搜索

公倍数的教案

发布时间: 2024.03.07

公倍数的教案模板。

资料通常是指书籍、报刊、图表、图片等。在日常的学习工作中,我们都会用到各方面的资料。资料可以作为参考给我们一些学习工作灵感。所以,你有哪些值得推荐的资料内容呢?下面是小编精心整理的"公倍数的教案模板",请收藏好,以便下次再读!

公倍数的教案【篇1】

教学过程:

一、基础练习

找出下面每组数的最小公倍数。

4和63和75和910和6

二、完成第25页的5~8题。

1、出示第5题

⑴①让学生观察左边4题,说说这几组数有什么共同的特点。

②找出每组两个数的最小公倍数。

③比较和交流:有什么发现?

(两个数的最小公倍数就是它们的乘积。)

⑵独立完成右边4题,再比较交流发现了什么?

2、出示第6题

先由学生独立完成。

然后说说分别是什么方法求出每组上数的最小公倍数的?

3、出示第7题

先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实

际上就是求7和8的最小公倍数。

4、出示第8题

先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。

三、小结:

通过今天这一节课的学习,你有什么收获?

四、思考题

提示:先用列举法找3、4和6的最小公倍数。

习题超市:

在〔〕里写出下面各组数的最小公倍数.

2和3〔〕5和6〔〕2和7〔〕

7和1〔〕6和8〔〕18和6〔〕

4和6〔〕4和12〔〕19和20〔〕

5和8〔〕10和15〔〕7和11〔〕

8和9〔〕3和14〔〕9和12〔〕

52和13〔〕13和6〔〕10和8〔〕

6和72〔〕17和4〔〕36和27〔〕

动脑筋:

1.一个自然数除以2、5、7,商都是整数,没有余数,这个数最小是多少?

2.有两根绳子,第一根长18米,第二根长24米,要把它们剪成同样长短的跳绳,而且不能有剩余,每根跳绳最长多少米?一共可剪成几根跳绳?

3、73路汽车3分钟发一次车,96路汽车5分钟发一次车。73路和96路汽车同时出发后,再过多少时间会同时发车?

公倍数的教案【篇2】

教学目标

1、会利用列举法和短除法找出两个数的公倍数和最小公倍数。

2、理解分倍数和最小公倍数的含义。

3、在探索中发现,在发现中体验数学的自身规律的魅力,从而激发学生持久的学习兴趣。

教学重点

教学难点理解两个数的公倍数和最小公倍数的意义,能正确地运用和列举法和短除法确定两个数的最小公倍数。

教学方法合作学习法、小组探究法、知识迁移法

教学准备复习题

教学过程:

一、温故知新

1、什么叫公因数?

2、什么叫最大公因数?

3、写出下列各组的最大公因数

3和74和69和1812和30

引出新课

二、师生共研

1、公倍数和最小公倍数的认识。

以4和6这组数为例,就在50以内数表中找一找。你发现了什么?

(1)4的倍数:4、8、12、13、20、24、28、32、36、40、44、48。

(2)6的倍数:6、12、18、24、30、36、42、48。

(3)两个都有的:12、24、36、48。

引出课题:公倍数和最小公倍数

2、怎样找出两个数的最小公倍数介绍短除法

(1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。

(2)反馈时围饶着以下几个方面交流:

短除式中除数是2的什么数?

为什么在得出商2和3时不再往下除?

4和6的最小公倍数是怎么计算的?

(3)师生共同探究与交流。

(4)试一试:你能找出12和16的公倍数和最小公倍数吗?

让学生用自己喜欢的方式找一找,再用另一种验证。

重点反馈短除法。

3、探究特殊关系的两数怎样确定它们的最小公倍数。

先让学生独立完成

思考后交流自己的发现

三、全课总结

1、这节课我们交的新朋友是什么?你现在对它知道多少?

2、怎样找两个数的最小公倍数?

(1)先定关系

(2)确定用什么方法找

3、有什么问题或发现?

四、布置作业:

2、3、4、5

公倍数的教案【篇3】

教学内容:教材P25练习四的第5~8题。

教材简析:

练习四第5题在初步学会求两个数的最小公倍数之后安排,两个色块分别呈现最小公倍数的两种特殊情况。左边的色块里,每组的两个数之间有倍数与因数关系,它们的最小公倍数是较大的那个数。右边的色块里,每组两个数的最小公倍数是它们的乘积。

练习四第7、8题都是与公倍数有关的实际问题,让学生通过涂颜色、填表格、圈日期等活动体会公倍数的含义。

教学目标

1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。

2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

教学重点:掌握求两个数的最小公倍数的一些简捷的方法

教学难点:掌握求两个数的最小公倍数的一些简捷的方法

教学过程:

一、基础练习

找出下面每组数的最小公倍数。

4和63和75和910和6

二、完成第25页的5~8题。

1、出示第5题

⑴①让学生观察左边4题,说说这几组数有什么共同的特点。

②找出每组两个数的最小公倍数。

③比较和交流:有什么发现?

(两个数的最小公倍数就是它们的乘积。)

⑵独立完成右边4题,再比较交流发现了什么?

2、出示第6题

先由学生独立完成。

然后说说分别是什么方法求出每组上数的最小公倍数的?

3、出示第7题

先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实

际上就是求7和8的最小公倍数。

4、出示第8题

先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。

三、小结:

通过今天这一节课的学习,你有什么收获?

四、思考题

提示:先用列举法找3、4和6的最小公倍数。

习题超市:

在〔〕里写出下面各组数的最小公倍数.

2和3〔〕5和6〔〕2和7〔〕

7和1〔〕6和8〔〕18和6〔〕

4和6〔〕4和12〔〕19和20〔〕

5和8〔〕10和15〔〕7和11〔〕

8和9〔〕3和14〔〕9和12〔〕

52和13〔〕13和6〔〕10和8〔〕

6和72〔〕17和4〔〕36和27〔〕

动脑筋:

1.一个自然数除以2、5、7,商都是整数,没有余数,这个数最小是多少?

2.有两根绳子,第一根长18米,第二根长24米,要把它们剪成同样长短的跳绳,而且不能有剩余,每根跳绳最长多少米?一共可剪成几根跳绳?

3、73路汽车3分钟发一次车,96路汽车5分钟发一次车。73路和96路汽车同时出发后,再过多少时间会同时发车?

公倍数的教案【篇4】

教学目标

1、使学生理解公倍数和最小公倍数的含义,学会用列举法找两个数的公倍数和最小公倍数。

2、培养学生主动探究的意识和能力。

教学过程

(一)问题情境引入

师:五(4)班小天使雏鹰假日小队有甲乙两个小组,他们约定甲组每天到社区参加一次劳动,乙组每9天到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?

(二)新课展开

1.建立公倍数、最小公倍数的概念。

(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。

学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:

生甲:我们画了一条表示天数的数轴,然后分别找出甲组.乙组第一次同时去后经过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。

可由学生边讲边画出示意图,也可由教师根据学生回答板书。

教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?

生甲:还会相遇,不过画图找太麻烦了。

生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。

教师板书学生思路:

甲组经过:6天、12天、18天、24天、30天、36天

乙组经过:9天、18天、27天、36天、45天

所以经过18天、36天他们会再次相遇。

师:(指板书)请同学们观察一下,甲组经过的天数、组经过的天数实际上是什么数?

生:甲组、乙组经过的天数分别是6的倍数和9的倍数。

6的倍数:6、12、18、24、30、36

9的倍数:9、18、27、36、45

师:我们还可以用集合图来表示,师生共同画出:(图略)

师:上节课我们学习了公约数、最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?

生讨论后得出:18、36既是6的倍数,又是9的倍数,是6和9的公有倍数,即是6和9的公倍数,18是6和9的公倍数中最小的可以称为最小公倍数。

(1)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)

(2)师:那么什么叫公倍数、最小公倍数?

学生讨论后得出:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。(也可让学生自学课本后回答,教师再板书)

师:有没有最大公倍数,为什么?

生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公倍数还有54、72、90无穷无尽。

3、用列举法求两个数的公倍数、最小公倍数,你能再找一找6和4的公倍数、最小公倍数吗?

4、做课本第54页练一练第1题,学生试算后,反馈。

生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。

教师随学生叙述板书:

6的倍数有:6、12、18、24

4的倍数有:4、8、12、16、20、24

6和4的公倍数有:12、24

6和4的最小公倍数是12。

(2)师生共同小结方法。

(3)练习:<1>完成课本练一练第2题。

<2>完成课本练一练第3题。

<3>完成课本练一练第4题。

<4>完成课本练一练第5题。

(三)课堂小结

通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等有关概念外,还应注意学习方法、情感等方面的总结。)

公倍数的教案【篇5】

1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。

2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。

3、培养学生的积极学习情感,学会欣赏他人。

独立完成,一人板演,集体订正。

(评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)

生2:两个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。

生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。

生说完师出示,齐读。

(评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)

师:oh,你会吗?(生摇头。受求最大公约数的方法的影响,直觉让他有此想法。这种直觉思维值得呵护。)暂时不会不要紧,我们可以进一步探讨研究。还有其他方法吗?

生2:用分解质因数的方法,但我暂时没想出来。(师板书:分解质因数)

生3:,他们俩的方法太麻烦,我觉得把两个数直接相乘就行了。(师板书:直接相乘)

其余学生露出惊奇与赞同的表情。

生5:用直接相乘的方法求4与5的最小公倍数是对的,但求其他两个数的最小公倍数就不一定对了。如10与20,10×20=200,但它们的最小公倍数是20。

师:短乘法!我们还真实第一次听说,你能给大家讲讲吗?

