有困难。针对上述学生情况,确定本节课的教学目标如下:

1、通过观察、交流等活动,会建立直角三角形模型。

2、经历解直角三角形中作高的过程,懂得解直角三角形的三种基本模型,进一步渗透数形结合思想、方程思想、转化(化归)思想,激发学生的学习兴趣。

(三)重点难点

1、重点:熟练运用有关三角函数知识。

2、难点:如何添作辅助线解决实际问题。

二、教法学法

1、教法:采用“研究体验式”创新教学法,这其实是“学程导航”模式下的一种教法,主要是教给学生一种学习方法,使他们学会自己主动探索知识并发现规律。

2、学法:主要是发挥学生的主观能动性。学生在课前做好预习作业,课堂上则要积极参与讨论,课后根据老师布置的课外作业进行巩固和迁移。

三、教学程序

(一)准备阶段

我主要的准备工作是备好课,在上课前一天布置学生做好预习作业。

预习作业:

1、如图,Rt⊿ABC中,你知道∠A的哪几种锐角三角函数?能给出定义吗?

2、填表:锐角α三角函数

3、已知:从热气球A看一栋高楼顶部的仰角α为300,看这栋高楼底部的俯角β为600,若热气球与高楼的水平距离为m,求这栋高楼有多高?

4、如图:AB=200m,在A处测得点C在北偏西300的方向上,在B处测得点C在北偏西600的方向上,你能求出C到AB的距离吗?

5、如图:梯形ABCD中,BC∥AD,AB=13,且tan∠BAE=,求BE的长。

(二)课堂教学过程

1、预习作业的交流

小组交流预习作业并由学生代表展示。

2、新知探究

(1)教师出示问题

1、如图:要在木里县某林场东西方向的两地之间修一条公路MN。已知点C周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东450方向上,从A向东走600米到达B处,测得C在点B的北偏西600方向上。问:MN是否穿过原始森林保护区?为什么?

追问:你还能求出其他问题吗?若提不出问题,可给出问题:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?

(2)出示问题

2、如图,一艘轮船以每小时20千米的速度沿正北方向航行,在A处测得灯塔C在北偏西300方向,航行2小时后到达B处,在B处测得灯塔C在北偏西600方向。当轮船到达灯塔C的正东方向D处时,求此时轮船与灯塔C的距离(结果保留根号)。

追问:如果改变若干条件,你能设计出其他问题吗?

(3)出示问题

3、气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得OB=km,台风中心从B点以40km/h的速度向正北方向移动。经5h后到达海面上的点C处,因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动。以O为原点建立如图所示的直角坐标系。

如:(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为(结果保留根号)。

(2)已知距台风中心20km的范围内均会受到台风的侵袭。如果某城市(设为点A)位于O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?

3、巩固练习

飞机在高空中的A处测得地面C的俯角为450,水平飞行2km,再测其俯角为300,求飞机飞行的高度。(精确到0.1km,参考数据:1.73)

4、课堂小结

请学生围绕下列问题进行反思总结:

(1)解直角三角形有哪些基本模型?

(2)本节课涉及到哪些数学思想?

(3)你觉得如何解直角三角形的实际问题?

5、布置作业

复习第29章《投影与视图》具体见试卷

6、课堂检测

1、如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离。

2、如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO。

3、如图所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4m,背水坡AB的坡度是1︰1,迎水坡CD的坡度1︰1.5,求坝底宽BC。

四、设计思路

本节课通过预习作业中3、4、5三个问题,引出了解直角三角形的三种基本模型,说明了解直角三角形应用的广泛性,从而体现了学习直角三角形应用知识的必要性。教学中坚持以学生为主体,注重所学内容与现实生活的联系,注重使学生经历观察、交流等探索过程。并通过追问与设计问题的形式,让学生解直角三角形的任务中发现了新问题,并让学生带着问题探索、交流,在思考中产生新认识,获得新的提高。在突破难点的同时培养学生勤于思考,勇于探索的精神,增加学生的学习兴趣和享受成功的喜悦。

解直角三角形课件 篇6

一、 教材简析:

本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。

同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。

二、教学目的、重点、难点:

教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。

重点:1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。

2、正确选择边与角的关系以简便的解法解直角三角形

难点:把实际问题转化为数学问题。

学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。

三、教学目标:

1、知识目标:

(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。

(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、

45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。

(3)运用三角函数解决与直角三角形有关的简单的实际问题。

(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、

2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。

3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.

四、、教法与学法

1、教法的设计理念

根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。

2、学法

学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。

解直角三角形课件 篇7

2 .5  风  炭宝宝竹炭――呵护您的健康 教学目标 1、了解风是怎样形成的 2、知道风向、风速的表示方法和度量单位 3、学会用风向标、风速仪测定风向和风速的方法 4、了解风对人类活动和动物行为的影响 重点难点分析  重点:风的观测 难点:风的形成;目测风向、风速 教学过程 ◇视频片段《赤壁之战》引入课题《追寻风的足迹》。 演示并思考】把充满气体的气球充气口松开,会感到气球内的空气一涌而出,这是为什么? 一、风 1、风是空气的水平运动。 风是从高气压区流向低气压区的。 2、风的两个基本要素:风向和风速 1)风向是指风吹来的方向。 天气观测和预报中常使用8种风向。 表示方法:用一短线段表示。 用纸飞机测风向 【为什么做】 风向和风速是测量风的两个基本要素。观测风向的仪器叫风向标,由箭头、水平杆和尾翼三部分组成。那么风向标是怎样指示风向的呢?风向是由风向标箭头的方向来指示,还是由箭尾的方向来指示呢?风向又是怎么规定的呢?就让我们用纸飞机测风向这个简单的模拟实验来解决吧! 【怎样做】 折一纸飞机,中间用铅笔穿过(要让纸飞机能在铅笔上轻松转动)。用手握住铅笔,将纸飞机放在开启的电风扇前,观察纸飞机的机头和尾翼的指向。注意:此时人要站在纸飞机的后方。并借助指南针判断风向。 【学到了什么】 通过实验,使我们对风和风向有了一个直观的认识:纸飞机的箭头指向风来自的方向。同理,在气象观测中,风向是由风向标的箭头指向的。 同时也使我们明白:实验可以使我们更简洁明了地了解事物,也培养了我们的观察能力。 【进一步的研究】 (1)用纸飞机测风向的实验使你明白了风向标指示风向的事实。你是否在想:这是运用了什么原理呢?为什么风向标会有一定的指向呢?下面的文字,会帮助你有一个了解。 风向标是一种应用最广泛的测量风向仪器的主要部件。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。 地面风指离地平面10─12 米高的风。风的来向为风向,一般用十六方位或360°表示。以360°表示时,由北起按顺时针方向度量。 (2)你知道了风向的`测量方法,一定很想知道风速大小的测量方法。其实你也可以用简单的模拟实验来测量风速。请认真阅读下面的文字,你就会用生活中常见的小风车(参见三维风车式风速仪)或风压板来简单比较风速的大小了,动手试一试。 风向:指风吹来的  方向  ;天气观测和预报中常使用8种风向,即:东、南、西、北、东北、西北、东南、西南(图2―10)。 符号  代表东风。 (2)风速:指单位时间里空气在水平方向上移动的距离,其单位是:米/秒、千米/时或海里/小时表示。 测试风速的仪器叫风速计,它利用风杯在风作用下的旋转速度来测量风速。 风速仪有以下几种:①风杯风速表②桨叶式风速表③热力式风速表。 风速常用风级表示。 【阅读】各风级的名称、风速和目测结果 (3)风对人类的生活有很大的影响,有些动物的行为也和风有关。 【小结】  

解直角三角形课件 篇8

一、教学目标

(一)知识教学点

巩固用三角函数有关知识解决问题,学会解决坡度问题。

(二)能力目标

逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。

(三)德育目标

培养学生用数学的意识,渗透理论联系实际的观点。

二、教学重点、难点和疑点

1.重点:解决有关坡度的实际问题。

2.难点:理解坡度的有关术语。

3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视。

三、教学过程

1.创设情境,导入新课。

例 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图

水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i 1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。

同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚。这时,教师应根据学生想学的心情,及时点拨。

通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决。但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义。

解直角三角形课件 篇9

1教学目标

(一)知识目标

1、使学生理解直角三角形中五个元素的关系,及什么是解直角三角形;2、会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.

