搜索

二次函数图像性质总结

发布时间: 2024.01.01

二次函数图像性质总结精选。

在遇上写作难题时可以借鉴范文, 范文中提供的写作技巧是整体构思的有趣应用,一篇优秀的范文是怎么样的呢?经过工作总结之家的不断调整和修修改进这篇“二次函数图像性质总结”更加含蓄,感谢你的阅读希望这里的内容能给你一些启示!

二次函数图像性质总结 篇1

今天上午听了我校数学老师唐的《正弦函数图像和性质》一节课,本节课教学设计好,制作实用性强,教学流程清楚,环节紧凑、流畅。唐老师授课思路清晰,结构严谨,重难点突出,讲解语言精炼,板书工整,特别注重启发引导,突出学生的主体性地位,引导学生进行主动探究,营造了积极、宽松的教学氛围。具体来说,唐老师的课有如下特点:

唐老师对课标的解读、教材的分析有自己独到的见解,教学设计中教学目标、教学重难点把握到位,课堂教学中把握住正弦函数图像及五点法画法这一既是重点又是难点的内容展开,引导学生进行自主探究,深入理解,抓住教学的关键点,有效的突出了教学重点、突破了教学难点。

唐老师的制作针对性强,动画演示效果好,很好的`辅助学生理解正弦函数的图像画法的过程。

唐老师上课教态自然,语言语调好,板书清楚有条理,个人基本功非常扎实,能与学生进行有效沟通,而且舍得把时间给学生去板演作图、去交流思考思路、去讲解解决问题过程,善于启发调动学生学习的主动性,有较强的驾驭课堂的能力。这是一节非常成功的公开课 。

二次函数图像性质总结 篇2

9月26、27日两天在舟山第一初级中学参加了为期二天的全员教育培训活动,听了六堂省市级学科带头人上的示范课,感想很多,本以为本次培训又走走过场,并没有实质性的内容,只是点个名,充充数罢了。六堂示范课听下来,还有各位执教老师的设计意图,真是开了眼界,而听了两位教研员的精彩点评,更是有一种“听君一席话,胜读十年书”之慨。

现对张老师执教的《二次函数》谈谈自已的感想。

整节课的学习,张杰老师准备的充分,清楚知道学生应该理解什么,掌握什么,学会什么。整堂课下来,张老师始终是学生学习活动的组织者、指导者和合作者,而学生是一个发现者、探索者,充分有效的发挥他们的学习主体作用。张杰老师是让学生“体会知识”,而不是“教学生知识”,学生成了学习的主人,突出学生的主体地位。以下是我的一些肯定与不同意见及一些不成熟建议。

内容1、(1)肯定意见: 张杰老师在开始的时候并没有讲二次函数的有关性质而是用幻灯片给出:

“例1 请研究函数y=x2-5x+6的图象与性质,尽可能写出结论。”

让学生自己去体会二次函数的有关性质,这样的做法可以让学生自己积极的思考,使学生的思维变的更积极,更主动。体现出张杰老师知道在教学过程中着重发展学生的自主性、独立性和创造性,知道教师的教是为学生的学服务的。所以说从张杰老师这点的想法、做法上看是成功的。

(2)不同意见:但是,如果说这样的做法张杰老师已经有这样的观念了的话,我认为张杰老师的做法不够彻底,下面是张杰老师操作过程的摘记:

“ 师:(出示例题后不到1分钟)想到3种以上的同学请举手;

师:(出示例题后不到1.5分钟)想到5种以上的同学请举手;”

我说的不够彻底就是让学生思考的时间不够,我们虽然知道让学生思考的重要性,也这样做了,我们就要收到一定的效果。所以我们要让学生有充分的时间考虑,放手让学生,促进学生发展。我们要知道我们的对象应该是大多数学生,使大多数的学生有充分的思考时间。

(2)Δ﹥0,在轴上有两个交点……;

…… …… ”

张杰老师给出结论时是充分让学生说出自己的答案,让学生充分表达自己的意见,自己的想法,从而提高学生学习的积极性,这符合人的自然规律,要知道无论是谁都是对自己的东西最感兴趣的,也就是对“我的”最感兴趣,它的最里面一层是我的思想、我的爱好、我的健康、我所要表达的一切,接下去是我的父母、我的班级学校、我的国家……。一个具体的例子:“当你看到一张有你集体照,你首先会看谁呢?这是不容质疑的。”也可以用一个图去表示:

所以说张杰老师抓住了学生的人的固有特性,给学生一个自由的发挥的空间,让学生表达出“我的答案、想法”,使学生的思维变的积极,使课堂气氛变的积极,

使学生的思维从中得到很好的锻炼。从这点来说张杰老师这节是成功的。

(2)不同意见:个上面我们谈到这样做符合人固有的本性是很成功的,但我认为在操作上可以改进一下。张杰老师开始的时候都是叫学生个人来完成,后面几个问题干脆让学生一起来回答, 这样做的后果就是不能让学生感觉到这是“我的答案”,感觉不到同学、老师那肯定的眼光,长此以往课堂的气氛会低迷,学生的思维会变的懒惰。因为的思考的答案可能会得不到肯定,我思考也没用。渐渐的学习的积极性、主动性就会削弱,与我们老师的初衷、教改的意图相违背。可以这样说,张杰老师这节课有突出学生的“我的……”,但没有完全突出最里面的一层“我的思想、别人对我的看法”。