该生主动走上讲台,边板书边讲:如10与20都2得20与40,再乘3得60与120,(板书如下)

生7:干脆先写出一个数的倍数,再写出另一个数的倍数。通过比较找出两个数的最小公倍数。

学生独立完成,一人板演。

公倍数的教案【篇6】

师:猜一猜,(出示边长6厘米、8厘米的两个正方形)。如果用一些长3厘米、宽2厘米的长方形纸片分别铺在这两个正方形上,你觉得可以正好铺满哪个正方形?现在请你们用这样的长方形纸片分别铺在你们准备好的这两个正方形上,看看铺的结果会怎样?

学生操作活动。

师:通过刚才的活动,你们发现了什么?说说你是怎样铺成的?为什么用这样的长方形纸片能正好铺满边长6厘米的正方形?

师:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?

生:62=363=2

师:铺边长8里面的正方形呢?每条边都能正好铺完吗?

生:83=22,82=4

师:这样的正方形还能铺满边长是多少厘米的正方形?(板书:12厘米、18厘米、24厘米)说说你的理由。明确:12、18、24除以2和3都没有余数。

师:6、12、18、24这些数与2有什么关系?与3呢?

生1:(6、12、24既是2的倍数,又是3的倍数。)

生2:只要正方形的边长既是2的倍数,又是3的倍数,这样的长方形纸片就能正好把它铺满。师:6、12、18、24既是2的倍数,又是3的倍数,它们是2和3的公倍数。(板书课题:公倍数)

师:5、2和3的公倍有多少个呢?为什么?

生:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,可以用省略号来表示

师:6、8是2和3公倍数吗?为什么?

生:8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数.

教学公倍数和最小公倍数,用一些小长方形铺一铺,学生操作时错误比较多,特别是铺长8厘米,宽6厘米的长方形的时候,学生把小长方形横、竖排起来铺,最后竟然得出能铺满的结论,仔细一看,原来把小长方形多余的折起来了,不知是学生对要求不清楚,还是例题的意思不清晰。经过示范一次后,学生再次铺一铺,就好多了。找公倍数的时候,学生都是采用的第1种简捷的方法,只是,找倍数还是四年级时所学,时间比较久了,学生有相当不部分已经遗忘了,所以课前还是进行相关的一些复习为好,不然学生在找某个数的倍数时就会有不少问题,常常把这个数的本身也是自己的倍数给忘了。

公倍数的教案【篇7】

师:今天有这么多的老师与学校领导来听课,我就先给大家讲个故事,要做到仔细听,边听边思考:故事讲了什么事情?

在我们村里,有一对兄妹因家里贫困而无法上学,从初中毕业后就想到去外面打工以维持生活。于是他兄妹俩一起来到城里,想在一家大酒店找份工作,经过同酒店的经理见面、谈话后,同时被这家大酒店招聘。酒店经理根据本公司工作分配的需要,让妹妹工作3天再休息1天,而要求哥哥工作5再休息1天。就这样他兄妹俩在五一节那天上班了。

妹妹第一个休息天时,可一想哥哥还得工作二天才可以休息,于是在想:我与哥哥这样工作下去,我们有没有一起休息的日子?

生:有。(学生随声应和着,也有一部分学生在议论。)

师:谁会帮这位妹妹解决这个困惑?

生:没有,因为他们两个的工作时间长短不同,所以没有。

生:有。因为哥哥工作3个五天就是15天,妹妹工作5个三天也是15天。

生:妹妹工作5个三天就是十五天,哥哥3个五天也是十五天,那第十六天就是共同休息。

生:能。妹妹工作三天休息一天一共是四天,哥哥工作五天体息一天一共是六天,第十二天是妹妹一共工作了九天后的第三次休息天,也是哥哥工作十天后的第二次休息天。

师:真的。可妹妹还是有点担心?同学们能准确地告诉妹妹这个月里哪天才是他们兄妹俩一起的休息日,多好啊?

师:谁能把哪日子找出来?

(学生分小组尝试寻找答案,有的一边想一边在纸上写写、找找.,)

师:看来怎样找,得讲究一些方法。老师给同学们提个建议,同学们可以借助日历在上面找日子,同桌两位同学可以通过分工合作来解决这个问题,一位同学找妹妹的休息日,另一位同学找哥哥的休息日,然后再把两人找的结果合起来对照一下,这样就可以比较快的找出两兄妹共同的休息日了。

(学生分工合作交流,寻找问题的答。)

师:有好多小组讨论的很热烈,也找到了一些的方法。现在让我们来听听他们的意见。

生:妹妹工作3天,在30内找出3的倍数,哥哥的工作日是30天内5的倍数。把它摘下来,比较就知道了。

师:你们组把它们都摘下来了吗?

生:没有。

师:我们一起把它们摘下来?

生:5的倍数:5、10、15、20、25、30,3的倍数:3、6、9、12、15、18、21、24、27、30

生:一天的休息日还没有算进去。(那位同学双手把笑列的嘴巴都蒙上了。)

生:我们小组认为,妹妹工作三天休息一天,就到了4号,哥哥工作五天休息一天,就到了6号,妹妹再过三天就是休息天8号,哥哥再过五天休息一天是12号,妹妹再工作三天休息一天也是12号。

生:还有24。妹妹再工作休息三天是16,哥哥再休息是18,妹妹再休息是20,哥哥再休息是24,妹妹妹再休息是24。

生:12的倍数都可以的。妹妹工作三天休息一天一共是4天,哥哥工作天五天休息一天是6天,求出4和6的最小公倍数。

生:那什么叫最小公倍数?(一个女孩自然地隐约地发出低声。)

师:这个问题我们先放着,呆一会同学们就会自然的明白了。其他同学还有别的方法吗?

生:画图的方法。

师:通过怎样的画图方法,(学生上台画画)比老师写的字还要漂亮。

师:你们猜猜,画的圆圈表示什么啊?

生:我知道。(学生哗然一片)

师:她还没有画完,你们就知道了。先自己想好要说几句话。

生:空白的圆圈表示工作的天数,阴影的表示休息的天数。

生:妹妹没有添上的一横一横的表示正在工作的时候,而添上的是妹妹第4天休息日,哥哥这里空白的也是正在工作,而添上横线的是在休息。它们俩同样都添上的就是他们共同休息。

生:如果问题是求他们在一年之内几天是共同的休息日,那他这样画下去不是很麻烦吗?

生:最小的是12,只要12乘以2等于二十四,再加以12,接下去算。

师:也就是说.

生:也就是说这个数是12的倍数,这个数就是他们兄妹俩共同的休息日。

生:我对他的有意见,一个数的倍数是无限的,那这样写要写到什么时候?

师:那怎么办呢?

生:要写在什么数之内?

师:我们现在找的都是在五月份的三十一天之内的,如果继续找下去..

生:还有许多

师:那怎么办呢?

生:老师,我只知道了妹妹哥哥的共同休息日都是双数。(突然一个学生举起手来说)

师:这个同学真会思考。我们刚才找的都是31天内找的,如果在一年之内,二年,三年找肯定还有很多,我们可以用..

生:省略号。

师:妹妹高兴了。现在我们用自信的语言来告诉妹妹,我们..

生:我们可以共同在一起玩了。

生:我们可以共同一起休息了。

生:我们一起休息的日子是十二号,或二十四号。

生:是五月十二号,五月二十四号。

生:终有一天会在一起玩了。

师:不用等很久,12号就可以一起休息了,也就是共同休息最早的一天是12号。

生:只要是12的倍数,我们都能在一起休息了。

师:我们通过各种方法,为妹妹解决了心中的疑惑。那我们现在来看看妹妹的休息日,先大家来读读这些数。

生:4、8、12、16、20、24、。。。。。。

师:你们发现这些数有什么特点?

生:他们相差都是4。

生:他们都是偶数。

生:这些数都是4的倍数

生:他们都是合数。

生:这些数都能被4整除。

师:这些数都能被4整除,也可以说都是4的倍数。

师:哥哥的休息日和两兄妹共同的休息日,你会有什么发现吗?

生:哥哥的休息日都是6的倍数。

生:他们共同休息日都是12的倍数。

生:他们共同休息日既是4的倍数,又是6的倍数。

生:是公倍数。因为上面4的倍数有12,6的倍数也有12。

师:12是4和6的公倍数。

生:是最小公倍数。

师:那二十四呢?

生:是最大公倍数。

生:是最大的公倍数,是五月份内最大的公倍数。

师:如果不仅仅是在五月份之内找的,那他们有没有最大的公倍数?

生:没有,因为他们的公倍数是无限的。

师:兄妹共同休息日的数都是四和六的公倍数。这其中最早的一天就是4和6的公倍数中最小的一个,我们可以给它起个名字叫什么?

生:最小公倍数。

生:那他们下个月共同休息日大概在不是4号就是5号,也不是4和6的公倍数啊?

师:我们可以找一找,24号,接下去是几(生:36),是下个月的几号?

生:5号。

师:六月五号,也是他们兄妹俩共同休息日,这就到了第36天,36就是4和6的公倍数。

师:4和6的公倍数我们还可以用图示来表示:

4的倍数

公倍数的教案【篇8】

教学目标

使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。

教学重点、难点

重点、难点:求两个数的公倍数和最小公倍数

教具、学具准备

教学过程

备注

一、问题情境引入

师:五(2)班小天使出鹰假日小队有甲乙两个小组,他们约定甲组每6天到社区参加一次劳动,乙组每9人到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?