(二)能力训练点

1、通过综合运用勾股定理,直角三角形的两个锐角互余及边角之间的关系解直角三角形,逐步培养学生分析问题、解决问题的能力;2通过数行结合的运用,培养学生添加适当辅助线的能力。

(三)情感目标

渗透数形结合的数学思想,培养学生学以致用的良好的学习习惯.

2学情分析

九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养。

为实现本节既定的教学目标,根据教材特点和学生实际水平对本节教学采用的基本策略是:

①创设问题情境,激发学生思维的主动性。

②以实际问题为载体,结合简单教具及多媒体提供的图象,引导学生建立数学模型,把实际问题抽象为数学问题。

③把实际问题中提供的条件转化为数学问题中的数量,掌握探索解决问题的思想和方法。

④课堂尽量为学生提供探索、交流的空间,发动学生既独立又合作的愉快的学习。

由于大部分学生的阅读分析能力相对较弱,教学中引导学生讨论、交流,罗列出问题中的所有已知条件、未知条件,探索已知与未知之间的数量关系,进而结合勾股定理、三角函数关系式寻求解决的方案,从而达到解决的目的。

有效的数学学习活动,不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课的例题与练习题的已知、未知都有所不同,合理引导,利用这种“不同”让学生在探究学习中得到提高,获得知识,也是本节课追求的主要目标。

我打算采用“创设情境———自主探究———合作交流———达标训练———反思归纳”的流程来进行本节课的教学。

3重点难点

1.重点:直角三角形的解法.

2.难点:把实际问题抽象为数学问题,建立数学模型;三角函数在解直角三角形中的灵活运用;j解直角三角形时,在已知的两个元素中,为什么至少有一个元素是边.

4教学过程4、1第一学时教学活动活动1【讲授】教学活动

1.我们已经掌握了Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又可启发引导学生思考,为什么两个已知元素中必有一条边呢?从而激发学生的学习、探索热情。

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师让学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).

3.例题评析

例1在Rt△ABC中,∠C为直角,AC= BC=,解这个三角形.

例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 =35,解这个三角形(精确到0、1).

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.

完成之后引导学生小结“已知一边一角,如何解直角三角形?”

答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.

议一议

在直角三角形中,

(1)已知a,b,怎样求∠B的度数?

(2)已知a,c,怎样求∠B的度数?

(3)已知b,c,怎样求∠B的度数?

你能总结一下已知两边解直角三角形的方法吗?与同伴交流。

(三)巩固练习

在△ABC中,∠C为直角,AC=4,BC=4,解此直角三角形。课本74页。

1、找四名学生板演,重视过程的规范性和完整性;2、学生独立完成,教师简评。

解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.

试一试

(四)总结与扩展

引导学生小结:

1、在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.

2、解决问题要结合图形(没有图形时要先画草图)。

解直角三角形课件 篇10

一、说教材

今天我执教的这一课是二年级第二学期第五单元中《锐角、钝角、直角三角形》这一课。

教学目标:

知识与技能目标:知道三角形可以按角分为锐角三角形、钝角三角形和直角三角形以及它们的特征。能辨别锐角三角形、钝角三角形和直角三角形。

过程与方法目标:培养学生观察能力、动手操作能力和合作交流能力。

情感与价值观目标:提高学生对三角形的学习兴趣,感受三角形在生活中无处不在。

教学重点:

能将三角形按角分类,并知道锐角三角形、钝角三角形和直角三角形的特征。

教学难点:

辨别锐角三角形、钝角三角形和直角三角形。

二、说教学过程

这节课由引入、新授、练习和总结四部分组成。

首先是从生活中引入三角形,让学生介绍和观察一些生活中的三角形,感受到三角形在生活中无处不在,以此引出课题。新授部分主要是由以下几个环节构成。

第一个环节通过学生动手操作来判断教师给出的6个三角形的三个角分别是什么角,并填写表格。这里不仅要学生把表格填写完整,还要学生总结出判断一个角是什么角的方法,首先用眼睛观察,如果明显比直角大或比直角小的就马上能够判断了,如果跟直角很接近或者拿不定主意的时候才要用直角量具去验证。填写表格不单单是记录数据,更重要的是让学生数形结合对锐角、钝角和直角三角形初步有所感知。

第二个环节是让学生通过观察刚才填写的表格来发现其中的规律,总结出这6个三角形中,每个三角形至少有2个锐角,最多有一个直角,最多有一个钝角。并且让学生通过验证自己带来的三角形,得出所有的三角形都有这样的特点。

第三个环节是根据刚才找到的三角形的角的特点,来给三角形分类。并且总结出三角形按角分类可以分成锐角、钝角和直角三角形三类。然后通过学生对刚才自己带来的三角形和老师出示的三角形进行判断,巩固三类三角形的定义,并总结出判断三角形属于什么三角形的方法。

第四个环节就是通过三角板和三角尺的比较,和改变三角板摆放的位置,让学生发现判断一个三角形是什么三角形只跟三角形角的特点有关,跟三角形的大小和它摆放的位置没有关系。最后的练习部分有两个练习,第一个练习是给出三角形的一个角让学生判断是什么三角形。给出一个直角和一个钝角时学生很容易就判断出来,但是给出一个锐角的时候,由于前面学习的负迁移,学生很容易脱口而出是锐角三角形,然后通过实际的演示、谜底的揭晓,让学生认识到判断一个三角形是锐角三角形必须要知道三个角都是锐角才行,给出一个锐角是不能判断它是什么三角形的。第二个练习其实是这节课的一个综合运用,学生不仅是要知道判断一个三角形是什么三角形的方法,还要以最快的速度来判断,也就是一开始讲的,明显比直角大或者小的角用眼睛就可以判断,比较像直角或者拿不定主意的时候一定要用直角量具去测量。最后总结的时候,还让学生把今天学到的知识跟自己的实际生活联系起来,整个一堂课从生活中提炼出数学知识,再把数学知识回归到生活中去。

线与角课件汇编


资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。在学习工作中,我们有可能会使用到资料。参考资料会让未来的学习或者工作做得更好!可是,我们的资料具体又有哪些内容呢?推荐你看看以下的线与角课件汇编,希望你更多关注本网站更新。

线与角课件 篇1

我说课的内容是人教课标实验版三年级下册第五单元《长方形与正方形面积的计算》,下面我将围绕学什么?怎么学,为什么这么学,从教材分析、学情分析、教学方法与教学过程四个方面来进行说课。

本课时内容属于图形与几何领域的内容,这个领域的内容贯穿与整个小学阶段,它的内容设置是由整体到局部再到整体,由简单到复杂,有一维到三维,再此之前,学生已经学习了长方形与正方形的特征,知道了面积的含义,初步认识面积单位和学会用面积单位直接量面积的基础上进行教学的。三年级学生也具备了一定的观察、操作、分析、抽象、概括等语言表达的能力,为本节课的学习定了了知识基础与活动经验基础,因此我认为学好本节课内容是可行的。

教材呈现第一部分是探究长是5厘米宽3厘米的长方形的面积,旨在通过学生动手操作摆一摆,得出长方形面积等于长乘宽,然后猜测长方形的面积计算方法,然后呈现小组合作摆自己喜欢的长方形,在大量的素材中发现验证长方形面积的计算方法,最后呈现的是量一量算一算巩固长方形的面积同时引出正方形面积的计算方法。课程标准对这一单元的要求是:通过动手操作探究长方形与正方形面积的计算方形,并会用面积公式解决生活的实际问题。

根据教材的特点、学生的认知规律和课程标准的要求,我设置了如下的教学目标:

1、掌握长方形、正方形的面积计算公式,并能解决一些简单的实际问题。

2、学生经历自己动手摆、动脑想和动口说等过程,掌握长方形、正方形面积计算公式的发现过程。发展空间观念。

3、使学生认识到数学与实际生活是密切联系的,培养学生热爱生活、热爱数学的情感。

教学重点:

掌握长方形、正方形面积的计算方法。

教学难点:

理解长方形面积计算公式的推导过程。

教具、学具准备:

课件、小正方形、操作表、方格纸

一、复习铺垫

1、猜猜老师的信封里面是一个怎样的图形?(这个图形的面积是4平方分米)

预设:长方形、正方形、不规则的图形

(1)学生猜一猜,教师贴上相应的图片。

(2)质疑:为什么形状不同,面积却相同?