(3)我的建议:每次都让学生站来回答问题,给予他及时的肯定与鼓励,使学生在肯定中变的积极,在肯定中变的自信,在肯定中得到进步。

本节课优点:

1、整体感觉是学习过程逻辑清晰,小组分工明确,学生主体地位体现充分,学生配合好,课堂气氛活跃;

2、学生充分小老师角色非常到位,有讲有问,学生回答积极配合;

3、教师穿插点评、补充、总结、讲解,少好精;

4、整个教学过程分为四部分:基本知识、知识应用、扩展部分、总结部分。前后紧密相连,由易而难,步步推进;

整节课教学思路层次分明,脉络清晰,始终以“二次函数的解析式与图象”及其应用为主线,贯穿于整个教学过程。老师语言精炼,富有亲和力与感染力;师生关系融洽,气氛和谐;重点突出,难点突破,教学目标基本达成。做到了“从一个知识传授者转变为学生发展的促进者;从课堂时间与空间支配者的权威地位,向数学的组织者、引导者和合作者的角色转换”。

我的一些不成熟看法:

1、或许张杰老师在内容上的量处理方面更能使学生容易接受一点,我认为可以分为两节课来完成,内容1:“二次函数的图象及有关性质”,内容2:“怎样求二次函数的解析式”。

2、或许张杰老师在语言上可以简练一些,使学生感到我们的老师的语言不是罗嗦。使我们的学生在我们的语言中感觉到学习的乐趣、领受知识、训练思维。

3、或许张杰老师的站位可以更恰当一点,不要遮住给学生看的题目,要知道我们的给出的题目是为学生服务的,当我们的学生看不到这些目标——题目时他的思维活动就不能开展。

二次函数图像性质总结 篇3

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x12时,都有f(x1)2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.

如果对于区间D上的任意两个自变量的值x1,x2,当x12 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(A) 定义法:

1 任取x1,x2∈D,且x12;

2 作差f(x1)-f(x2);

3 变形(通常是因式分解和配方);

4 定号(即判断差f(x1)-f(x2)的正负);

5 下结论(指出函数f(x)在给定的区间D上的单调性).

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

1首先确定函数的定义域,并判断其是否关于原点对称;

2确定f(-x)与f(x)的关系;

3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

3 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

7.已知函数 满足 ,则 = 。

8.设 是R上的奇函数,且当 时, ,则当 时 =

10.判断函数 的单调性并证明你的结论.

二次函数图像性质总结 篇4

A.(0,1) B. (0,-1) C. (1,0) D. (-1,0)

2.抛物线 与 轴有两个交点,且开口向下,则 的取值范围分别是( )

A. B. C. D.

3.如图,小芳在某次投篮中,球的运动路线是抛物线y=-15x2+3.5的一部分,若命中篮

4 .将抛物线平移后得到抛物线 ,平移的方法可以是( ) 第3题

A. B. C.12 D.

7.在同一平面直角坐标系中,一次函数 和二次函数 的图象大致所示中的()

时, y随x的增大而增大, 当x 时, y随x的增大而减小.

2.二次函数 中,若当 时,函数值相等,则当 取 时,函数值等于 。

3.任给一些不同的实数 ,得到不同的抛物线 ,当 取0, 时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点。其中判断正确的是 。

4.点 在抛物线 上,则点A关于 轴的对称点的坐标为 。

5.若抛物线 的对称轴是 轴,则 。

6.若一条抛物线与 的'形状相同且开口向上,顶点坐标为(0,2),则这条抛物线的解析式为 。

7.与抛物线 关于 轴对称的抛物线的解析式为 。

8.已知 三点都在二次函数 的图象上,那么 的大小关系是 。(用“ ”连接)

(1)求这个函数的关系式;

(2)当为何值时,函数 随 的增大而增大。

2.已知直线 和抛物线 相交于点 ,求 的值;

3.如图,已知抛物线的顶点为 ,矩形CDEF的顶 点C、F在抛物线上,点D、E在x轴 上,CF交y轴于点 ,且矩形其面积为 8,此抛物线的解析式。

1.下 y轴 (0,-3) 2. C 3.①②③④ 4.(3,-8)

5. 2 6. 7. 8.

二次函数图像性质总结 篇5

1二次函数图像

2二次函数性质

二次函数y=ax+bx+c(a0),当y=0时,二次函数为关于x的一元二次方程,即ax+bx+c=0(a0)

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax,y=ax+k,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a0)的图象形状相同,只是位置不同。

2.抛物线y=ax+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a).

3.抛物线y=ax+bx+c(a0),若a0,当x-b/2a时,y随x的增大而减小;当x-b/2a时,y随x的增大而增大。若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小.

4.抛物线y=ax+bx+c(a0)的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b-4ac0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax+bx+c=0

(a0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)

当△=0.图象与x轴只有一个交点;

当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0.

5.抛物线y=ax+bx+c的最值(也就是极值):如果a0(a0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a.

顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax+bx+c(a0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中高考的热点考题,往往以大题形式出现。

GZ85.cOm更多总结延伸阅读

二次函数的知识点归纳总结


篇一:二次函数知识点概括总结

二次函数知识点总结及相关典型题目

第一部分 二次函数基础知识

? 相关概念及定义

b,c是常数,a?0)的函数,叫做二次函数。这? 二次函数的概念:一般地,形如y?ax2?bx?c(a,

c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a?0,而b,

数.

? 二次函数y?ax2?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,

? 二次函数各种形式之间的变换

? 二次函数y?ax2?bx?c用配方法可化成:y?a?x?h??k的形式,其中

2

b4ac?b2

h??,k?.

2a4a

? 二次函数由特殊到一般,可分为以下几种形式:①y?ax2;②y?ax2?k;③y?a?x?h?;④

2

y?a?x?h??k;⑤y?ax2?bx?c.

2

? 二次函数解析式的表示方法

? 一般式:y?ax2?bx?c(a,b,c为常数,a?0);

? 顶点式:y?a(x?h)2?k(a,h,k为常数,a?0);

? 两根式:y?a(x?x1)(x?x2)(a?0,x1,x2是抛物线与x轴两交点的横坐标).

? 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,

只有抛物线与x轴有交点,即b2?4ac?0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ? 抛物线y?ax2?bx?c的三要素:开口方向、对称轴、顶点.

?

a的符号决定抛物线的开口方向:当a?0时,开口向上;当a?0时,开口向下;

b

.特别地,y轴记作直线x?0. 2a

a相等,抛物线的开口大小、形状相同.

? 对称轴:平行于y轴(或重合)的直线记作x??

b4ac?b2

(?)? 顶点坐标坐标:

2a4a

? 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口

大小完全相同,只是顶点的位置不同. ? 抛物线y?ax2?bx?c中,a,b,c与函数图像的关系 ? 二次项系数a

二次函数y?ax2?bx?c中,a作为二次项系数,显然a?0.

⑴ 当a?0时,抛物线开口向上,a越大,开口越小,反之a的值越小,开口越大;⑵ 当a?0时,抛物线开口向下,a越小,开口越小,反之a的值越大,开口越大.

总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大 小.

? 一次项系数b

在二次项系数a确定的前提下,b决定了抛物线的对称轴. ⑴ 在a?0的前提下,

b

当b?0时,??0,即抛物线的对称轴在y轴左侧;

2ab

当b?0时,??0,即抛物线的对称轴就是y轴;

2a

b

?0,即抛物线对称轴在y轴的右侧. 2a

⑵ 在a?0的前提下,结论刚好与上述相反,即

b

当b?0时,??0,即抛物线的对称轴在y轴右侧;

2ab

当b?0时,??0,即抛物线的对称轴就是y轴;

2ab

当b?0时,??0,即抛物线对称轴在y轴的左侧.

2a

总结起来,在a确定的前提下,b决定了抛物线对称轴的位置. 总结:

? 常数项c

⑴ 当c?0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵ 当c?0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶ 当c?0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.

b,c都确定,那么这条抛物线就是唯一确定的. 总之,只要a,

? 求抛物线的顶点、对称轴的方法

当b?0时,?

b4ac?b2b?4ac?b2?

(?)? 公式法:y?ax?bx?c?a?x?,∴顶点是,对称轴是直线??

2a4a2a?4a?

bx??.

2a

2

? 配方法:运用配方的方法,将抛物线的解析式化为y?a?x?h??k的形式,得到顶点为(h,k),对

称轴是直线x?h.

2

2

? 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是

抛物线的对称轴,对称轴与抛物线的交点是顶点.

用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ? 用待定系数法求二次函数的解析式

? 一般式:y?ax?bx?c.已知图像上三点或三对x、y的值,通常选择一般式. ? 顶点式:y?a?x?h??k.已知图像的顶点或对称轴,通常选择顶点式.

2

2

? 交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y?a?x?x1??x?x2?. ? 直线与抛物线的交点

?

y轴与抛物线y?ax2?bx?c得交点为(0, c).

2

22

? 与y轴平行的直线x?h与抛物线y?ax?bx?c有且只有一个交点(h,ah?bh?c).

? 抛物线与x轴的交点:二次函数y?ax?bx?c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程ax?bx?c?0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:

①有两个交点???0?抛物线与x轴相交;

②有一个交点(顶点在x轴上)???0?抛物线与x轴相切; ③没有交点???0?抛物线与x轴相离.

? 平行于x轴的直线与抛物线的交点

可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标

是ax?bx?c?k的两个实数根.

2

一次函数y?kx?n?k?0?的图像l与二次函数y?ax?bx?c?a?0?的图像G的交点,

2

2

? 由方程组 ?

?y?kx?n?y?ax?bx?c

2

的解的数目来确定:①方程组有两组不同的解时?l与G有两个交点; ②

方程组只有一组解时?l与G只有一个交点;③方程组无解时?l与G没有交点.