(问题情境的材料可视学生实际情况作调整)

二、新课展开

1、建立公倍数、最小公倍数的概念。

(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。

学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:

生甲:我们画了一条表示天数的数轴然后分别找出甲组、乙组第一次同时去后过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。

可由学生边讲边画出示图,也可由教师根据学生回答板书。(图略)

教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?

生甲:还会相遇,不过画图找太麻烦了。

生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。

教师板书学生思路:

甲组经过:6天、12天、18天、28天、30天、36天......

乙组经过:9天、18天、27天、36天、45天......

所以经过18天、36天......他们再次相遇。......

(2)师:(指板书)请同学们观察一下,甲组经过的天数、乙组经过的天数实际上是什么数?

生:甲组、乙组经过的天数分别是6的倍数和9的倍数。(教书调整板书)

6的倍数:6、12、18、24、30、36......

9的倍数:9、18、27、36、45......

教学过程

备注

师:上节课我们学习了公约数,最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?

生讨论得出:18、36既是6的倍数,又是9的倍数,是6和9的公约数,即是6和9的公约数,18和9的公倍数中最小的,可以称为最小公倍数。

(3)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)

师:那么什么叫公倍数、最小公倍数?

学生讨论后得出;几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

师:有没有最大公约数,为什么?

生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公约数还有54、72、90......无穷无尽。

2、用列举法求两个数的公约数、最小公约数。

(1)师:刚才我们找了6和9的公约数、最小公约数,你能再找一找6和4的公倍数、最小公倍数吗?

做课本第57页练一练第1题,学生试算后,反馈。

生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。

教师随学生记叙板书;

6的倍数有:6、12、18、24......

4的倍数有:4、8、12、16、20、24......

6和4的公约数有:12、24......

6和4的最小公约数是12。

(2)师生共同小结方法。

(3)练习:完成课本练一练第2、3、4、5题。

三、课堂小结

通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等关概念外,还应注意学习方法,情感等方面的总结。)

四、作业《作业本》

从倍数着手,层层深入,得出公倍数与最小公倍数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合思想。

课后反思:

激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的评价,包罗万象,既有对学习方法的评价,又有对学习情感的评价,也有对自己的鞭策鼓励。这样的评价,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。

公倍数的教案【篇9】

教学内容:

教材第88、89页的内容及第91页练习十七的第1、2题。

教学目标:

1.理解两个数的公倍数和最小公倍数的意义。

2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

3.培养学生抽象、概括的能力。

教学难点:

教学具准备:

多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

1、在数轴上标出4、6的倍数所在的点。

拿出老师课前发的画有两条直线的纸。

在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

2、引入公倍数。

(l)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

说说看,什么叫两个数的公倍数?

3、用集合图表示。

如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

4、引人最小公倍数。

学生汇报后问:

(1)为什么三个部分里都要添上省略号?

(2)4和6的公倍数还有哪些?有没有最大公倍数?

(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

4,8,

16,20,…

前面学习公因数和最大公因数时,我们研究了用正方形地砖铺地的实际问题。今天,我们再来研究一个用长方形墙砖铺成正方形的实际问题出示例1。

(1)操作探究。

学生任意选择操作方式。

①用长方形学具拼正方形。

②在印有格子的纸上面画出用长方形墙砖拼成的正方形。边操作、边思考:拼成的正方形边长是多少?与长方形墙砖的长和宽有什么关系?

(2)反馈并揭示意义。

①请选用第一种操作方式的学生上来演示拼的过程,并说一说拼出的正方形边长是多少。老师根据学生的演示板书正方形边长,如6dm

②请选第二种操作方式的学生汇报,老师让多媒体课件闪现边长为6dm、12dm……的正方形。

③正方形边长还有可能是几?你是怎样知道的?

④观察所拼成的边长是6dm、12dm、18dm…的正方形与墙砖的长3dm、宽2dm的关系。体会正方形的边长正好是3和2的公倍数,而6是这两个数的最小公倍数。

思考:两个数的公倍数与最小公倍数之间有什么关系?(最小公倍乘2乘3…就是这两个数的其他公倍数。)

⑤阅读教材第88、89页的内容,进一步体会公倍数和最小公倍数的实际意义。

(1)画一画,说一说。

小松鼠一次能跳2格,小猴一次能跳3格,它们从同一点往前跳,跳到第几格时第一次跳到同一点,第2次跳到同一点是在第几格?第3次呢?

引导学生将本题与例1比较:内容不同,但数学意义相同,都是求2和3的公倍数和最小公倍数。

(2)完成教材第89页的“做一做”。

学生独立思考,写出答案并交流:4人一组正好分完,说明总人数是4的倍数;6人一组正好分完,说明总人数是6的倍数。总人数在40以内,所以是求40以内4和6的公倍数。

(3)独立完成教材第91页练习十七的第2题。

(4)完成教材第91页练习十七的第1题。

指导学生找到写出两个数的公倍数的简便方法,先找出两个数的最小公倍数,再用最小公倍数乘2、乘3.得到其他公倍数。

四、回顾整理、反思提升。

通过今天的学习,你有什么收获?

本节课我们共同研究了公倍数和最小公倍数的意义,并通过解决铺长方形地砖的问题,了解了两个数的公倍数和最小公倍数在生活中的应用。

4的倍数:4、8、12、16、20、24、28、36……

教后反思:

优点:本节课主要学习怎样进行约分,在学习中让学生自己总结方法,找到约分的技巧,并找到适合自己的方法,总结出约分时的注意事项。本节课教学内容充实,教学目标达成度高。

不足:首先在分层练习的时候题目较简单,没有体现由易到难,分层练习这个过程。其次本节课从整体上来说更像一节纯粹的做练习课,缺乏必要的讲解和语言文字的修饰,更只是简单的习题罗列。

公倍数的教案【篇10】

教材分两段:

例1教学公倍数和最小公倍数的认识,例2教学求两个自然数的公倍数和最小公倍数;

例3教学公因数和最大公因数的认识,例4教学求两个自然数的公因数和最大公因数。

安排了实践与综合应用“数字与信息”。

1.借助操作活动,经历概念的形成过程。

以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。以公倍数为例,教学时应让学生经历下面几个环节:第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是“既是……又是……”即“公有”。第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。在此基础上,教材注意借助直观的集合图显示公倍数的意义。公因数的教学同样如此。

为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。

2.提倡思考方法多样化,找公倍数和公因数。

课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。以求8和12的公因数为例,学生可能会分别写出8和12的所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或着先找出12的因数,再从中找出8的因数。

在找出公倍数或公因数之后,还应引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的`数表示的意义,体会初步的集合思想。

对于两个数有特殊关系时的最小公倍数和最大公因数,教材在练习中安排,引导学生探索简单的规律。由于教材不讲互质数,所以两个互质数的最小公倍数是它们的乘积,最大公因数是1这样的结论不要出现,只要求学生在具体的对象中感受。

为了拓宽学生对求最小公倍数和最大公因数方法的认识,教材在“你知道吗”栏目里介绍了“辗转相除法”求最大公因数和用短除法求最大公因数和最小公倍数,并介绍了两个数的最大公因数和最小公倍数的符号表示。教学时,可以让学生结合阅读进行思考。必要时,教师可以进行简单的讲解。

3.通过调查、交流和尝试,感受数在表达信息中的作用。

教学“数字与信息”这一实践与综合应用时,应注意引导学生通过调查和交流参与活动,感受数字在表达信息中的作用。课前调查的内容有:(1)110、112、114、120等特殊电话号码是什么号码;(2)自己所在学校和家庭居住地的邮政编码;(3)自己家庭成员的出生日期和身份证号码;(4)生活中用常见的数字编码表达信息的例子;(5)自己学籍卡上的学籍号。课后调查的内容有:(1)去邮局调查有关邮政编码的其他信息;(2)生活中还有哪些常见的数字编码。教学时,应引导学生充分开展交流活动:比如,为什么有些编号的开头是0?怎样从身份证中看出一个人出生的日期?身份证上的数字编码有哪些用处?等等。

在此基础上,教材在“做一做”中让学生结合实际问题,尝试用数字编码表达信息。比如,为某宾馆的两幢客房大楼的房间编号,为一年级新生编号,还安排了与方位和距离联系的问题,用编码表示家大约在学校的什么位置。

教学时,可以根据需要和时间情况,灵活安排教学时间。

公倍数的教案【篇11】

教学要求 使学生在理解的基础上学会求三个数的最小公倍数。

教学重点 求三个数的最小公倍数与求两个数的最小公倍数的区别。

教学难点 会求三个数的最小公倍数。

教学过程

一、创设情境

求下面各组数的最小公倍数。(学生做完后,集体订正时,点几名学生说怎样求两个数的最小公倍数)

5和87和2812和16

二、揭示课题

我们已经学会求两个数的最小公倍数,怎样求三个数的最小公倍数呢?现在我们一起来学习。(板书课题:求三个数的最小公倍数)

三、探索研究

1.教学例4。

(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)

8=222

12=223

30=235

(2)分组讨论。

①8、12、30的最小公倍数必须包含哪些质因数?

②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5,(22235)这些质因数是否包含了8、12和30所有的质因数?

③8、12和30的最小公倍数是多少?

(3)归纳:8、12和30的最小公倍数,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的最小公倍数。

(4)求三个数的最小公倍数的方法。

求三个数的最小公倍数与求两个数的最小公倍数的方法大同小异。(板书短除式)

81230

①先用什么数作除数去除?

②再用什么数作除数去除?(重点指导:另一个数要移下来)

③一直除到什么时候为止?