(3)小结,面积单位测量图形面积的实质。

2、常用的面积单位有哪些呢?

3、导入新课《长方形与正方形面积的计算》

(设计意图:让学生猜一猜,发展学生的想象能力,同时使学生明确面积测量的实质,为下一个步骤奠定。)

二、探究新知

(一)初步感知

1、(出示一个15平方厘米的长方形纸片,再出示一个一平方厘米的小正方形)师:同学们能估计一下这个长方形的面积是多少吗?

(1)学生估一估

(2)教师出示课件摆的动画,学生说出长方形的面积。(要引导学生说出思考的过程。)

预设:一个个的数一行摆了5个,有这样的3行。

(设计意图:在估一估,数一数的活动中,发展学生的估测能力,同时使学生初步感知长方形的面积就用每行的个数×行数。)

(3)继续观察,你还能发现长方形的什么信息?(长方形的长是5厘米,与宽是3厘米,引导说出为什么,因为一行摆5个一平方厘米的小正方形,一个的边长是1平方厘米,五个的边长就是5厘米。)

(4)你还发现了什么?(还发现这个长方形的面积等于长乘宽)

(5)质疑:是不是所有长方形的面积都等于长乘宽呢?

(设计意图)学生在观察中发现了长方形面积与长的关系,初步感知长方形面积的计算方法,以此引出猜想,引出下一步的学习。

(二)小组合作,验证猜想

1、课件出示PPT,出示一个方格纸,并动态出示一个长方形,并说这是老师在方格纸中画出的自己喜欢的长方形,这个长方形的面积是多少?长是多少?宽是多少?并将数据填在黑板上的表格中。

2、设计意图(为学生做在方格纸中画自己喜欢的长方形做示范,同时使学生明确自己除了画一个长方形,还需要干什么?)

2、每位同学在方格纸中圈出一个自己喜欢的长方形,并得出图形的面积、长、宽。

3、将自己的的长方形相关信息填写汇报老师并记录在黑板上的表格中。

4、小组讨论,观察表格你有什么发现?(观察大量的素材,发现长方形的面积的确等于长×宽)

5、出示PPT课件,长方形长是6厘米。宽4厘米,在头脑中摆一摆,并说一说?

6、为什么长方形的面积=长×宽

长相当于每行摆的个数

宽相当于摆的行数

所以长×宽=长方形的面积

7、教师追问:求长方形面积必须知道长方形的哪几个条件?

8、继续观察黑板上的表格,你还有什么新的发现?

发现正方形的面积=边长×边长

[设计意图:让同学们利用手中的方格纸圈一圈你最喜欢的长方形或正方形,激发学生的兴趣。每人一个长方形,在大量的素材中验证了长方形的面积计算方法,同时知其然而知其所以然,为什么呢?在学生思考的过程过你发现算理。]

三、巩固练习

1、口答

1、做一做:先量一量,再计算它们发的面积。

(1)独立完成,你有什么新的发现。

(2)归纳小结:正方形的面积=边长×边长。

2、竞赛能手

(1)门面长2米,宽1米,它的面积是()。

(2)黑板长3米,宽1米,它的面积是()。

(3)一块正方形手帕的边长是20厘米,它的面积是()。

3、猜一猜,老师的信封里面的长方形面积是16平方厘米,能猜出这个长方形是一个怎样的长方形吗?(培养学生的逆推能力,同学学生还发现面积相等的长方形,形状不一定相等,形状越是接近正方形周长就越小)

设计意图:练习是学生掌握知识,形成技能,发展智力的有效途径,因此我设计了三个练习,第一个练习是为了让学生掌握本节课的教学重点,第二个知识点为了让学生应用新知解决生活中的实际问题,第三个练习培养学生的逆推能力,同时培养学生认真观察并思考的良好习惯。接着得出本节课的衍生点:周长相等的长方形,面积会相等吗?

四、课堂总结

今天你学会了什么?把收获讲给大家听。

设计意图:通过回顾反思,回顾本节课的主要知识与技能,将点状的知识形成面,连成体,在这合格过程中积累数学的学习活动经验。

五、布置作业

量一量数学课本封面与你家客厅的长与宽,并分别计算它们的面积(测量长与宽的时候都取整厘米数或者整米数。)

六、板书设计

长方形、正方形面积的计算

长方形的面积=长×宽

正方形的面积=边长×边长

板书是课堂的另一种的表现形式,它是课堂教学的眼睛与灵魂,好的板书设计让人一目了然。我这样的板书设计突出了教学重点与教学难点。

以上就是我对本节课的预设,当然课堂是一个动态生成的过程,我会根据课堂的实际情况进行适当的调整。

线与角课件 篇2

教学目标:

1、学会对周围的事加以评论,明确是非对错。

2、用赞美的眼光看待周围的事物,感受生活的多姿多彩。

3、细心观察生活,发现别人的优点和长处,并能真诚地为别人感到高兴。

4、以自己的'方式表达对别人的赞美。

教学重点:学会发现别人的优点和长处,并能真诚地为别人感到高兴。

教学准备:

1、看图1:在跑步比赛中,一位小朋友虽然跑在最后但仍然坚持到底。

用赞美的眼光看世界,世界会更美。

我认为( 谁)是班级( )小明星,因为( )。

(1)你们想知道他们为什么能成为小明星吗?想和他们进行交流吗?让我们当一回小记者,采访一下他们?

(2)确定采访对象,对起优点进行调查访问。

(3)写好采访提纲,说说可以采访哪些内容?

要详细了解这位同学是如何养成这种习惯和品质的,以便大家有计划的向小明星学习。

3、分组进行采访。

三、访问结果交流会。

1、学生交流自己的采访心得,你发现了那些同学的那些优点。

2、通过采访能主动的向别人学习。

3、学会友好地和他人交往,初步掌握一些与人交往的方法。

1、有特长的小朋友表演节目,展示自己。

2、小观众们用自己喜欢的方式来赞美。

五、课外实践:

采访你最喜欢的老师、家人或邻居,发现他们的优点和长处,用你喜欢的方式来赞美她们。

线与角课件 篇3

六年制语文十册阅读课文《火烧云》,写得生动活泼,刻画景物惟妙惟肖。除了作者仔细观察外,无疑得益于独到的写作方法。

一、着力铺垫;巧设悬念

文章开篇说“火烧云上来了”,但紧接着作者并没有写火烧云,而是描绘霞光。文中用了五个“……变……”的排比句,以及“……照得……”和“……是……”的句子,着力渲染霞光照得人和动物改变了本色,大地万物红彤彤、金灿灿的。这霞光从何而来?原来“火烧云上来了”。这就从侧面为火烧云的露面作了铺垫、强烈渲染,起到了先声夺人的效果。教学这一段时,可采取如下步骤:

1.课文中是写什么时候的火烧云?

2.文章开篇就点题写道“火烧云上来了,但紧接着写的什么?(读读、划划)

3.为什么不直接写火烧云,而要“节外生枝”地去写霞光呢?这样写有什么作用?(想想、议议)首先提出悬念,激发学生求知欲,再通过读、划、思议学习,印象会更深刻。

二、写变无“变”,无“变”显变;动中见静,动静结合

第三自然段写火烧云颜色绚丽多彩、千变万化,文中却不用一个“变”字,以四个“一会儿”构成的排比句式,把火烧云的色彩变化一一描绘出来,景色醉人,气势壮观。用“一会儿”既突出变化之快,又暗示色彩繁多。四个“半”字象四支彩笔将“紫”与“黄”、“灰”与“百合色”均匀揉和为一体,这不仅让我们领会到色彩的层次美,而且能领略到色彩调配的和谐美。最后一句用了两个“……也……”的句式说明还有无数奇妙多变的色彩。可见作者运用语言之精妙,教学时要让学生抓住具体词句去品读体会。

课文四——七自然段写火烧云的形状千姿百态、变幻莫测,却也没有一个“变”字。文中用了三个借喻句,将火烧云如马如狗如狮的形态,生动逼真地表现出来了。“一会儿……模糊了”、“忽然……不见了”、“接着……看不到了”这些词句显示了“马”、“狗”、“狮”来无影、去无踪,变幻莫测的特点;还有“正在……就……”、“跪着”、“跑着跑着”、“蹲着”等词句清楚地表达出火烧云在动中变、在变中动的特点。

作者在对火烧云的动态描写中,也进行了静态刻画。如“一会儿,天空出现了一匹马……”,“马是跪着的……”前者描写动态,后者刻画静态。“过了两三秒钟,那匹马大起来了……”,句中“两三秒钟”显示变化之快,但前加“过了”一词,又说明“跑马”一动不动。这些动态和静态描写,把火烧云的形状多姿和变化万端刻画得入神,读者能在纷至沓来、瞬间万变的形态中,获得清晰、真切、印象深刻的造型,不致于眼花缭乱、不可捉摸,强化了火烧云的形象性和趣味性,增强了文章表现力和感染力。

教学这一部分时,可采取以下步骤:

1.火烧云从上来到下去,有哪些变化?课文中是从哪两方面来写火烧云的变化的?