? 抛物线与x轴两交点之间的距离:若抛物线y?ax2?bx?c与x轴两交点为A?x1,0?,B?x2,0?,由于

x1、x2是方程ax2?bx?c?0的两个根,故

bc

x1?x2??,x1?x2?

aa

AB?x1?x2?

x1?x22

?

x1?x22

b2?4ac??b?4c

?4x1x2???????

aaaa??

2

? 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

? 关于x轴对称

y?a2x?bx?关于cx轴对称后,得到的解析式是y??ax2?bx?c;

y?a?x?h??k关于x轴对称后,得到的解析式是y??a?x?h??k; ? 关于y轴对称

y?a2x?bx?关于cy轴对称后,得到的解析式是y?ax2?bx?c;

22

y?a?x?h??k关于y轴对称后,得到的解析式是y?a?x?h??k; ? 关于原点对称 y?a2x?bx?关于原点对称后,得到的解析式是cy??ax2?bx?c; y?a?x??h?关于原点对称后,得到的解析式是ky??a?x?h??k;

? 关于顶点对称

2

2

22

b2 y?ax?bx?关于顶点对称后,得到的解析式是cy??ax?bx?c?;

2a

22

y?a?x?h??k关于顶点对称后,得到的解析式是y??a?x?h??k.

2

2

? 关于点?m,n?对称

n?对称后,得到的解析式是y??a?x?h?2m??2n?k y?a?x?h??k关于点?m,

2

2

? 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不

变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是

先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

? 二次函数图象的平移

? 平移规律

在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.

概括成八个字“左加右减,上加下减”.

? 根据条件确定二次函数表达式的几种基本思路。 ? 三点式。

1,已知抛物线y=ax+bx+c 经过A(,0),B(2,0),C(0,-3)三点,求抛物线的解析式。

2,已知抛物线y=a(x-1)+4 , 经过点A(2,3),求抛物线的解析式。 ? 顶点式。

22

1,已知抛物线y=x-2ax+a+b 顶点为A(2,1),求抛物线的解析式。

2

2,已知抛物线 y=4(x+a)-2a 的顶点为(3,1),求抛物线的解析式。 ? 交点式。

1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。

2

2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=? 定点式。

1,在直角坐标系中,不论a 取何值,抛物线y??

1

a(x-2a)(x-b)的解析式。 2

125?ax?x?2a?2经过x 轴上一定点Q,直线22

y?(a?2)x?2经过点Q,求抛物线的解析式。

2,抛物线y= x +(2m-1)x-2m与x轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。

2

3,抛物线y=ax+ax-2过直线y=mx-2m+2上的定点A,求抛物线的解析式。 ? 平移式。

22

1, 把抛物线y= -2x 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h) +k,求此抛物

线解析式。 2, 抛物线y??x2?x?3向上平移,使抛物线经过点C(0,2),求抛物线的解析式. ? 距离式。

2

1,抛物线y=ax+4ax+1(a﹥0)与x轴的两个交点间的距离为2,求抛物线的解析式。

2

2,已知抛物线y=m x+3mx-4m(m﹥0)与 x轴交于A、B两点,与 轴交于C点,且AB=BC,求此抛物线的解析式。 ? 对称轴式。

22

1、抛物线y=x-2x+(m-4m+4)与x轴有两个交点,这两点间的距离等于抛物线顶点到y轴距离的2倍,求抛物线的解析式。

2、 已知抛物线y=-x+ax+4, 交x轴于A,B(点A在点B左边)两点,交 y轴于点C,且OB-OA=

2

2

3

OC,求此抛物4

线的解析式。 ? 对称式。

1, 平行四边形ABCD对角线AC在x轴上,且A(-10,0),AC=16,D(2,6)。AD交y 轴于E,将三角形ABC沿

x 轴折叠,点B到B1的位置,求经过A,B,E三点的抛物线的解析式。

2

2, 求与抛物线y=x+4x+3关于y轴(或x轴)对称的抛物线的解析式。 ? 切点式。

22

1,已知直线y=ax-a(a≠0) 与抛物线y=mx 有唯一公共点,求抛物线的解析式。

2

2, 直线y=x+a 与抛物线y=ax +k 的唯一公共点A(2,1),求抛物线的解析式。 ? 判别式式。

22

1、已知关于X的一元二次方程(m+1)x+2(m+1)x+2=0有两个相等的实数根,求抛物线y=-x+(m+1)x+3解析式。

2

2、 已知抛物线y=(a+2)x-(a+1)x+2a的顶点在x轴上,求抛物线的解析式。

2

3、已知抛物线y=(m+1)x+(m+2)x+1与x轴有唯一公共点,求抛物线的解析式。

知识点一、 二次函数的解析式

二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:y?ax?bx?c(a,b,c是常数,a?0)

2

(2)两根当抛物线y?ax2?bx?c与x轴有交点时,即对应二次好方程ax?bx?c?0有实根x1和

2

x2存在时,根据二次三项式的分解因式ax2?bx?c?a(x?x1)(x?x2),二次函数y?ax2?bx?c可转化为

两根式y?a(x?x1)(x?x2)。如果没有交点,则不能这样表示。

a 的绝对值越大,抛物线的开口越小,a 的绝对值越大,抛物线的开口越小.