④最后怎样做就可以求出三个数的最小公倍数?

(5)比较求三个数的最小公倍数与求两个数的最小公倍数有什么不同?(先可让学生说,然后老师归纳)

相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。

不同点:求两个数的最小公倍数时,除到两个商是互质数这止;而求三个数的最小公倍数时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。

四、课堂实践

1.做教材第75页的做一做。

2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在最小公倍数里多取了一个质因数2。

3.做练习十五的第13题,学生口答。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

1.做练习十五的第10、11、14题。

2.有兴趣、有余力的学生可做练习十五的第21*~23*题。

GZ85.com延伸阅读

因数和倍数教案


根据教学要求老师在上课前需要准备好教案课件,教案课件里的内容是老师自己去完善的。要知道教案课件写的越好越充分,老师教学水平也不会很差。编辑做了大量的努力为您带来这篇精心编辑的“因数和倍数教案”,品味这篇文章带你进入新的世界!

因数和倍数教案 篇1

苏教版小学数学《倍数和因数》课件

教学目标:

1.通过操作活动得出相应的乘除法算式,帮助学生理解倍数和因数的意义;探索并掌握求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

分析、概括能力,培养有序思考能力。

3.使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重点:

理解倍数和因数的意义,探索求一个数的倍数和因数的方法。

教学难点:

发现一个数的倍数和因数的特征,探求并掌握求一个数的所有因数的方法。

教学准备:

每桌准备12个一样大小的正方形。

教学过程:

一、师生互动,引入新课

师:同学们,今天这节课,我们一起学习《倍数和因数》(板书课题)。

看了这个课题,你想了解哪些内容?

生:什么是倍数和因数?

怎么找倍数和因数?

学习倍数和因数有什么用?

(师相应标记板书)

师:接下来我们就围绕同学们提出的问题一起探究发现。

二、操作感悟,形成概念

1.操作感知,初步理解概念

(1)师:请看大屏幕,用12个同样大小的正方形拼成一个长方形。想一想,每排摆几个,摆了几排?有几种不同的摆法?请同学们动手摆一摆,并用乘法算式把自己的摆法表示出来,完成作业纸上的活动一。

(2)学生操作并用乘法算式记录摆法。

(3)资源收集并交流。

师:谁来说说看,你是怎么摆的,乘法算式是什么?

生说摆法、算式。预设:4×3=12 6×2=12 12×1=12

师:大家可别小看了这些算式,今天我们要研究的内容就在这里。

(4)初步感知概念。

师:咱们先看四行的一句话。

学生自己阅读课本。

师:你看明白了吗?请大家合上课本,谁能够看着大屏幕说说看?

请一学生说,同时课件出示:4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。

师:你真会学习。现在,大家知道什么是倍数和因数了吗?

为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。

2.问题推进,进一步理解概念。

试一试:出示6×2=12 12×1=12 5×3=15 21÷7=3 3+4=7

师:老师这里有一些算式,你能不能也来说说谁是谁的倍数、谁是谁的因数呢?

自己先轻轻地说,再说给你的同桌听。

学生自己练习说。

师:谁先来试试?

指名说。

①6×2=12

师追问:能不能这样说:6和2是因数,12是倍数?

强调:我们一定要说清楚,谁是谁的倍数,谁是谁的因数。

②12×1=12

师:12是12的倍数,12是12的因数,这里说到的4个12,到底指乘法算式里的哪一个12呢?谁来边指边说?

师:看来一个数本身——既是自己的倍数,也是自己的因数。

③21÷7=3

师:你是怎么看出来的呀?

生:可以想到乘法算式7×3=21

师:乘法和除法可以相互转化,原来我们不仅能在乘法算式中找到一个数的倍数和因数,也能在除法算式中找到一个数的倍数和因数。

④3+4=7

师:这道算式表示的是加法关系,不存在我们所说的倍数因数关系。

三、探索方法,发现特征

1.探索求一个数因数的方法。

(1)师:刚才在一些乘法算式或除法算式中,我们知道了什么是因数,什么是倍数。想一想,如果老师请你找出18的因数,该怎么办?请你试着找一找,完成作业纸上活动二的第1题。(板书:找一找)

学生独立尝试。

资源预设:

①18的因数有:2,9,3,6。(找不全)

②18的因数有:1,18,2,9,3,6。(顺序乱)

③18的因数有:1,2,3,6,9,18。(不重不漏,有序)

(2)交流:请看大屏幕,老师这里有几位同学的作业,仔细观察,18的因数都找全了吗?

师:先来比一比第一份和第二份作业,谁来说一说?

生:第一位同学没有找全。

师:第二位同学是不是找全了?那我们请第二位同学说说看,我们怎样能做到不重复、不遗漏呢?你是怎么找的?

生1:我是一对一对地找的。想乘法算式,先想(1)×(18)=18,再想(2)×(9)=18……

生2:我是想的除法算式。先用18÷(1)=(18),然后用18÷(2)=(9)……

师:无论是乘法还是除法算式,从1乘起(除起),找的时候都是一对一对找的,都是不错的方法。

师:老师这里还有一份作业,比一比,你又有什么想说的?你更喜欢哪一种?

生:更喜欢第三个同学的。因为他写的很有序。

师:我们怎样能做到不重复、不遗漏、又有序呢?你是怎么找的呢?

生:我是想的除法算式。先用18÷(1)=(18),写的时候把1写在最前面,18写在最后面。

然后用18÷(2)=(9)……

师:其他同学听明白了吗?

同时课件出示:()×()=18

18÷()=()

根据学生的回答演示,一前一后写因数。

师:看来我们可以想乘法或除法算式,按顺序一对一对找,写的时候一前一后,用逗号把数隔开。一直找到两个因数相差很小或相等为止。这样就能做到不重复、不遗漏、又有序。你学会了吗?

(16的因数。完成作业纸上活动二的第2题。(板书:试一试)

学生独立找16的因数。

师:谁来说说看你是怎么找的,找到了哪些?

学生回答。

2.发现一个数因数的特征。

(1)师:请大家观察一下这几个数的因数,你有什么发现?

指名学生回答。

预设:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

(2)方法指导。

师:这只是我们观察了几个两位数的因数发现的因数特征,最多只能算是猜想。要想说明这个猜想是正确的,我们可以再举几个不同范围的自然数(如一位数、三位数),也来找一找它们的'因数,看看它们的因数是否也有同样的特征。

(3)学生扩大范围举例验证。

(4)交流验证情况,尤其关注有没有反例。

指名几位同学说说自己验证的情况。

师:刚才大家举了大量的例子进行验证,每个同学都举了不同范围中的不同的数,这样一来全班就有几百个例子了。观察它们的因数是不是存在我们发现的特征,有没有不具备这种特征的例子?

(5)归纳得出结论。

师:谁来试着小结一个数的因数具有什么特征?

生小结:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

3.方法回顾。

师:刚才我们经历了“找一找”“试一试”“想一想”这几个过程对因数进行了研究,想一想接下来我们会研究什么?

4.迁移方法,研究倍数。

(2、5的倍数,完成作业纸上活动三。

(2)学生独立完成。

教师呈现资源,组织交流。(预设:缺本身,缺省略号,比较完整的。)

师:比一比这三位同学的作业,你更喜欢谁的?为什么?

(3)师:有的同学写得又对又快,还有序,有什么好方法吗?

学生交流并小结:要找一个数的倍数,只要把这个数和非0自然数依次相乘。

(4)组织交流:

师:与因数的特征比一比,一个数的倍数又有怎样的特点呢?

指名学生回答。相互补充。

小结:我们发现了:一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。同学们如果有兴趣,课后可以举一些其他范围的自然数去验证一下。

师:大家很了不起,根据研究因数的内容和过程,自己尝试着研究了倍数,这是大家爱动脑、不断思考的结果。

四、巩固练习,完善新知

师:想不想检查一下自己掌握得如何?

1.“想想做做”的第l题。

学生表述后强调哪个是哪个的倍数(或因数)。

2.“想想做做”的第2题。

学生填好后引导学生说一说:表中的“应付元数”其实都是什么?表格中为什么用省略号?

3.“想想做做”的第3题。

学生填好后引导学生说一说:表格中所有数都是什么?这个表格中为什么没有省略号?

4.游戏

“找朋友”:让学生在作业纸反面写上自己的学号,找出自己学号数的所有因数,使学生发现每个学号数的因数都在全班的学号数以内;再让学生找一找自己学号数的倍数,并说一说能不能在全班学号数内部找到一个,还有其他的吗?

五、全课总结,拓展延伸

师:通过今天这节课的学习,你有什么收获?现在你能回答课开始提出的问题了吗?相互说一说。

学生交流反馈。

师:一个个数看上去非常枯燥,可是如果对它进行深入地研究,又会发现它们就像人与人之间一样,有着不可割裂的联系,相互依存,隐藏着无穷的乐趣。希望同学们在以后的学习中,也能像今天这样积极动脑,主动探索,在数学学习中增长智慧,享受快乐!

因数和倍数教案 篇2

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

b、找倍数:

1我们学会了一起寻找因素。你能找到4的倍数吗?

生活活动报告:4、8、12、16

师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用4去乘1、乘2、乘3、乘4、…)那么4的倍数最小是几?最大的你能找到吗?

2.让我们做1和2:找到5和9的倍数。

汇报5的倍数有:5,10,15,20,……9的倍数有: 9, 18, 27, 36……3、师:我们知道一个数的因数的特征,那么一个数的倍数特征是怎么样的呢?