2.重点写了火烧云的什么变化?(形状)

3.火烧云的色彩有什么变化?

4.火烧云的形状有什么变化?云状变化按什么顺序写的?(一匹马→一条大狗→一头大狮子→什么也不像)

5.说说哪些是火烧云的静态描写?哪些是火烧云的动态描写?重点分析火烧云形状变化里的动态静态描写,体会动态描写和静态描写相结合的作用。

三、结篇自然,耐人寻味

“一会儿工夫,火烧云下去了。”结句嘎然而止,余音萦绕,既照应了课题和篇首,又点明该文是刹那间的实录,同时显示了火烧云变化之神速。末段的两个“象……”和“什么也……”的排比句,留下了似是而非,若有若无,虚实相兼的感觉;拟人句“天空偏偏不等待那些爱好它的孩子”很有情趣,尤其是“偏偏”一词,突出了火烧云似乎故意逗弄孩子,也表达出孩子懊恼悔恨未曾看清的心情和依依不舍、迷恋向往的感情。为了解除孩子这种懊悔的心情,教学时可让学生合拢课文,想象回忆火烧云的景象,以引起强烈的心理共鸣

线与角课件 篇4

一、说教材:

1、单元地位、作用

《再别康桥》是人教版高中语文必修一第一单元第二课的第二首诗歌,是一首现代诗歌,本单元是诗歌单元,主要学习现代新诗,要求在反复朗读的基础上,着重分析诗歌意象,同时品味语言,发挥想象,感受充溢于作品的真情。读诗可以陶冶性情,可以学习用精炼的语言和新颖的意象来表达情意,花季雨季的高中生应该喜欢用诗的语言来表达丰富的情感,学习本单位的新诗一定会激发那些有兴趣的高中生来写写新诗。

2、教学目标、重难点

本课的教学目标有以下三个:

知识目标:品味诗的意象美,领悟诗的意境,体会诗人真情。

能力目标:培养学生鉴赏诗歌的能力。

德育目标:体悟作者情怀,引发共鸣,逐渐养成良好的审美情趣,提高审美能力。

这三个教学目标的设置符合学生的认知规律,即整体感知——局部思维——迁移拓展。根据本单元的教学目标,并结合学生实际,我把领悟诗情、获得情感体验和品析“三美”、感受艺术性设定为本节课的教学重点,难点就在于意象的把握与体味。

二、说教法:

古希腊学者普罗塔戈说过:“头脑不是一个要被填满的容器,而是一束需要被点燃的火把。”为了达到目标、突出重点、突破难点、解决疑点,根据素质教育和创新教育的精神,再结合本篇课文的实际特点,确定本节课教法的指导思想是:激发学生兴趣,引导他们积极思维,热情参与,独立自主地解决问题。具体做法如下:

1、诵读法

《语文教学论》中指出:"朗读是书面语言的有声化,具有移情的作用,能够激发美感,唤起内心视象,感受作品的意境。"叶圣陶先生也提倡过"美读"的方法。在诗歌教学中,诵读应该是重要的一环,反复地诵读作品,在诵读中把握诗的韵味。诵读法既是教法也是学法。象《再别康桥》这样一首意境很美的诗歌,更需要通过诵读去感受诗中的情感、韵味,把握其中的美。

2、情境教学法

(1)《再别康桥》犹如一幅极富美感的图画,教学中可采用情境教学法激励学生们展开丰富的联想和想象,加入自己的感受,使这幅画面立体生动,让学生在具体形象的情境中深深体会这首诗的意境美、诗意美。

(2)用富有文学意韵的语言来组织教学,并借助多媒体课件,帮助学生建立立体可感的视听形象,营造一个充满诗意的课堂教学氛围。

3、点拨法

教师是课堂的主导者,在一个学生自主探究合作的课堂中,教师适度的点拨可引导学生积极思维,促进课堂预设的生成。

三、说学法:

作为高一学生,他们往往对那种纯粹的、原始的、本真的感情体会较肤浅,并且缺乏一定的鉴赏诗歌的能力,常常拿着这样一首诗歌,他们觉得很美,却不知道为什么会有这样的诗意美,无法品味诗歌的意境,所以我将教会学生有感情地朗读并体会诗歌感情作为这节课教学的首要任务。在学法上,我贯彻的指导思想是把“学习的主动权还给学生”,倡导“自主、合作、探究”的学习方式,让学生通过讨论法、朗读法、联想法,动口动脑,培养学生自主获得知识的能力,同时养成良好的朗读习惯。

四、说课堂教学程序

根据教学目标,我采用以下教学步骤:

(一)情感激趣,导入新课

从播放徐志摩的另一首诗《偶然》谱成的曲子导入。

"我是天空里的一片云,/偶尔投影在你的波心——/你不必讶异,/更无须欢喜——/在转瞬间消灭了踪影。/你我相逢在黑夜的海上,/你有你的,我有我的,方向;/你记得也好,/最好你忘掉,/在这交会时互放的光亮!")诗人徐志摩与康桥"偶然""交会",而"这交会时互放的光亮",必将成为他永难忘怀的记忆而长伴人生。让我们与徐志摩一起《再别康桥》(板书课题和作者)

我的导入之所以这样设计是因为音乐能陶冶人的性灵,优美的画面及柔美的音乐可以将学生带入一个淡淡的忧愁的境界。多媒体展示歌词,教师恰当的衔接语,可以激发学生学习的兴趣和欲望,使学生进入到情景之中。

(二)时空链接走近作者

(1)简介徐志摩

(2)关于再别康桥的写作背景

这一环节我先让学生穿越时空与徐志摩展开对话,顺着学生的发问,导出问题,先让学生自行解决,老师归纳。并用幻灯片展示。尽可能将课堂的主动权交给学生。"知人论事"在文学作品类的教学中是必要的。因为对诗人的生活背景、遭遇作适当的介绍,可以帮助学生走进诗人的内心,深入理解诗歌的情感。

(三)诵读涵咏整体感知

(1)学生默读。

(2)个别朗读。

(3)名家范读。〔播放电视剧《人间四月天》中徐志摩的扮演者黄磊在剧中对这首诗的朗诵。让学生找出朗读差距,进一步把握这首诗的朗读情感,同时让学生在朗读过程中扫清字词的`障碍。〕

(4)配乐朗读。〔我为这首诗的朗诵配上《人间四月天》的主题音乐。在缠绵、惆怅而又带有轻灵、飘逸的音乐中,教师进行示范吟诵,注意节奏、轻重、情感,读出音韵美,营造一种梦幻般的感觉。带动学生有感情朗读。〕

(5)学生齐读。

在朗读这一环节中,默读可以让学生把握朗读的节奏、情感,个人读可展示个性,音乐制造了情境,范读激发了美感,齐读引起群体感受,从而体味本诗音乐美的艺术性特点。在"美读"中解决教学重点1领悟诗情,获得情感体验。朗读已为学生们对诗的理解做了铺垫,同时又为下文对诗意的鉴赏蓄势。

(四)激发想象赏景悟情

A、品意象

(1)诗中直接描写康桥的景物的有哪几节?(2、3、4节)

(2)如果把这三节的内容换成三幅画,我们可以选取哪些景?请用自己的语言加以描述。(学生思考,小组交流,推选代表全班交流)

老师要引导学生选好景点,对学生的发言予以充分肯定,尊重学生的独特体验。尤其是运用联想和想象对画面加以具体的描述的学生。这一环节主要根据新课标教学建议"让学生在主动积极的思维和情感活动中,加深理解和体验,有所感悟和思考,受到情感熏陶,获得思想启迪,享受审美乐趣"在此基础上请学生自由朗读这三节诗。

(3)更进一步思考:诗人告别康桥时为什么不选取周围的建筑、那里的人们,而是选取了金柳、柔波、青荇等自然景物?