(3)三顶点顶点式:y?a(x?h)?k(a,h,k是常数,a?0)

2

知识点二、二次函数的最值

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x??

b

时,2a

y最值

4ac?b2?。

4a

如果自变量的取值范围是x1?x?x2,那么,首先要看?

b

是否在自变量取值范围x1?x?x2内,若在2a

b4ac?b2

此范围内,则当x=?时,y最值?;若不在此范围内,则需要考虑函数在x1?x?x2范围内的增减

2a4a

2

性,如果在此范围内,y随x的增大而增大,则当x?x2时,y最大?ax2?bx2?c,当x?x1时,2

如果在此范围内,y随x的增大而减小,则当x?x1时,y最大?ax1当x?x2y最小?ax12?bx1?c;?bx1?c,2

时,y最小?ax2?bx2?c。

☆、几种特殊的二次函数的图像特征如下:

知识点四、二次函数的性质

1、二次函数y?ax2?bx?c(a,b,c是常数,a?0)中,a、b、c的含义:

a表示开口方向:a0时,抛物线开口向上

a0时,抛物线开口向下

b

b与对称轴有关:对称轴为x=?

2a

(0,c) c表示抛物线与y轴的交点坐标:

2、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的??b?4ac,在二次函数中表示图像与x轴是否有交点。 当?0时,图像与x轴有两个交点; 当?=0时,图像与x轴有一个交点; 当?0时,图像与x轴没有交点。

2

篇二:二次函数知识归纳与总结

二次函数知识归纳与总结

二次函数的概念和图像

1、二次函数的概念

一般地,如果特y?ax2?bx?c(a,b,c是常数,a?0),特别注意那么y叫做x 的二次函数。

a不为零

y?ax2?bx?c(a,b,c是常数,a?0)叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于x??

b

对称的曲线,这条曲线叫抛物线。 2a

抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法 五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

(2)求抛物线y?ax?bx?c与坐标轴的交点:

当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。

2

二次函数的解析式

二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:y?ax?bx?c(a,b,c是常数,a?0)

2

(2)两根当抛物线y?ax?bx?c与x轴有交点时,即对应二次好方程

2

ax2?bx?c?0有实根x1和x2存在时,根据二次三项式的分解因式

ax2?bx?c?a(x?x1)(x?x2),二次函数y?ax2?bx?c可转化为两根式

y?a(x?x1)(x?x2)。如果没有交点,则不能这样表示。

a 的绝对值越大,抛物线的开口越小。

(3)三顶点顶点式:y?a(x?h)2?k(a,h,k是常数,a?0)

二次函数的最值

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当

b4ac?b2x??时,y最值?。

2a4a

如果自变量的取值范围是x1?x?x2,那么,首先要看?

b

是否在自变量取值范围2a

b4ac?b2

时,y最值?;若不在此范围内,则x1?x?x2内,若在此范围内,则当x=?2a4a

需要考虑函数在x1?x?x2范围内的增减性,如果在此范围内,y随x的增大而增大,则当

2

x?x2时,y最大?ax2?bx2?c,当x?x1时,y最小?ax12?bx1?c;如果在此范围内,2y随x的增大而减小,则当x?x1时,y最大?ax1?bx1?c,当x?x2时,2y最小?ax2?bx2?c。

二次函数的性质

2、二次函数y?ax2?bx?c(a,b,c是常数,a?0)中,a、b、c的含义:

a表示开口方向:a0时,抛物线开口向上

a0时,抛物线开口向下

b

b与对称轴有关:对称轴为x=?

2a

(0,c) c表示抛物线与y轴的交点坐标:

3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的??b?4ac,在二次函数中表示图像与x轴是否有交点。 当?0时,图像与x轴有两个交点; 当?=0时,图像与x轴有一个交点; 当?0时,图像与x轴没有交点。

2

中考二次函数压轴题常考公式(必记必会,理解记忆)

1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法) 如图:点A坐标为(x1,y1)点B则AB间的距离,即线段AB的长度为

0x

B

2,二次函数图象的平移

① 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,k?;

k?处,具体平移方法如下:

② 保持抛物线y?ax2的形状不变,将其顶点平移到?h,

2

向右(h0)【或左(h平移|k|个单位

【或左(h0)】

③平移规律

在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.

函数平移图像大致位置规律(中考试题中,只占3分,但掌握这个知识点,对提

高答题速度有很大帮助,可以大大节省做题的时间)

特别记忆--同左上加 异右下减 (必须理解

记忆)

说明① 函数中ab值同号,图像顶点在y轴左侧同左,a b值异号,图像顶点必在Y轴右侧异右

②向左向上移动为加左上加,向右向下移动为减右下减

3、直线斜率:

y2?y1 b为直线在y轴上的截距4、直线方程:

k?tan??

x2?x1

4、①两点 由直线上两点确定的直线的两点式方程,简称两式:

y?y1?kx?b?(ta?n)x?b?

y2?y1

x(x?x1)此公式有多种变形 牢记 x2?x1

②点斜y?y1?kx(x?x1)

③斜截 直线的斜截式方程,简称斜截式: y=kx+b(k≠0)

④截距由直线在x轴和y轴上的截距确定的直线的截距式方程,简称截距式:

xy??1 ab

牢记 口诀 ---截距

两点斜截距--两点 点斜 斜截

5、设两条直线分别为,l1:y?k1x?b1 l2:y?k2x?b2 若l1//l2,则有

l1//l2?k1?k2且b1?b2。若

l1?l2?k1?k2??1

6、点p(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离:

d?

kx0?y0?bk?(?1)

2

2

?

kx0?y0?b

k?1

2

7、抛物线y?ax2?bx?c中, a b c,的作用

(1)a决定开口方向及开口大小,这与y?ax中的a完全一样.