学生**

(一个数的倍数是无穷大的,最小的倍数是它本身,没有最大的倍数)注释(0)活动3[练习]

三、自主练习

课堂练习,课件展示

评论(0)活动4【作业】

四、课堂总结

我们一起来回忆一下,这节课你有什么收获呢?

板书设计:

因数与倍数

最小 1 最小本身

因数最大本身倍数最大无

个数有限个数无限

因数和倍数教案 篇3

教学目标:

1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。

交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。

3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。

教学重点:

理解因数和倍数的含义,知道它们的关系是相互依存的。

教学难点:

探索并掌握找一个数的因数的方法。

教学准备:

每个学生的学号纸。

教学过程设计:

一、认识倍数、因数的含义

1、操作活动。

(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。

(交流,分别板书4×3=1212×1=126×2=12

2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。

3、今天我们就来研究倍数和因数的知识。

(揭示课题:倍数和因数)

(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?

指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?

小结:倍数和因数是指两个数之间的关系,他们是相互依存的。

(2)出示:20×3=60,36÷4=9。同桌相互说一说谁是谁的倍数?谁是谁的因数?

指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。

二、探索找一个数倍数的方法。

1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。

2、提问:什么样的数是3的倍数?你能按从小到大的顺序有条理的说出3的倍数吗?能全部说完吗?可以怎么表示?

3、议一议:你发现找3的倍数有什么小窍门?

明确:可以按从小到大的顺序,依次用3……与3相乘,乘得的积就是3的倍数。

4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?

生独立完成,集体交流。注意用……表示结果。

5、观察上面的3个例子,你发现一个数的倍数有什么特点?

根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。

6、做“想想做做”第2题。

学生填表后讨论:表中的应付元数是怎么算的?有什么共同特点?你还能说出4的哪些倍数?说的完吗?

二、探索求一个数因数的方法。

1、学会了找一个数倍数的方法,再来研究求一个数的因数。

你能找出36的所有因数吗?

2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。

3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?

板书:(有序、全面)。正因为思考的有序,才会有答案的全面。

5、试一试:请你用有序的思考找一找15和16的因数。

指名写在黑板上。

6、观察发现一个数的因数的特点。

一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。

7、“想想做做”第3题。

生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。

四、课堂总结:学到这儿,你有哪些收获?

五、游戏:“看谁反应快”。

规则:学号符合下面要求的请站起来,并举起学号纸。

(学号是5的倍数的。

(谁的学号是24的因数。

(学号是30的因数。

(谁的学号是1的倍数。

思考:

1、倍数和因数是一个比较抽象的知识,教学中让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义

2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初

步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。

在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。

2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。

用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。

……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。

为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。。

因数和倍数教案 篇4

刘浩中心小学许夏敏

教学目标:1进一步加深学生对方程意义的理解,巩固用等式的性质解简易方程的方法,理解简单实际问题中数量关系,并能根据等量关系解决实际问题。

2进一步理解公倍数和公因数,最小公倍数和最大公因数的意义,掌握求最大公因数和最小公倍数的方法。

3通过小组合作交流,培养学生的数学交流能力和合作能力。

教学重点:理解方程的意义,巩固解方程的方法,进一步掌握求最小公倍数和最大公因数的方法。

教学难点:理解实际问题中的数量关系,根据数量关系列方程解答。

教学实施:一、疏通概念

1、同学们,本学期的内容已经全部学完了。从今天开始,我们要对所有的知识进行与复习。首先让我们一起走进“数的世界”,在十个单元中哪些是与数打交道呢?根据学生回答板书方程

公倍数与公因数

认识分数

分数的基本性质

分数的加减法

2、揭题

今天这节课我们先来复习方程,公倍数与公因数(出示课题)

3、讨论与思考:本学期学习了方程的哪些知识?

什么是公倍数与公因数?

怎样求两个数的最小公倍数和最大公因数?

二、专项练习

1、方程的复习

⑴与练习第1题,在方程下面打√,集体汇报时说出为什么不是方程?

等式

方程

X+2.5<828-12=165a分别叫什么?你觉得方程与等式有什么关系?你能用一副图来表示吗?

⑵与复习第2题

提问:根据什么来解方程?指名4人板演,校对时说说是怎么想的?

出示练一练,找出括号中方程的解

①3x=1.5(x=0.5x=2)

②x-210=30(x=240x=180)

③x÷5=120(x=24x=600)

⑶列方程解决实际问题

?米11.7平方米?米

2.7米

6.9米3.9米

学生独立完成,集体订正时说说根据什么数量关系式列方程的?

教师,用方程计算可以使很多问题变的简单,容易解决。

⑷与复习第4题学生读题后独立用方程解决。

2、公倍数和公因数的复习

对公倍数和公因数你有那些了解?怎样求两个数的最小公倍数和最大公因数呢?

出示练习①写出每组数的最小公倍数

6和94和82和3

②写出每组数的最大公因数

18和2415和602和3

请做得快的同学介绍经验

三、全课

今天我们复习了什么,你有哪些收获?

四、课堂作业

与复习第3题、第5题、第6题。

教学反思

这是一堂复习课,主要复习方程、公倍数和公因数两个单元的内容。由于课堂时间有限,因此对知识的回顾与还不是很系统。特别是对潜能生而言,教师的提问不能及时沟起他们对知识概念的回忆,因此跟基础较好的同学相比就形成了鲜明的落差。

在列方程解决实际问题时,正确掌握题中的数量关系是关键,也是学生理解中的难点。大部分学生在列方程时,因为没能找出题中的数量关系而把方程列错,或者方程列到了,却不能把方程抽象成数量关系式。诸如这些现象,主要是学生的抽象能力还不够完善,分析问题的能力还不够仔细,深入,有待进一步的发展。

在公倍数和公因数一单元中,问题不大,主要是求两个数的最小公倍数和最大公因数。对较大的两个数,如求100以内两个数的最小公倍数和最大公因数,出错率较大。因此课后还应多补充一些相应的练习。

因数和倍数教案 篇5

教学目标:

1.结合整数乘、除法运算初步认识倍数和因数的含义;

2.自主探索求一个数的倍数或因数的方法;

3.在认识倍数和因数以及探索一个数的倍数或因数的过程中,感知因数和倍数的依存关系,进一步体会数学知识之间的内在联系。

教学重点:

理解因数和倍数的含义。

教学难点:

自主探索并初步总结找一个数的倍数和因数的方法。

教学过程:

一、课前谈话:(略)

二、新课引入:

1.师:同学们的桌上都放着12个同样大的正方形,请你每次用这12个正方形拼成一个长方形,注意你不同的摆法?(每排摆几个?摆了几排?)看谁的方法多?速度快?会用算式表示你的摆法吗?

学生交流几种不同的摆法。随着学生交流屏幕上一一演示。2.进行交流:

如:每排摆了几个,摆了几排?你会用算式表示吗?

师:12个同样大小的正方形能摆3种不同的的长方形,可以用乘法算式或除法算式来表示,千万别小看这些算式,今天我们研究的内容就在这里。我们以第一道乘法算式为例。(屏幕出示)

43=12,

师:在这个算式中,你认为4、3、12有什么关系呢?

我们一起来读一读:

因为:43=12,

所以:12是4的倍数,12也是3的倍数,

4是12的因数,3也是12的因数,

读读看,能读懂吗?

继续出示:因为:62=12 ,所以

因为:121=12 ,所以

谁也来出个乘法算式说一说。(略)

三、探索研究:

1.师:我们刚才初步认识了因数和倍数,下面要进一步来研究因数和倍数。(出示课题:因数 倍数)

屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

4、5、18、20、36

师:老师在听的时候发现4、18都是36的因数,你也发现了吗?

师:4、18、都是36的因数。

师:36的因数只有这2个吗?

师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数全部找出来(既不重复又不遗漏)?请你选择你喜欢的方式,可以同桌合作,也可以独立完成,找出36的所有因数。如果能把怎么找到的方法写在纸上更好。

学生填写时师巡视搜集作业。

2.交流作业。(略)

板书:36的因数:1、2、3、4、6、9、12、18、36。

师:通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?试一个。

15的因数有 再试一个:

16的因数有

观察36、15、16的所有因数,你有什么发现吗?

边交流边板书:

个数 最小 最大

因数 1 它本身

倍数

3.师:找一个数的因数掌握的不错,会找一个数的倍数吗?

3的倍数:(找不完怎么办?) 有小巧门吗? (略)

板书:3的倍数:3、6、9、12、15

找出7的倍数:7、14、21、28、35

交流方法。在找一个数倍数时发现:板书:

个数 最小 最大

因数 有限的 1 它本身

倍数 无限的 它本身 (没有的)

30以内5的倍数:(注意反馈)5、10、15、20、25、30

4.判断:(下面的说法是不是正确?)

⑴ 12是4的倍数,12也是6的倍数。

⑵ 8是16的因数,8又是4的倍数。

⑶ 1没有因数。

⑷ 5是倍数。

小结:倍数或因数都是指两个数之间的关系,不能单独说

我们在研究倍数和因数时,所说的数一般指不是0的自然数。

板书完整: 不是0的自然数

四、实践应用

师:因数和倍数的知识在实际生活中有很多运用。

1.春游。

乘坐小艇每人应付4元,你能把下表填写完整吗?

24个同学表演团体操,把队伍的排列情况填写完整。

2.做操。

表中的排数和每排人数与24都有怎样的关系?反馈:表中的'应付元数都有什么共同特点?(都是4的倍数)

排数是24的因数。每排的人数呢?(也都是24的因数。为什么?)