语文新课程标准积极倡导合作、自主、探究的学习方式,这一段学习从诗歌画面美入手,引导学生体会作者通过意象选择营造的意境,并发挥学生的主动性和创造性营造追求语言美的课堂氛围。学生的主体性和教师的主导作用都得到较好体现。并解决教学重点2赏析诗中的画意美、诗意美。

B、悟真情

步骤:将全诗分为三个版块,分别赏析。抓住诗中意象,赏析重点词语,把握诗人情感变化。

第二、三、节:通过重点赏析"新娘""水草""荡漾""招摇""甘心"等词语,把握诗人情感的变化:由依依惜别时的感伤无奈而陶醉留恋于康河美景。

第四、五节:通过重点赏析"沉淀着彩虹似的梦""寻梦?""放歌""笙箫"夏虫"等词语,体悟诗人情感的发展高潮。

第一、七节:通过重点赏析:三个"轻轻的""悄悄""不带走一片云彩"词语通过比较第一节和第七节,体悟诗人离别母校之时轻柔的叹息般的旋律与依依别情完美地统一在一起。同时感受诗歌的回环之美。

设计意图:这一环节的设计主要依据新课标所要求的"欣赏文学作品,对作品的思想感情倾向,能联系文化背景作出自己的评价""品味作品中富于表现力的语言"但凡读懂了诗的人都会有这样的体验,如果不一句一句地反复咀嚼,只是一路顺畅地读下去,结果什么也得不到。诗歌浓郁的情感、跳跃的形象、凝练的语言,决定诗歌教学的特点:反复朗读细细品味、启发联想、再现形象,其中教师的引导作用是关键。教师的讲与新课标提倡的学生探究性学习有机结合,让思考深入,以求突破本课的难点:意象的把握与体味,也达到了体味诗歌绘画美的目标。

(五)比较阅读,剖析情感

《再别康桥》是一首离别诗,写离别的诗句你知道哪些?试着比较异同。启发学生展开联想,寻找有关诗词名句,扩大课堂的容量。让学生通过对比探究离别之情的不同,体会这首离别诗不落窠臼的高明之处。

(六)综观全诗,发掘诗歌的建筑美

共七节,每节两句,单行和双行错开一格排列,无论从排列上,还是从字数上,都整齐划一,给人以美感。并听配乐朗诵,观看康桥美景。

(课堂教学任务到此基本完成,已经达到了教学的目标,解决了教学的难点、重点)

(七)余音绕梁收束全文

诗人离别康桥时不带走一片云彩,他离开人世时也不带走一片云彩,他走得很匆忙,因为飞机失事,那一年他才35岁。胡适饱含泪水写下《追悼志摩》:"志摩走了,他带走了这个世界上的全部色彩……"

诗人虽然过早地离去,但是他的名字、才气,他的诗情、他的浪漫却留在了人世,他的《再别康桥》成了中国现代诗歌中一颗璀璨的明珠,留给人们无限的遐想与仰慕。

在这种气氛的渲染下,老师与学生齐读《再别康桥》(配《人间四月天》的主题音乐)。在浓浓的诗意中结束对这首诗的学习。留给学生更多的感染,更多的回味。以期实现情感态度与价值观目标。

(八)作业布置:

一节好课的结束应该是学生课外阅读的开始。我布置的课外作业是:朗诵并背诵徐志摩诗歌《沙扬娜拉》。

沙扬娜拉

—————赠日本女郎

徐志摩

最是那一低头的温柔

像一朵水莲花不胜凉风的娇羞,

道一声珍重,道一声珍重,

这一声珍重里有密甜的忧愁——————沙扬娜拉!

(九)评价与反思

《再别康桥》是一首精美的诗,因此,在说课方案中,我确立了朗读—鉴赏——比较这一教学思路,将朗读和鉴赏作为教学的重点,尤其是采用了不同的朗读方式,辅以多媒体教学手段,让学生在朗读中从语言层面理解诗歌的内容,用心去体验诗歌的情感,品味诗歌的语言和音乐美。在教材处理上,摒弃一般的从诗歌的开头讲到结尾的方式,从诗的中间入手,再说开头和结尾,这主要是根据诗的结构特点来确定的。直接抓住康桥的景物描写进行鉴赏,充分欣赏这首诗景中含情,融情于景,亦情亦景、情景交融的意境美。我的说课结束了,因水平有限,有许多不当之处,敬请各位老师批评指正,

谢谢!

线与角课件 篇5

《指南》中明确指出了对科学领域活动的要求:幼儿科学学习的核心是激发探究欲望,培养探究能力。成人要善于发现和保护幼儿的好奇心,充分利用自然和实际生活机会,引导幼儿通过观察、比较、操作、实验等方法,学会发现问题、分析问题和解决问题,帮助幼儿不断积累经验,并运用于新的学习活动,形成受益终身的学习方法和能力。本次活动的设计,为了通过教师示范,幼儿在观察过程中形成制作“跳跳蛙”的直观思维,并且可以通过直接感知,亲身体验和实际操作,最后学会思考和制作“跳跳蛙”的科学学习的活动过程。既可以激发幼儿的.想象力,又可以锻炼幼儿的手脑协调能力。

1.了解弹簧的特性和用途。

2.运用弹簧原理制作跳跳蛙,锻炼动手操作能力。

3.幼儿通过自己动手操作,体验制作跳跳蛙的乐趣。

1.物质准备:

①教具:弹簧一根、跳跳蛙范例一个、两根不同色的纸条、自制纸弹簧小人一个、自制纸弹簧爱心卡一张、背景音乐磁带。

②学具:弹簧、两根不同色的纸条、小青蛙图片人手一份、双面胶。

1.导入活动,激发幼儿探究兴趣。

师:小朋友们,今天老师为大家带来了一件小东西,你们想看吗?(师出示“弹簧”)瞧,这是什么?下面我们就和小弹簧一起来玩游戏。

1.通过玩一玩、说一说、演一演的形式,了解弹簧的特性。

(1)玩一玩小弹簧,让幼儿自由探索弹簧的特性。

压一压小弹簧,它又会怎样呢?

压得轻与重,又会有什么不同呢?

好,请小朋友拿出小弹簧,一起玩一玩。

师小结:小弹簧,真有趣,拉一拉,会弹回去;压一压,会跳起来;压得轻,跳得低;压得重,跳得高;说明它是有弹性的。

(2)说一说生活中有哪些物品里面有弹簧的。

师:在我们的生活中,哪些东西里面也有弹簧的,把你知道的和边上的小朋友说一说。

师:我们生活中有弹簧的东西真多呀,下面,请你也来当一根小弹簧,我当压弹簧的大力士,我压,你蹲,我松手,你跳起,好,卷卷卷,卷成一根小弹簧,小弹簧,真有趣;压一压,跳一跳;压得轻,跳得低;压得重,跳得高,压压压,跳跳跳!

2.根据弹簧特性,制作纸弹簧玩具――跳跳蛙。

(1)出示纸弹簧跳跳蛙,激发制作兴趣。

小弹簧有趣吗?瞧,把谁给吸引来了?(小青蛙)呱呱呱,我是一只跳跳蛙,压一压,跳一跳;压得轻,跳得低;压得重,跳得高。原来这也是一根什么?(弹簧)看用什么做的?他是一根用纸做的纸弹簧。

(2)让幼儿猜测折纸弹簧的方法。

(3)教师示范讲解制作跳跳蛙。

①拆掉一根纸弹簧,引导幼儿观察两根纸条交替折的方法。

②师示范用两根纸条折纸弹簧:两根小纸条,一根横来一根竖,慢慢慢慢,头碰头,边对边,像什么呀?用双面胶帮忙固定,双面胶的外衣脱下后,放在篮子里,保持干净、卫生。

③哪根纸条在下面,下面纸条往上折,边线一定要对齐,两种颜色交替折,一层一层往上折,折到边缘双面胶固定,注意卫生。请出小青蛙,贴在纸弹簧的上面,好了,跳跳蛙做好了。你们想做吗?