(2)b和a共同决定抛物线对称轴的位置.由于抛物线y?ax?bx?c的对称轴是直线

2

2

x??

bb

,故:①b?0时,对称轴为y轴;②?0(即a、b同号)时,对称轴2aa

篇三:二次函数知识点总结

b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,

c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,

2. 二次函数y?ax?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

2

2

b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,

二、二次函数的基本形式

1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。

2

2. y?ax?c的性质: 上加下减。

2

3. y?a?x?h?的性质:

左加右减。4.

2

y?a?x?h??k的性质:

2

方法一:⑴ 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,k?; ⑵ 保持抛物线y?ax的形状不变,将其顶点平移到?h,k?处,具体平移方法如下:

2

2

向右(h0)【或左(h平移|k|个单位

【或左(h0)】

2. 平移规律

在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴

y?ax2?bx?c沿y轴平移:向上(下)平移m个单位,y?ax2?bx?c变成

y?ax2?bx?c?m(或y?ax2?bx?c?m)

y?ax2?bx?c沿轴平移:向左(右)平移m个单位,y?ax2?bx?c变成y?a(x?m)2?b(x?m)?c(或

y?a(x?m)2?b(x?m)?c)

四、二次函数y?a?x?h??k与y?ax?bx?c的比较

2

2

从解析式上看,y?a?x?h??k与y?ax?bx?c是两种不同的表达形式,后者通过配方可以得到前者,即

2

2

b?4ac?b2b4ac?b2?

y?a?x???,其中h??. ,k?

2a?4a2a4a?

五、二次函数y?ax?bx?c图象的画法

五点绘图法:利用配方法将二次函数y?ax?bx?c化为顶点式y?a(x?h)?k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与

2

2

2

2

c?、c?关于对称轴对称的点?2h,c?、以及?0,y轴的交点?0,

0?,?x2,0?(若与x轴没有交点,则取两组关于对称轴对称的点). 与x轴的交点?x1,

画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与

六、二次函数y?ax?bx?c的性质

2

y轴的交点.

?b4ac?b2?b

1. 当a?0时,抛物线开口向上,对称轴为x??,顶点坐标为???. 2a4a2a??

?b4ac?b2?bb

2. 当a?0时,抛物线开口向下,对称轴为x??,顶点坐标为??时,y随x的增大而增大;当?.当x??

2a4a2a2a??

bb4ac?b2

. x??时,y随x的增大而减小;当x??时,y有最大值

2a2a4a

七、二次函数解析式的表示方法

2

1. 一般式:y?ax?bx?c(a,b,c为常数,a?0); 2

2. 顶点式:y?a(x?h)?k(a,h,k为常数,a?0);

3. 两根式:y?a(x?x1)(x?x2)(a?0,x1,x2是抛物线与x轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即

b2?4ac?0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

八、二次函数的图象与各项系数之间的关系1. 二次项系数a

二次函数y?ax?bx?c中,a作为二次项系数,显然a?0.

⑴ 当a?0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵ 当a?0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.

总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小. 2. 一次项系数b

在二次项系数a确定的前提下,b决定了抛物线的对称轴. ⑴ 在a?0的前提下,

当b?0时,?当b?0时,?当b?0时,?

2

b

?0,即抛物线的对称轴在y轴左侧; 2a

b

?0,即抛物线的对称轴就是y轴; 2a

b

?0,即抛物线对称轴在y轴的右侧. 2a

b

?0,即抛物线的对称轴在y轴右侧; 2a

b

?0,即抛物线的对称轴就是y轴; 2a

b

?0,即抛物线对称轴在y轴的左侧. 2a

⑵ 在a?0的前提下,结论刚好与上述相反,即 当b?0时,?当b?0时,?当b?0时,?

总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.

ab的符号的判定:对称轴x??

总结:3. 常数项c

b

在y轴左边则ab?0,在y轴的右侧则ab?0,概括的说就是“左同右异” 2a

y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;

⑵ 当c?0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶ 当c?0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.