3.存钱。

有一位青年志愿者要省下30元生活费,买学习用品送给生活困难的同学。他每天存出一样的钱数,请问有几种存法?

(30的因数:1、2、3、5、6、10、15、30)

师:看来因数倍数大量存在于我们的生活中。

五、课堂小结。

刚才我们一起研究、认识了倍数和因数,你学得怎样?

公倍数教案优选十五篇


资料一般指可供参考作为根据的材料。在平日里的学习中,我们时常会使用到某些资料。资料可以作为参考给我们一些学习工作灵感。那么,你知道资料的主要内容是什么吗?以下为小编为你收集整理的公倍数教案优选十五篇,建议你收藏本页和本站,以便后续阅读!

公倍数教案(篇1)

本节课,我充分体现这一新课程理念。上课开始我设计了一个互动游戏:

1.让学生按号数先进行报数。

2.请号数是4的倍数的同学站到教室左边。号数是6的倍数的同学站到教室的右边。(并把对应的号数填到黑板上)

3.为什么12号、24号、36号和48号两边都要站呢?说说你发现了什么?如此为数学提供现实素材,积累直接经验获得对公倍数、最小公倍数概念的直接体验,积累数学活动的经验。

我在设计练习题时,先按书中的内容针对重点、难点设计一些综合性练习题,以适当重复来控制学生对知识的掌握。设计练习内容的难易程度都有,必做题起点稍低,让学生能通过独立思考和教师的正确辅导,一次次地去获得作业练习的成功;选做题有一定难度,对差生不做要求,可让优生产生兴趣尽力去完成,做到“优生吃得饱、差生吃得了、中游赶得上、下游丢不了”,真正让全班学生练中有乐、练有所获。

公倍数教案(篇2)

《最小公倍数》是浙教版小学数学第十册的教学内容,是最小公倍数的第一课时,是引导学生在自主参与、发现、归纳的基础上认识并建立最小公倍数的概念的过程。新课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。在此之前,学生已经了解了整除、倍数、约数以及公约数和最大公约数。例1通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出6的倍数、9的倍数与它们公倍数之间的关系,这一内容的学习也为今后的通分、约分学习打下了基础,具有科学的、严密的逻辑性。

本节课的教学目标是:

1、建立公倍数与最小公倍数的概念。使学生理解公倍数和最小公倍数的含义。

2、学会用列举法找两个数的公倍数和最小公倍数。

3、初步培养学生的数学应用意识与解决简单实际问题的能力。

4、培养学生主动探究的意识和能力,培养学生的比较推理与抽象概括能力。

本堂课的教学重点在于公倍数与最小公倍数的概念建立。教学难点在于运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

公倍数教案(篇3)

我今天说课的题目是小学数学五年级下册最小公倍数。根据新课标的理念,对于本节课我将以教什么、怎么教、为什么这样教为思路,从教材分析、教学目标、教学方法、教学过程等几个方面加以说明。

首先,先谈一谈我对教材的理解

这节课是以公倍数、最小公倍数概念为主的教学,它是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。

其次我谈一下学情,小学生的动手欲望较强,学生认识数的概念时更愿意自主参与,自己发现。但是,学生个人的解题能力有限,因此通过小组合作的学习方式能更好地激发他们的数学思维,通过交流获得数学信息。

根据新课标的标准,教材特点、学生的实际,我确定了如下的教学目标:

知识与能力目标1、理解公倍数、最小公倍数两个概念的意义。2、初步了解两个数的公倍数和最小公倍数在现实生活中的应用。过程与方法目标经历公倍数和最小公倍数的认识过程,体验观察思考,迁移发现,理解运用的学习方法。情感态度与价值观在学习活动中,体验探索知识过程的乐趣,激发学习的兴趣,培养学严谨认真的学习态度。

基于以上对教材、学情的分析和教学目标的设立,我确定本课的重点和难点是:

教学重点理解公倍数和最小公倍数的概念。教学难点掌握公倍数和最小公倍数的概念。

考虑到小学生的现状,基于本节课的特点,我主要采用了以下的教学方法:情境教学法、活动教学法

德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则教给学生如何发现真理。

在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:

动手操作法、分析归纳法、合作探究法。

下面,主要谈谈对本课教学过程的设计

首先进入的是导入新课部分,在这一部分采用设置情景导入法,让同学们都拿出课前准备的一些长3厘米、宽2厘米的长方形纸片以及边长为6cm、8cm的正方形纸片。并且提出问题:请同学们用这些长方形纸片去铺一铺你手中的这两个正方形,看看是否可以正好铺满吗?

并向同学们解释正好铺满的意思就是无空隙,不重叠。当同学们动手操作之后发现用长3厘米、宽2厘米的长方形纸片只能铺满边长为6cm的正方形纸片,而不能铺满边长为8cm的正方形纸片。此时引导学生思考为什么用长3厘米、宽2厘米的长方形有时可以正好铺满正方形,有时却不能,这是怎么回事呢?

学生通过思考及同桌交流以后能够答出如果正方形边长是2的倍数,又是3的倍数时,这个正方形就可以被正好铺满,否则就不能。这时我就顺势总结:像6、12、这些数,既是2的倍数,又是3的倍数,这就是我们今天这节课要学习的内容公倍数。这样做可以激发学生主动学习的兴趣,拓展学生的思维,培养学生的动手操作能力。

接下来进入的是讲授新课部分,在这一部分我主要设计两个环节:

第一环节:归纳总结出公倍数的概念,针对导入时的情景,继续向学生提问:用长3厘米、宽2厘米的长方形还能够正好铺满哪些正方形纸片。这个问题比较简单同学们能够容易得出答案。通过这个实例让同学来总结归纳概括出公倍数的概念。这样有利于培养学生的概括、归纳能力,这也是新课标理论所要求的。

接下来进入第二环节:合作探究环节

在这一环节,主要是让学生通过合作探究寻找两个数的公倍数的方法,这样做有助于培养学生的合作探究能力。

把全班同学分成三个学习小组,以小组学习的方式思考并回答问题:找一找6和9的公倍数有哪些?其中最小的公倍数是几?讨论结束后,每个小组派代表来和大家分享他们的成果。在讨论过程中,我会巡视,时刻注意其讨论动向,也会时不时加入他们的讨论当中。

通过讨论之后,学生得出找公倍数的方法可能有以下几种:

第一组:依次分别列举6和9的倍数。先依次列举6的倍数和9的倍数,圈出它们公有的倍数,这样就找到了6和9的公倍数是18、36、54等,其中最小的一个18就是6和9的最小公倍数。(板书)

第二组:只依次列举6的倍数,再从6的倍数中圈出9的倍数,圈出的这些数就是6和9的公倍数。

第三组:只依次列举9的倍数,再从9的倍数中圈出6的倍数,圈出的这些数就是6和9的公倍数。

最后教师和同学们一起总结:找这两个数的公倍数可以先分别有序列举两个数的倍数,再找出两个数公有的倍数。也可以先列举其中一个数的倍数,再从中找出另一个数的倍数。

接下来进入的是巩固练习环节,为了加深对公倍数和最小公倍数的认识,给出集合图,让学生把50以内6和8的倍数、公倍数分别填在下面的圈里,请一位同学到黑板上作,其它同学在自己练习本上作。作完以后学生互评。

最后是小结、拓展延伸环节

通过提问:同学们,通过今天这节课学习,你有哪些收获呢?伴随着同学们的回答结束今天的课程。

公倍数教案(篇4)

1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。

2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。

3、培养学生的积极学习情感,学会欣赏他人。

独立完成,一人板演,集体订正。

(评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)

生2:两个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。

生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。

生说完师出示,齐读。

(评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)

师:oh,你会吗?(生摇头。受求最大公约数的方法的影响,直觉让他有此想法。这种直觉思维值得呵护。)暂时不会不要紧,我们可以进一步探讨研究。还有其他方法吗?

生2:用分解质因数的方法,但我暂时没想出来。(师板书:分解质因数)

生3:,他们俩的方法太麻烦,我觉得把两个数直接相乘就行了。(师板书:直接相乘)

其余学生露出惊奇与赞同的表情。

生5:用直接相乘的方法求4与5的最小公倍数是对的,但求其他两个数的最小公倍数就不一定对了。如10与20,10×20=200,但它们的最小公倍数是20。

师:短乘法!我们还真实第一次听说,你能给大家讲讲吗?

该生主动走上讲台,边板书边讲:如10与20都2得20与40,再乘3得60与120,(板书如下)

生7:干脆先写出一个数的倍数,再写出另一个数的倍数。通过比较找出两个数的最小公倍数。

学生独立完成,一人板演。

生:中间交叉的地方不能只填最小公倍数,它们公有的地方应填它们的公倍数。还要填24 36…

生:我发现4与6的公倍数就是最小公倍数的1倍、2倍、3倍、4倍…,有无数个。

师:你的发现很有价值。正是如此,我们有必要研究最小公倍数,公倍数的个数是无限的,没法研究最大公倍数。

生6:这种方法太麻烦,我仍能用短乘法。(生6不服气的走上讲台,边板演边讲。)

生:他是已知4与6的最小公倍数是12,又瞎凑的。(其他同学异口同声。)

生:似乎有这种嫌疑。(生笑)但我们评价别人,要指出不足,更要学会发现有价值的东西。同学们想一想:为什么用4乘3,而用6乘2呢?

生:我们小组把4与6分解质因数,4=2×2,6=2×3,比较4与6的质因数我们发现4比6少了一个质因数3,,因此用4去乘它缺少的3。6比4少了一个质因数2,而用6去乘它缺少的2。

师:你们小组善于利用学过的知识解决新问题。能讲得再慢一点吗?