玩一玩跳跳蛙。折好的小朋友先玩一玩跳跳蛙,再一起玩一玩:跳跳蛙,真有趣,压一压,跳一跳;压得轻,跳得低;压得重,跳得高,压压压、跳跳跳,看看谁的青蛙跳得高。

(四)活动延伸。

好了,跳跳蛙玩累了,请他在你的大腿上休息一下,看,又有新客人来了,谁呀?纸弹簧小人,纸弹簧爱心卡,什么地方是纸弹簧做的?漂亮吗?纸弹簧还可以做好多好玩的玩具,等会儿我们区域活动时,大家再一起做一做、玩一玩。

在本次教学活动中,教师在用弹簧引出弹力这个话题,让幼儿动手体验,后讨论生活中有什么是弹簧做的,然后幼儿在教师的引导下动手操作制作纸弹簧,跳跳蛙。选这个课题内容主要来源于生活,让幼儿在生活回忆中回想什么是弹簧做的,边回想边表述,也锻炼了幼儿的语言表达能力,在制作中可以激发幼儿的想象力,符合幼儿年龄特点和学习特点。

《纲要》中明确指出:在设计科学活动时要引导幼儿对身边常见事物和现象的特点,变化规律产生兴趣和探究的欲望,并且为幼儿提供丰富可操作的材料,为每个幼儿都能运用多种感官,多种方式进行探索提供活动条件。在活动内容设计中教师引导幼儿来完成跳跳蛙的制作,充分的让幼儿动手操作并且思考。可以在之后的主题活动中可以多运用操作法,观察法等学习方法,让幼儿可以充分的探索,体会活动的乐趣,在活动中手脑并用,在欢乐的学习氛围之下快乐的成长。

三角形内角和课件5篇


教案教具同样是教师职务的一环,因此我们的教师需要严肃看待它。教案也是反映学科研究与学生理智辨析的关键工具。工作总结之家小编为你精选的这篇“三角形内角和课件”文章相信绝对能吸引你的目光,有兴趣的伙伴们可以在此找到自己需要的内容!

三角形内角和课件 篇1

【教材分析】:

新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

【教学目标】

知识与技能

1.理解和掌握三角形的内角和是180度。

2.运用三角形的内角和的知识解决实际问题。

过程与方法

经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。

情感态度与价值观

在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。

【教学重点】

重点:理解和掌握三角形的内角和是180度。

突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。

【教学难点】

用三角形的内角和解决实际问题。

突破方法:推理分析计算。运用推理,正确计算。

教法:质疑

【教学方法】

引导,演示讲解。

学法:实践操作,小组合作。

【教学准备】:

多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。

【教学时间】

一课时

【教学过程】

一.创设情境,引入新课

师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?

生:三类,分别为锐角三角形,直角三角形,钝角三角形。

师:嗯,真好,那么对边的分类呢?

生:俩类,分别为等腰三角形,等边三角形。

师:老师想让同学们帮老师画一个三角形,能做到吗?

生:能。

师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)

师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。

生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。

师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?

生:想。

师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)

(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)

二.探究新知

师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。

生1:锐角三角形。

生2:直角三角形。

生3:钝角三角形。

师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?

生:里面的三个角,可以用角1,角2,角3来表示。

师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?

生:三角形的内角和是180度。

师:那么我们能不能一起用一些好的办法来验证一下呢?

生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。

师:还有其他的办法吗?

生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。

生3:我可以用折的方法,把三个角的度数折在一起。

师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。

(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)

三.总结任意三角形的内角和是180度并做适当练习。

四.板书设计

三角形的内角和

量一量锐角三角形:75度+48度+58度=181度

直角三角形:90度+45度+45度=180度

钝角三角形:120度+38度+22度=180度

拼一拼图形呈现

折一折图形呈现

三角形内角和课件 篇2

教学内容:

人教版《义务教育课程标准试验教科书·数学》四年级下册第85页。例5。

教学目标:

知识与技能目标:让学生亲自动手,通过量、剪、拼等活动,发现、验证三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

过程与方法目标:让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

情感与态度目标:使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点::

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:

验证“三角形内角和是180°”,以及这一知识的灵活运用。

教学过程:

一、开门见山,引入课题

1、课件出示课题。

师:知道我们今天要学习什么内容吗?

学生:三角形的内角和。(板书课题)

2、师拿出自己准备的三角形。谁来指一指这个三角形的内角在哪里?请你指给大家听。

师:什么是三角形的内角和呢?

生:三角形三个角的度数和就是三角形的内角和。

师:那你们知道三角形的内角和是多少度吗?

生:我知道。是180度。

4、师:今天三角形兄弟也来到我们的课堂上。听:他们正在为一个问题争吵呢?

二、创设情境,动画激趣。

三角形兄弟的动画配音。 哥哥:我长得又高又胖,我的三个内角的和肯定比你的大。

弟弟:是这样吗?

学生发表意见后,师:三角形的内角和到底是不是180度,用什么方法可以验证呢?通过今天的学习,我们就可以解决这个问题了。

三、合作探究,动手验证

1、出示例题,读懂要求

活动一、动手操作,初步探究。

例5 画几个不同类型的三角形。量一量、算一算,三角形三个内角的和各是多少度。

师:齐读一遍。问:谁来说说这个题目有几个要求?分别是什么?

为了方便同学们活动时记录和观察。每个小组长手里有这样一个活动记录表。

2、明确分工、合作探究。

师:要想很快的把不同类型的三角形内角和都测量出来。你们准备怎样合理的分工合作呢?

生:我们三人小组可以每人量一种类型。最后把自己量好的数据填在表格内,再算一算这三个角的度数和是多少。

生:我们可以这样合作。两个人量,组长负责记录量的数据。最后我们一起计算每个三角形的三个角一共是多少度。

师:好,下面我们就三人小组合作一起完成这个实验吧。

指明一个小组把实验结果填在大表格内。

老师在巡视的时候,发现有些学生量的度数加起来并不是准确的180度,但是为了凑成180度,就改变了自己量的度数。老师提示学生在实验的过程中要实事求是。)

3、汇报交流,形成初论。

完成后,让这个小组把自己的结果给大家读一读。分开读实验结果。再问其他学生:有不同的结果吗?(可能会出现与180 度比较接近的数)有什么发现?

(发现三角形的内角和是180度。)

教师小结:大家刚才算出的结果有的是180 度,有的不是180度。那么三角形的内角和到底是多少呢?就让我们一起来验证一下。

4、再次验证、得出结论。

1、 活动二:(电子课本)先把一个三角形的三个角剪下来,再拼一拼。看一看,拼成一个什么角。

生读活动要求。

活动步骤:

1、小组长拿出袋子里的三角形,给每位组员发一个。每位同学在小组内说说自己拿到的是什么三角形。

2、师:自己动手试一试吧。

提醒:如果在拼的时候出现困难,可以在课本85页寻求帮助。

3、指明学生把不同类型的三角形的三个角拼在实物投影上。

师问:你发现了什么?

生:发现三角形的三个内角拼成了一个平角,平角就是180度。所以三角形的内角和就是180 度。)(板书结论)

师:还有不同的方法吗?

生:我还可以用折一折的方法。

师:请你给大家演示一下吧。

我们一起看一看课件的演示,课件演示三个角折的过程。

5、师小结:通过刚才的学习,我们理解了三角形的一个重要的特点:三角形的内角和是180度。我们是用什么方法得出这一结论的呢?

生:我们用了动手实验。剪一剪,拼一拼的方法。还有折一折的方法。

6、师:为什么刚才有的同学测量的不是180度呢?

生:测量的时候出现了误差。我觉得拼一拼的方法很好,不易出现误差。

师:那么刚才三角形兄弟的争论,谁说的对呢?

生:我想对三角形哥哥说:不论三角形的大小、什么形状。所有三角形的内角和都是180度。

师:同学们掌握的这么好,一起进行练习。

四、实践运用、巩固内化

1、老师给大家准备了3个礼物盒。课件出示礼物盒的画面。你们想打开哪一个礼物盒呢?

生:打开礼物盒A。

(1)我的三条边相等,我的每个角分别是多少度?

(2)我是直。小组内互相说一说。谁来给大家汇报?

生:第一个三角形是一个等边三角形。等边三角形的三个角是60度。

生:第二个三角形是一个直角三角形,已经知道一个锐角是50度,那么另一个锐角就是40度。

打一个礼物盒的题目被我们轻松解决了。奖励大家一颗智慧型!

师:准备要打开第几个礼物盒呢?

2、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70 °.它的顶角是多少?