⑴ 当c?0时,抛物线与

b,c都确定,那么这条抛物线就是唯一确定的. 总之,只要a,

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x轴对称

y?ax?bx?c关于x轴对称后,得到的解析式是y??ax?bx?c;

2

2

y?a?x?h??k关于x轴对称后,得到的解析式是y??a?x?h??k;

2. 关于

22

y轴对称

2

y?ax?bx?c关于

2

y轴对称后,得到的解析式是y?ax2?bx?c;

2

y?a?x?h??k关于y轴对称后,得到的解析式是y?a?x?h??k;

3. 关于原点对称

y?ax?bx?c关于原点对称后,得到的解析式是y??ax?bx?c; y?a?x?h??k关于原点对称后,得到的解析式是y??a?x?h??k;4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

2

2

2

b2

y?ax?bx?c关于顶点对称后,得到的解析式是y??ax?bx?c?;

2a

2

2

y?a?x?h??k关于顶点对称后,得到的解析式是y??a?x?h??k.

n?对称5. 关于点?m,

22

n?对称后,得到的解析式是y??a?x?h?2m??2n?k y?a?x?h??k关于点?m,

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):

2

一元二次方程ax?bx?c?0是二次函数y?ax?bx?c当函数值y?0时的特殊情况.

2

22

图象与x轴的交点个数:

0?,B?x2,0?(x1?x2),其中的x1,x2是一元二次方程① 当??b?4ac?0时,图象与x轴交于两点A?x1,

2

ax?bx?c?0?a?

0?的两根.这两点间的距离AB?x2?x12

② 当??0时,图象与x轴只有一个交点; ③ 当??0时,图象与x轴没有交点.

2. 抛物线y?ax?bx?c的图象与3. 二次函数常用解题方法总结:

⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶ 根据图象的位置判断二次函数y?ax?bx?c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.

2

⑸ 与二次函数有关的还有二次三项式,二次三项式ax?bx?c(a?0)本身就是所含字母x的二次函数;下面以a?0时为例,揭示

2

2

y轴一定相交,交点坐标为(0,c);

二次函数、二次三项式和一元二次方程之间的内在联系:

图像参考:

y=-2x2


初二学生数学一次函数知识点总结


本篇《初二学生数学一次函数知识点总结》是由工作总结之家工作总结频道为大家提供的,工作总结之家还为大家提供优质的年终总结、年度总结、个人总结,包括班主任工作总结、财务工作总结及试用期工作总结等多种工作总结范文,供大家参考!点击查看更多详情

相关推荐:年度总结|个人总结|年中总结|半年总结|实习总结|党支部工作总结|班主任工作总结


知识点1 一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

知识点2 函数的图象

由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.

画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质

(1)k的正负决定直线的倾斜方向;

①k>0时,y的值随x值的增大而增大;

②k﹤O时,y的值随x值的增大而减小.

(2)|k|大小决定直线的倾斜程度,即|k|越大

①当b>0时,直线与y轴交于正半轴上;

②当b0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);

②如图所示,当k>0,b

③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);

④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).

(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.

知识点4 正比例函数y=kx(k≠0)的性质

(1)正比例函数y=kx的图象必经过原点;

(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;

(3)当k0时,直线与y轴的正半轴相交;

当b=0时,直线经过原点;

当b﹤0时,直线与y轴的负半轴相交.

②当k,b异号时,直线与x轴正半轴相交;

当b=0时,直线经过原点;

当k,b同号时,直线与x轴负半轴相交.

③当k>O,b>O时,图象经过第一、二、三象限;

当k>0,b=0时,图象经过第一、三象限;

图像专项培训总结精选


年轮流转,时光飞逝,回想起来,我们总会经历很多各式各样的事情,大部分人都会被上司或者老师要求写一篇总结,总结就是过去时间做的事的总检查、总评价,我们该如何去写一份优秀的总结范文呢?有请驻留片刻,小编为你推荐图像专项培训总结精选,为方便后续阅读,请你收藏本文。

图像专项培训总结 篇1

自动写作内容:

图像专项培训总结

随着信息化时代的发展,图像技术在人们的日常生活和工作中扮演着越来越重要的角色,图像专项培训在这个时代中显得尤为重要。

图像专项培训的目的是提高学员的图像设计和处理能力,培养良好的图像设计思维和操作技能,掌握现代化的图像制作软件和技术,提高工作效率和创新意识,提升图像设计师的整体素质。

在这次图像专项培训中,我们受益匪浅,感悟良多。以下是本次培训的总结:

一、增强图像设计思维

在图像专项培训中,我们通过多媒体课件、案例分析和实操演练等多种学习方式,掌握了图像设计中的各种基本原理和方法,例如对称、共振、对比、空间感、配色原则等等。同时,我们学习了如何根据客户需求,通过对市场调研和对产品定位的分析,设计出满足需求的高质量图像设计方案。

二、掌握专业图像制作软件

在本次培训中,我们学习了Photoshop、Illustrator、InDesign等主流图像制作软件的使用方法和技巧,学习了如何通过分层、蒙版、调整图层等操作方法,对图像进行优化和修饰,让图像更加艺术和生动。通过实际操作,我们不仅掌握了软件的基本操作和高级技能,还提高了解决问题和解决设计难点的能力。

三、提高专业素养

图像设计师不仅需要有扎实的技术和创意能力,还需要具备一定的专业素养。在培训中,我们学习了图像设计师应该具备的团队协作能力、创新意识、质量控制意识、职业操守等方面的知识和技能。作为专业人士,必须具有过硬的专业素养,才能更好地服务于客户。