生:我能很形象的讲清楚。(主动走上讲台,边板书边讲。)4与6的最小公倍数肯定要4与6所有的质因数,4=2×2,6=2×3,所以4与6的最小公倍数应含有两个2,一个3,也就是2×2×3=12。因此要求4与6的最小公倍数只要用(2×2)×3或2×(2×3)。(学生露出会意的笑容,听课教师也情不自禁的鼓起掌来。)

师:这么难的知识被你讲得形象生动,真了不起!同学们刚才用的方法就是用分解质因数的方法求两个数的最小公倍数。先把这两个数分解质因数,找出它们公有的质因数,再找出它们独有的'质因数,然后用它们公有的质因数去乘它们独有的质因数就求出了它们的最小公倍数。(板书如下)

师:刚才有的同学提出用短除法求两个数的最小公倍数,下面就以小组为单位研究短除法。

小组合作完成,一组板演并讲解:先用它们公有的质因数2去除,再用3去除,3与5互质。所以18与30的最小公倍数是2×3×3×5=90。(生讲解师板书)

师提问:用什么数去除?除到什么时候为止?把哪些数相乘?为什么?

做一做 用短除法求30与42的最小公倍数。

独立完成,说说解答过程。

(评析:“探讨求法”是本节课的重点,同时又是难点,但学生思维活跃,情绪高昂,不时有惊人的发现。教师是如何使这节枯燥的数学课变得生动有趣呢?我想主要是实现以下“四化”:1、探索自主化。学生只有感觉到自己是学习的主人,而不是被当作灌输的容器,才能真正激发他们的学习热情。最小公倍数的求法很多,而且利用短除法与分解质因数的方法算理很难理解。教师直接把这一问题抛给学生,这样,不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。2、教学情感化。积极的学习情感是学生自主学习的不竭动力。教师不仅具有敏锐的观察分析能力,善于发现学生发言中的优点,更善于把这种发现转化为对学生的鼓励赏识,这样学生感觉到自己的探究,自己的发现被关注,被赏识,才会始终保持积极的学习情感。3、师生平等化。教师只是先生―先于学生生成知识,因此教师要蹲下来看学生,与学生处在同一互动平台,共同发展,才能真正实现教学相长。在平等的氛围下学生才敢于主动的表达自己的发现,教师也才会不断的根据学生的发现调整教学,成为学生学习的助手。4、评价多元化。学生自评利于学生反思元认知,学生互评利于学生拓展思维,因此学生能评价的教师决不越俎代庖,但学生评价有时会片面、肤浅甚至偏激。这时又要充分发挥教师评价的重要作用,使学生的探究学习始终围绕着有价值的问题展开。这节课教师正式调动多种评价手段,使学生真正成为学习的参与者、反思者。)

公倍数教案(篇5)

教学内容:苏教版教材25页的5鈥?题及思考题。

教学目标:

1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。

2、通过练习,使学生建立合理的认知结构,形成解决问题的多样策略。

3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。

教学重点、难点:

通过学习使学生建立合理的认知结构,发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。

教学过程:

一、自主练习,探究规律。

现在是三月学雷锋月,智慧老人说要挑选一批聪明的志愿者前往智慧岛,帮智慧岛上的人们做好事。你们想去吗?要通过了以下两关,才能获得开往智慧岛的车票:

【设计意图:结合三月学雷锋活动创设情境,激发学生参与学习活动的兴趣,使学生带着高昂的兴致投入到下面的练习当中。】

第一关:抢答题

求4和6的公倍数和最小公倍数。(电脑出示,学生回答)

4的倍数有:__________________

6的倍数有:__________________

4和6的公倍数有:_______________

4和6的最小公倍数是:_____

老师介绍最小公倍数的另一种表示方法:[4,6]=12

师:还有其他找公倍数和最小公倍数的方法吗?

根据学生回答小结。

师:同学们真不简单,用不同的方法找到了4和6的公倍数和最小公倍数。那下面可以进入第二关了。

第二关:求出下面每组中两个数的最小公倍数。(电脑出示)

第一组8和23和95和78和3第二组9和101和55和104和8

1、师:除了列举法,有没有更快的方法可以求两个数的最小公倍数呢?下面我们全班同学分成两大组进行比赛,第一大组的同学求这4组数的最小公倍数,第二大组求右边4组数的最小公倍数,看哪组的同学找得又快又准确!

(学生在教师发的练习纸上做,教师巡视指导)

师:谁来说说看,这几组数的最小公倍数分别是多少?

2、分组交流,观察规律。

师:观察每组中两个数的最小公倍数,看看有什么发现?跟小组里的同学说一说。

师:第一组中的两个数有什么特征呢?

师根据学生回答小结:倍数关系的两个数的最小公倍数是其中较大的那个数。

师:你能照样子说出一组有这种关系的数吗?

师:第二组中两个数的最小公倍数又有什么规律?(生交流)

师根据学生交流小结:这一组中,两个数的最小公倍数是这两个数的乘积。

根据学生回答,电脑出示小结:

(1)有倍数关系的两个数,其中较大的数就是它们的最小公倍数。

(2)两个数的乘积就是它们的最小公倍数。

3、利用规律,解决问题。

抢答:很快说出下面每组两个数的最小公倍数。

2和105和83和67和38和910和4

恭喜大家!已经顺利过关,获得开往智慧岛的车票。

【设计意图:以闯关的形式复习前面所学的有关倍数、公倍数、最小公倍数的相关知识,在此基础上进一步以分组比赛的形式让学生在求几组数的最小公倍数、分组、观察、交流等活动中自主探究每组中两个数最小公倍数的规律。培养了学生善于观察、发现规律的良好学习习惯。】

二、联系实际,解决问题。

1、开往智慧岛的车有两辆,1号车每隔7分钟发一辆车,2号车每隔8分钟发一辆车。两路车在7:00同时发车,那这两路车下一次同时发车是什么时间?

师:请同学们先填写表格。

师:我们一起来看看这题应该怎样填写。

师:从表中可以看出这两路车第二次同时发车的时间是?

(2)指导寻找其它方法。

师:是否有其它方法解决这个问题?

师:这两路车第二次同时发车的时间7∶56,7∶56中的56与7和8有什么关系?

师:还可以怎样解答这道题?

2、我们要准备上车了,要买多少张票呢?一个同学说了,我们班的同学无论每行排6人或每行排8人,都能排成一个长方形队伍。这个班的同学,有多少人呢?

师:每行排6人或每行排8人,都能排成一个长方形队伍。这句话你怎样理解?

师:那这些小朋友可能是多少人?

师:那究竟是多少人呢?

师:为什么?。

师:看来,我们在解决问题的时候,还要联系生活实际。现在我们出发了,来到智慧岛,看智慧老人给我们安排的第一项工作是什么?

【设计意图:结合到智慧岛乘车、买票的情境设计练习题,既让学生掌握了运用数学知识解决实际问题的能力,也让学生体会到数学知识的应用价值。】

3、给小鸟找朋友:任意选两个数说出它们的最小公倍数。

1234567

【设计意图:这道开放题的设计能给不同层次的学生提供体验成功喜悦的机会,并进一步巩固了运用规律很快地求两个数的最小公倍数的方法。】

4、智慧岛上的花圃每隔3天要浇一次水,草丛每隔7天浇一次水,今天我们同时给花圃和草丛浇水,请问再过几天又要同时给花圃和草丛浇水呢?

师:自己做一做看看答案是多少?

师:你是怎样想的呢?

5、生活智者

同学们的表现真棒!相信智慧老人一定非常欣赏大家!我们知道,知识源于生活,现在,老师想看看谁才是生活的智者,能够运用今天学的数学知识来解决一些生活中的问题。出示练习四第8题

(1)出示题目,理解题意。

师:请同学们看这样一道题。

(2)指导方法。

师:小林每隔6天去一次指7月31日去过以后,8月6日、12日再去并依次类推。小军每隔8天去一次指7月31日去以后,8月8日、8月16日再去并依次类推。

师:你能说说,他们下次相遇,是在几月几号呢?你是怎么知道的?

师:要知道他们再次相遇的日期,其实就是求什么?

师:你准备用什么方法求6和8的最小公倍数?

小公倍数,就是下次相遇的日期。

师:他们下次相遇的日期是?

6、小小设计师:分小组用手中的长方形拼一拼,算一算。

给智慧岛上的人们设计一个正方形的舞台,计划用长5分米、宽4分米的长方形瓷砖来铺地面,要让瓷砖刚好铺满而没有剩余,正方形舞台的边长至少有多长?

【设计意图:把学生带进智慧岛挑战不同层次、不同类型的题目,能大大激发学生参与学习活动的积极性,并在解决问题的过程中,体会到数学来源于生活,又应用于解决生活实际问题当中去。】

三、总结全课,发展延伸。

师:经过同学们的努力,已经出色地完成了智慧老人给我们安排的任务了。那在这节课中,你有什么收获呢?你觉得你或者其他同学的表现怎么样?

师:老师这里还有一道思考题,请同学们看看。

暑假期间,小华、小明和小芳都去参加游泳训练。小华每隔3天去一次,小明每隔4天去一次,小芳每隔6天去一次。8月1日三人都参加了游泳训练后,几月几日他们又再次一起参加训练?