读题后,独立写在本子上。

然后指一学生汇报。还有不同意见吗?

师:同学们顺利完成第二个礼物盒的问题。给自己加上一个智慧星吧!我们一起看看第3个礼物盒里有什么样的问题。

3、根据三角形的内角和180°,你能求出下面四边形的内角和吗?五边形呢?

小组之间互相讨论一下该怎么计算呢?

小组交流后。指明汇报。

生:四边形的内角和是360度。因为把四边形分成两个三角形。所以四边的内角和是180°×2=360° 同样道理,五边形可以分成3个三角形,五边形的内角和就是180°×3=540°

师:那么六边形、七边形的内角和是多少呢?从我们刚才的讨论中你发现什么规律吗?同学们可以课下继续研究。

五、自主提炼,总结升华

师:1、今天这节课你学会了什么?

2、用哪些方法得出了三角形的内角和是180度?

先自己说一说,再汇报交流。

三角形的内角和

角1角2角3内角和

三角形的内角和等于180°。

反思:

这节课的知识本来很简单,就是要掌握三角形的内角和是180°。关键是在这一学习的过程中要学生学会如何学习。可以用什么方法学习。在学习的过程学生的收获仅仅是这一个知识点吗?基于这三个反面的思考。便有了三个想法。

1、活动教学贯穿始终。让活动为学习服务。学生的认知结构,只有在主动经历学习活动的过程中才能完成。只有学生本人的积极思考、主动探索,才能有所发现、有所创新。而学生也非常喜欢动手实践。所以在两个实践活动中,学生的学习兴趣很浓,始终自主探索。在第一个活动中,学生发现实践的结果并不是正确的,因为在量角的过程中会出现误差的情况。怎么办?继续动手验证。通过第二个活动,证实了这一结论是正确的。整节课,活动为教学服务,学生始终有目的的进行动手操作。而不是无序、盲目的活动。

2、在学习的过程中学会合作、学会交流。未来的学生不仅要学会学习,更要学会合作。所以我们的教学活动为学生提供合作的机会,让学生知道,合作能更好的完成任务。如在活动一中,学生通过合作,能把不同类型的三角形快速的结束实践。活动二中,学生验证结束,只能证明一种类型的三角形的三个角能拼成一个平角。通过交流,会发现不同类型的三角形都具备这一特点。这就说明了真理越辩越明。

3、在活动过程中掌握学习的方法。转化是学习数学非常重要的一种方法。在以后的学习中经常用到。所以把三角形的三个角转化成一个平角。不仅让学生知道通过这一转化验证了三角形内角和是多少。还通过这一过程体会到把新问题转化成可以解决的问题。还有把不同类型的三角形都可以转化成一个平角,让学生体会到总结结论,不能只通过一个例子来说明。要从不同的类型都进行验证才能说明这个结论。

三角形内角和课件 篇3

本课是三角形的内角和是北师大版四年级下册第二单元的内容,是三角形的一个重要性质,也是进一步学习几何的基础,经过第一学段以及本单元的学习,学生对于三角形已经有了直观的认识,这为感受、理解、归纳三角形内角和的概念打下坚实的基础,学好本课,对以后学习几何能起到承前启后的效果。

基于对教材以上的认识以及课程标准的要求,我拟定以下教学目标: 知识目标:使学生理解并掌握三角形内角和是180°。

能力目标:①通过学生画、量、猜、剪、拼、折、观察等活动,培养学生探索、发现、观察以及动手操作能力。

②能运用三角形内角和是180°解决实际问题。

情感目标:让学生体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角和都是180°的过程。让学生在动手实验中得到结论,感悟学习中的快乐

“授之于鱼不如授之于渔”,对于四年级的学生来说应进一步提高他们对问题的思考策略,在研究三角形的内角和是180°这一核心问题时,我先让学生独立思考、然后小组合作,通过量一量、剪一剪、拼一拼、折一折等活动来探究三角形内角和的秘密,完成了对新知识的建构,体现了学生动手实践、合作交流、自主探索的学习方法。既培养了学生的观察能力,同时又培养了学生的探索能力和创新精神。

长期以来,我们的教育进行的是颈部以上的学习,它只强调记忆、思维。荷兰教育家弗来登塔尔认为:数学学习是一种活动,这种活动与游泳、骑自行车一样,不经过亲身体验,仅仅看书本、听讲解、观察他人的演示是学不会的。因此将课堂还给学生,努力营造学生在教学活动中自主学习的时间,使他们课堂教学中重要的参与者,与创造者,学生动手实践、合作交流、自主探索的学习方法。本着这样的指导思想,在教学设计上,我力求充分体验以学生发展为本的教育理念,将教学思路拟定为:复习引入、猜想验证、巩固内化、拓展延伸。运用课件教学直观明了便于理解。

强调面向全体学生的同时,关注每个学生个体差异,因材施教、课堂遵循先易后难、先差生后优生的原则,完成大纲目标的同时,也去挖掘优生的潜能,全面提高学生的成绩。

教学的艺术不至于传授知识,而在于唤醒、激发和鼓励,上课伊始,我先让学生复习三角形的有关知识为切入点,以旧引新使学生明确学习方向。学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半甚至没有结果。这时我让学生大胆猜想,形成统一的认识,使后面的探索和验证活动有了明确的目标。为此我精心设计了以下三个问题:什么是三角形的内角?什么是三角形的内角和?同学们先猜一猜三角形的内角和是多少度?可能学生都会猜180°。“那每一个三角形的内角和都是这个度数吗?你敢肯定吗?你能用什么方法去说服别人吗?”估计学生都得把刚才量的三角形的三个角的度数加起来进行验证。根据学生的回答我一一板书。(板书180°、180°、182°、179°、178°)同学们请仔细观察这一个个数据,你有什么发现?可能有的同学会说我们用量的方法得到三角形的内角和有的是180°,有的比180°大,有的比180°小。为什么会出现这种情况:测量时有误差。

“那你还有其他的方法来验证三角形的内角和就是180°吗?请你们利用老师提供的学具先独立思考,然后小组合作验证。”

当学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的探究活动,在活动中,我把“放”和“引”有机的结合,鼓励学生积极开动脑筋,从不同途径探索解决问题的方法。通过一系列“动”的过程,在大量感知的基础上,使学生能自己发现并总结出知识的规律,内化这一活动,使之不仅知其过程而且知其结果,从感性认识上升到理性认识,完成了认识上的飞跃,实现了知识的再创造。

当学生验证有困难时,我会适时的引导。“既然你们都猜三角形的内角和是180°,能不能把它转化成我们上册学过的某个知识点呢?”由于学生已经有了角大小比较的经验,会有一些学生想到把三角形的三个角撕下来拼在一起与平角作比较,从而得到三角形的内角和是180°。我让这些孩子到前面展示并鼓励全班同学都动手做一做,使更多的学生明白这个猜想是正确的。“同学们你们把三角形的三个角撕下来拼在一起得到什么结论?”估计会有下面精彩的回答:各种形状的三角形内角和都是180°;我不用撕,直接折也能得到三角形的内角和都是180°;老师我在验证直角三角形的时候有一个更好的方法,只要把两个锐角折成一个直角与原来的直角相加不也是180°吗;(有创新)老师也用折角的方法验证了各种形状的三角形。(课件……)通过课件的直观演示,又一次证实了学生的猜想是正确的。,每个孩子都是独有的个体,在合作中互补,确实有利于难点的突破。验证三角形的内角和是本节课的难点,所以我让孩子们合作验证。在合作中交流,在合作中相互学习。“同学们,通过刚才的活动,你现在可以肯定的告诉老师三角形的内角和是多少度了吗?这个三角形的内角和是多少度?(出示一个大三角形)把它剪小后问:现在呢?(剪几次)那现在你对三角形的内角和是180°还有怀疑吗?谁能用一句话总结出来?