总之,图像专项培训是提升图像设计师整体素质的重要途径,通过这次培训我们确实收获颇丰。通过本次培训,我们不仅掌握了图像设计的基本原理和方法,还学习了各种图像制作软件的使用方法和技巧,并逐步提高了自己的专业素养。我们将以更加严谨、创新和专业的态度,为客户提供更优质的图像设计服务。

图像专项培训总结 篇2

图像专项培训总结


随着科技的不断进步和人们对视觉表达的需求日益增长,图像处理已经成为了一门备受关注的技术。为了提高从业人员的专业能力,我参加了为期一周的图像专项培训。在这篇文章中,我将详细、具体且生动地总结这次培训的内容和收获。


培训的第一天我们学习了图像处理的基础知识。我们了解到数字图像是由像素组成的,每个像素代表了图像上的一个点,而每个点又有自己的亮度、颜色等属性。我们学习了如何读取和显示图像,了解了图像的各个属性以及如何对图像进行处理。通过实践操作,我们掌握了基本的图像处理算法,如平滑滤波、锐化以及边缘检测等。这些基础知识为我们后面的学习打下了坚实的基础。


接下来的几天,我们学习了图像处理的高级技术。我们学习了图像增强的各种方法,如直方图均衡化、灰度变换以及空域增强等。我们还学习了图像压缩的原理和方法,了解了JPEG、PNG等图像压缩标准和算法。我们还学习了图像分割和目标检测的技术,包括基于阈值的分割、边缘检测和区域增长算法等。通过学习这些高级技术,我们能够更加准确地处理和分析图像,提高图像处理的效果和质量。


在培训的最后几天,我们进行了实践项目的演练。我们分成小组,每个小组都有一项实践项目要完成。我的小组选择了一个图像分类的任务,我们要训练一个卷积神经网络来对图像进行分类。我们利用Python编程语言和TensorFlow库来实现这个任务。通过这个实践项目,我们深入了解了卷积神经网络的原理和实现方法,并学会了如何处理大规模的图像数据集。最终,我们成功地训练了一个准确率较高的图像分类模型。


通过这次图像专项培训,我受益匪浅。我对图像处理的基本概念有了更深入的理解,并学会了如何运用算法进行图像处理。我学会了一些图像处理的高级技术,如图像增强、压缩和分割等,这些技术在实际应用中非常有用。最重要的是,我通过实践项目的演练提高了我的实际操作能力,学会了如何运用图像处理技术解决实际问题。


小编认为,这次图像专项培训为我打开了图像处理技术的大门,提升了我的专业能力。我相信,在今后的工作中,我能够更好地运用所学知识解决实际问题,并为图像处理技术的发展做出更好的贡献。

图像专项培训总结 篇3

图像专项培训总结


近年来,图像处理技术在各个领域得到了广泛应用,如医学影像、互联网、媒体和游戏等。为了提高图像处理技术人才的能力,我参加了一次为期一个月的图像专项培训。通过这次培训,我深刻理解了图像处理的重要性和应用场景,并掌握了一些基本的图像处理算法和工具。


在培训的初期,我们学习了图像处理的基础知识,包括图像的采集、存储和表示。通过理论学习和实践操作,我们了解了不同类型的图像,如灰度图像和彩色图像,以及它们的像素表示方法和颜色模型。同时,我们还了解了常见的图像处理技术,如图像去噪、边缘检测、图像增强和图像分割等。这些基础知识对我们后续的学习和应用打下了坚实的基础。


接着,我们学习了一些图像处理的经典算法,如均值滤波、中值滤波、Sobel算子和Canny算子等。通过学习这些算法的原理和实现方法,我们能够对图像进行平滑处理、边缘检测和特征提取。同时,我们还学习了一些基于统计学的图像处理方法,如直方图均衡化和灰度拉伸。这些算法和方法使我们能够更好地处理不同类型的图像,并提高图像质量和信息提取的准确性。


在培训的后期,我们学习了一些高级的图像处理技术和工具。其中,最让我印象深刻的是深度学习在图像处理中的应用。通过学习卷积神经网络(CNN)和循环神经网络(RNN)等深度学习算法,我们能够对图像进行语义分割、目标检测和图像生成等任务。同时,我们还学习了使用深度学习框架Tensorflow和PyTorch进行图像处理的实践技巧。


在培训过程中,我们还参观了一些图像处理实验室和企业,与一些从事图像处理工作的专家和工程师进行了交流。通过与他们的交流,我们了解到图像处理技术在实际应用中的挑战和难点,并得到了一些建议和指导。这些交流不仅扩宽了我们的眼界,还使我们对未来的发展方向有了更清晰的认识。


通过这次图像专项培训,我收获了很多。我明白了图像处理在现代社会中的重要性和广泛应用。我掌握了一些基本的图像处理算法和工具,能够对图像进行去噪、增强和分割等处理。我了解了一些高级的图像处理技术和工具,如深度学习和图像处理框架,为我未来的学习和研究打下了基础。


小编认为,这次图像专项培训对我来说是一次宝贵的经历。通过学习的过程,我不仅提高了对图像处理的理解和实践能力,也培养了解决实际问题的能力和团队合作精神。我相信,我将会把这些所学应用到实际工作中,为图像处理领域的发展做出自己的贡献。

"二次函数图像性质总结"延伸阅读