我这样现场操作,让学生能从视觉上又一次证实了三角形的内角和不管形状和大小统统都是180°。

有人说:教育是一棵树摇动另一棵树,是一朵云推动另一朵云,一个心灵震撼另一个心灵。老师的一个眼神、一个微笑便能给孩子带来幸福和满足。适时的评价更能激起孩子思维的火花。当学生终于发现了三角形的内角和是180°这一秘密时,我会及时给学生评价:“同学们,你们经过画、量、剪、拼、折、观察等活动,自己发现并验证了三角形的内角和是180°(板书完整课题内角和是180°)这一重要规律,多了不起啊,老师由衷的为你们感到高兴。并祝贺你们孩子们。”我想得到老师这样的评价,学生们的高兴劲可想而知,解决问题的欲望也会更加强烈。拓展延伸。

在数学学习的研究中,常常有一些现实的、有趣的富有挑战性的题目呈现在孩子面前,有些题目带有明显的开放性,它把一个不确定的问题转化、分解为多个确定性的问题来解答。应该说这样的问题给孩子的思维空间是非常大的。

“下面三角形,剪掉一个40°的角,不改变其他角的度数,剩下图形的内角和是多少度?”我想会有学生利用自己的经验不假思索就会回答“140”,这时我不做任何评价,微笑着看着大家,“都同意这个答案吗?”引发了学生的再思考,我想最终一定会有学生发现“老师,剪掉这个40°的角以后,实际上就变成了一个四边形,要求四边形的内角和,就把它分割成两个三角形,一个三角形的内角和是180°,那两个三角形就是360°。我进而让学生引导“那么五边形的内角和又是多少度呢?”由于上一题的思路孩子们很快就会分割成三个三角形,即3个180°,共540°。“那六边形、七边形、一百边形的内角和又是多少度呢?”这时孩子会边画、边思考、边讨论,四边形能分割成两个三角形,五边形能分割成三个三角形,那六边形就能分割成四个三角形,最后孩子们终于发现了任意多边形的内角和等于边数减2的差乘180°。教学同时也是一门有遗憾的艺术。我认为对遗憾的态度应该约拿,并不断地探究、不断地改进,为此我思考着、探索着实践着。我想经过自己孜孜不倦的努力,一定会使预设的数学活动过程成为智慧和人格不断生成的过程。最后我希望每一个老师都能利用自己的人格魅力塑造出具有良好的习惯、健全的人格、坚定的信念、卓越成就的学生。布置作业。课后练一练1————5题

本课时间安排:检查上一课作业,练习3分钟。导入2分钟。新授25分钟。拓展,作业5分钟。在教学活动中及时了解学生掌握情况,随时调整教学方案,完成教学任务。

三角形内角和课件 篇4

三角形的内角和

各位评委老师,大家好,我是XX号考生,我今天说课的题目是《三角形的内角和》。下面我将从教材分析,学情分析,教法,学法,教学过程,及板书设计六个方面展开我的说课。

一》说教材。一切教学设计都基于教材,首先我来说一下教材分析,本节课是人教版八年级上册第11章第二节的内容,本节课研究三角形的内角和定理,它是小学学习的三角形有关知识的拓展,并为以后学习三角形的其他知识奠定了基础,因此本节课的学习是十分重要的。由以上分析,结合新课标的要求,我确定了以下三维教学目标:1.知识与技能目标:掌握三角形内角和定理的证明及简单应用。2.过程与方法目标:通过对三角形内角和定理的探索证明,培养学生的动手操作能力和独立思考的能力。3.情感态度与价值观目标:经历三角形内角和定理的探索过程,增强学习数学的兴趣,初步认识数学与人类的联系,体验数学活动充满着探索与研究。

根据以上对教学目标的分析,我将本节课的教学重点确定为:证明三角形内角和定理。教学难点:三角形内角和定理的应用。

二》说学情:作为一名老师,不仅要对教材进行分析,还要对学生的情况有清晰明了的掌握,这样才能做到因材施教,有的放矢。接下来,我将对学情进行分析:初中学生的思维已由形象思维向抽象思维发展,学生的观察力,记忆力,想象力也有一定的发展,但这一时期的学生活泼好动,记忆力容易分散,并且对知识的概括和应用也有一定的欠缺,这都是我在教学中应考虑的问题。

三》说教法:基于以上对教材和学情的分析,结合本节课的特点,我将采用以下教学方法:在教法上,采用引导发现法和练习法,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动,多观察,主动参与到整个教学活动中来。在学法上,学生们合作交流,自主学习,这种学习方式,有助于发展学生独立分析和探究的意识,培养学生养成良好的学习习惯。

四》说教学过程:关于本节课的教学过程,我从以下几方面入手:1.情境导入,激发兴趣。

我会问学生:同学们,你们听过内角三兄弟之争的故事吗?有的回答有,有的回答没有,我会说:“那今天我来给大家讲一讲吧。在一个直角三角形的家里住着内角三兄弟,平时他们三兄弟非常团结,可是有一天,老二突然不高兴,发起脾气来,他指着老大说:你凭什么度数最大,我也要和你一样大!“不行啊!老大说,“这是不可能的,否则我们就围不成一个家了。”“为什么呢?”老二很纳闷,同学们,你们知道其中的道理吗?设置悬疑,自然导入三角形内角和的学习,通过这样的设计,可以在一开始就吸引学生的注意力,激发学生的探求欲望。

2.合作交流,探索新知

在这一环节,首先由学生自己在纸上画一个三角形(板书画三角形),并将内角剪下,然后我引导学生 :试着拼一拼,看看会有发展思维的灵活性,创造性。然后,我会设问:从刚才的拼图过程中是不是剪下的内角可以拼成一个平角啊?那这说明什么呢?由学生举手回答:三角形的内角和为180度。为调动学生的积极性,我会对学生的回答给予肯定,然后我会想学生说明这种操作存有误差,需要我们给予证明,接下来由学生分组讨论证明方法,并交流方法,这样有助于丰富学生的思维,增强学生的合作意识,然后我会引导学生分析:首先过点A做边BC的平行线进而出现内错角角1=角B,角2=角C,然后请同学得出角1+角2+角CBA=180度,所以角A+B+C=180度,这样可以帮助学生更好的理解三角形内角和定理,培养浓厚的学习兴趣。接下来,仍借助多媒体出示例题,通过例题的分析,让学生体会分析问题的基本方法,进一步加深对定理的认识。

3.巩固练习,强化新知。对新知识的学习需要一定的练习来巩固,为此我借助多媒体设置了一些有层次的练习,通过这些练习,加深了对知识的理解,培养了学生思维的广阔性。

4.归纳小结,畅所欲言。

为了了解学生对本节课知识的掌握程度,我会请学生总结“本节课你的收获是什么呢?”并请学生提出存有疑问的地方,大家在解决问题的过程中继续巩固三角形内角和定理。

5.布置作业。

在布置作业时我注重了分层练习,设置了必做题和选做题,必做题为课本76页第3,5题,通过这些题目,继续巩固三角形内角和定理,选做题:继续生活中有关三角形的实例或趣味故事?这样既开阔了学生的视野,有更好的将生活与数学相结合。

6.说板书》

最后说一下我的板书设计,为帮助学生清晰明了的掌握本节知识,掌握重点,突破难点,我的板书设计如下:(看黑板)利用图形,符号表示更直观,形象,便于记忆。

我的说课到此结束,谢谢大家!

三角形内角和课件 篇5

教学内容:人教版小学数学第八册第85页例5及”做一做”

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想

3、在探索中体验发现的乐趣,增强学好数学的信心、

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点 :

验证所有三角形的内角之和都是180°

教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、 设疑引思

1、 分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数、

2、 每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、

3、 设问:老师为什么能很快”猜” 出第三个角的度数呢?

三角形还有许多奥妙,等待我们去探索、

二、 探索交流,获取新知

1、 量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、

2、 折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度, 初步验证”三角形的内角和是180°”的结论、

3、 拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论、

4、 师利用课件演示将一个三角形的三个角拼成一个平角的过程、

5、 验证:FLASH演示三种三角形割补过程

发现1: 通过把直角三角形割补后,内角∠2,∠3 组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于( )度。

发现2:通过把钝角、锐角三角形割补后,三角组成了一个( )角,而( )角等于( )度。所以锐角三角形和钝角三角形的内角和都是180度。

6、 小结:刚才能过量一量折一折拼一拼,你发现了什么?

生说,师板书:三角形的内角和———180°

三、 应用练习,拓展提高

1、书例5后”做一做”

思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)

2、下面哪三个角会在同一个三角形中。

(1)30、60、45、90

(2)52、46、54、80

(3)61、38、44、98

3、走向生活:

(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?

(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)

四 作业:作业本

五 全课总结

总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?

板书设计:三角形的内角和

三角形的内角和———180°

"锐角三角函数课件"延伸阅读