同学们真聪明,真善于动脑,想到了这么多解决问题的好方法,看来只要积极动脑,没有解决不了的问题,让我们给自己一点掌声吧。

【设计意图:给学生一个梳理知识的机会,并在自我评价、评价他人的过程中,肯定自已或他人表现好的方面,反思不足,从而促进学生在后面的学习中不断努力在各方面做得更好。另外,思考题的出示能进一步激发学生灵活运用知识解决问题的欲望,使学生的数学思维得到发展,同时也更好地体会到学习数学的趣味所在。】

公倍数教案(篇6)

一、教学设想

“最小公倍数”这部分内容是在学生掌握了倍数的概念和分解质因数的基础上进行教学的。本节课的教学设想如下:

1、尊重教材并创造性地使用。

教材是知识的载体,是教与学的中介,但教材不是一成不变的,我们在深挖教材后,可以结合教学和学生实际创造性地使用教材,充分发挥教材的指导作用。所以在充分分析教材上最小公倍数这部分内容后,我抓住倍数这个生长点发现公倍数和最小公倍数,抓住分解质因数这个生长点研究最小公倍数的算理,大胆地把最小公倍数的意义和多种计算方法进行了有机的整合,力求学生知识体系的有机地自然地生长。

2、让学生亲历知识的形成过程。

现代教育观点认为:学习不是为了占有知识,而是为了生长知识。因此教学中,我们不要教给学生现成的数学,而是让学生自己观察、思考、探索研究出来的数学。因此在研究最小公倍数的意义时,我让学生亲历知识的形成过程。设计看到这列数你想说些什么,看到这两列数你想说些什么?等开放的数学问题,让学生在高度的思维状态下,调动大量的原有知识参与新知识的构建。

3、让情境作为课堂教学的主线。

《新课程标准》指出数学教学要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。因此,课伊始从学生熟知的驷驱车引出倍数这一前卫知识。课中又再次利用两辆驷驱车同时从起点出发至少多少分钟再次同时经过起点这个问题情境,使学生体会到最小公倍数在实际生活中的运用。课后又利用驷驱车赛这个情境进行延伸为求三个数的最小公倍数设为伏笔。

4、算理的教学是课堂教学的主旨。

求两个数的最小公倍数的算理是教学的重点和难点,因此教学中我一直把算理的教学作为课堂教学最小公倍数方法的线索,同时,把算法的多样化作为教学中的另外一个目标。从自然生长起来的列举法到发现特殊关系的两个数的最小公倍数的规律,又从特殊关系的两个数的最小公倍数的规律研究到一般的算法,走一条从一般到特殊,又从特殊到一般的思路,且抓根本的最小公倍数与两个数质因数的关系为方向。从而深入研究分解质因数的方法,并使短除法成为学生又一次知识的升华。

二 、课后反思

从教学的实践过程来看,学生学习的积极性较高,知识的掌握也较为自然而扎实,学生的思维也在呈螺旋式上升趋势,取得了良好的教学效果。通过本节课的教学,有以下两点感悟最深刻。

1、 情境的创设有效地激发了学生的学习兴趣,提高了课堂效率。

课伊始,趣亦生。学生的注意力被驷驱车吸引,围绕驷驱车展开了知识的联想,为最小公倍数的理解铺垫了很好的基础。课中的再利用不仅使知识与生活加以联系,而且使学生的思维能有的放矢。课后的情境延伸更使知识体系更完善。

2、抓住学生思维的生长点,重视算理的教学,使算法多样化。

教学中,教师以“学生的思维发展为中心”研究不同的环节如何使学生的思维自然生长。从概念倍数为基础而生长的公倍数和最小公倍数的意义,从列举法而生长的规律,从分解质因数的方法而生长的短除法,几次的生长都很自然。同时轻结论重算理体现的较为突出,成为了算法的多样化的前提。

2、 需要进一步研究的问题。

(1)学生的数学学习活动应当是一个生动活泼的、主动的富有个性的过程。而且激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。

(2)教师有意识让学生体会亲历知识的研究过程,如:看到数列给学生发散的空间进行思维,但如何恢复最原始的研究状态在课堂中再现,怎样引导学生观察、研究、发现,如:独有倍数的出示时机,最小公倍数与质因数的关系,更需要再深入的研究。真正使数学课堂成为为探究的课堂。

公倍数教案(篇7)

教学要求在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。

教学重点掌握求两个数的的方法。

教学难点正确、熟练地求出特殊情况下两个数的。

教学过程

一、创设情境

1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。

2.回答问题:什么是公倍数?什么是是?

3.求24和32的。

4.说说下面每组中的两个数有什么关系?

12和36 4和5

二、揭示课题

我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)

三、探索研究

1.教学例3

(1)先让学生用上节课学的方法分别求出这两组数的。

(2)观察结果:通过这两组数的,你发现了什么?

(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。

(4)尝试练习。

做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。

四、课堂实践

1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。

2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。

3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

做练习十五的第8题。

课题三:求三个数的

教学要求:

使学生在理解的基础上学会求三个数的。

教学重点:

求三个数的与求两个数的的区别。

教学难点:

会求三个数的。

教学过程

一、创设情境

求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)

5和8 7和28 12和16

二、揭示课题

我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)

三、探索研究

1.教学例4。

(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)

8=222

12=223

30=2 35

(2)分组讨论。

①8、12、30的必须包含哪些质因数?

②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?

③8、12和30的是多少?

(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。

(4)求三个数的的方法。

求三个数的与求两个数的的方法大同小异。(板书短除式)

8 12 30

①先用什么数作除数去除?

②再用什么数作除数去除?(重点指导:另一个数要移下来)

③一直除到什么时候为止?

④最后怎样做就可以求出三个数的?

(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)

相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。

不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。

四、课堂实践

1.做教材第75页的做一做。

2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。

3.做练习十五的第13题,学生口答。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

1.做练习十五的第10、11、14题。

2.有兴趣、有余力的学生可做练习十五的第21__~23__题。

课题四:最大公约数和的比较

教学要求通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。

教学重点比较求两个数的最大公约数和的不同点。

教学用具在投影片上画好教材第80页的表格(留空备用)

教学过程

一、创设情境

1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。

2.很快说下面每组数的。

5和7 9和45 9和12 2、3和11 8、10和40 3、4和6

二、探索研究

1.教学例5。

(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):

28 42 28 42

7 14 6 7 14 6

2 3 2 3

28和42的最大公约数是: 42和28的是:

27=14 2723=84

(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)

(3)出示留空的表格。

先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。

(4)看表上的不同点回答。

为什么它们在计算时不相同?

使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。

(5)尝试练习。

做教材第80页的做一做,然后点几名学生说一说是怎样做的。

三、课堂实践

做练习十六的第2题。

四、课堂小结

学生小结求两个数的最大公约数和的异同点。

五、课堂作业。做练习十六的3、4、5、6__题。

因数和倍数教案10篇


工作总结之家精挑细选为大家推出了这篇独一无二的因数和倍数教案,希望能对你有所帮助,请收藏。学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,要是还没写的话就要注意了。 深入的教案和课件是有效的教学手段。

因数和倍数教案【篇1】

(一)知识、技能目标:

1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

(二)情感、价值目标:

让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。

(三)本课的教学重难点:

是理解因数和倍数的概念,能有序地求出一个数的因数和倍数。

(四)、教学过程:

(一)激发兴趣,引入新课:让学生针对12个正方形的摆法讨论,激发学生兴趣,引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。

(二)情境体验,理解概念:分三个层次进行教学。

(1)情境体验,初步感知倍数和因数的意义。让学生根据12个正方形的不同摆放方式写出算式,让学生充分经历了“由形到数、再由数到形”的`过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。

(2)在具体的乘法算式中,理解倍数和因意义。这样做不仅降低了难度,而且为学生的后续学习拓展了空间。根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,36是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。

明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。

(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)

接下来结合板书算式,考考大家谁是谁的倍数,谁是谁的因数?

若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?”

学生自由发言,统一认识。

小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。

第三个环节是探索方法,发现特征:分两个层次进行,首先找一个数的因数,为了考查学生的动手有的可能是用乘法想(乘积是20的两个数是20的因数)有的可能是用除法想(除数和商都是20的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。并通过找三个数的所有因数,而找出引述的特征,从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。

接下来找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,并在找因数特征的基础找到倍数的特征。

因数和倍数教案【篇2】

一、说教材

在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。

教学目标定为以下几点:

(一)知识、技能目标:

1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。能在1到100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。

2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

(二)情感、价值目标:

让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。

本课的教学重点是理解倍数和因数的含义与方法。

教学难点是掌握找一个数的倍数和因数的方法。

二、学生学习情况分析

本班多数学生在平时的学习中缺少主动性,目的性。一部分学生怕困难,缺乏独立思考的习惯,同时,考虑问题也不够全面。在本堂课的教学中,主要调动学生的学习积极性提高学生课堂活动的参与性,体验成功的乐趣,通过学生的亲自探索和体验来达到学习知识,掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

三、教法与学法指导

当今社会、人类的发展离不开素质教育,而实施素质教育必须以学生为本,课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。

1、遵循学生主体、教师主导(组织),学生操作、探究为主线的理念,首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。

2、小组合作讨论法。以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。

3、在教学过程的设计上,根据学生的兴趣,认知规律,自己采取用教材,而不搬教材的教学设计。

四、教学过程:

(一)合作交流,认识倍数和因数

1、动手操作。

出示操作要求:用12个同样大的正方形拼成一个长方形,有几种不同的拼法?观察拼成的长方形,每排摆了几个?摆了几排?用乘法算式把各种摆法表示出来。

2、提问:你表示的乘法算式是怎样的?猜猜他可能是怎么摆的?

根据学生回答,在黑板上板书出乘法算式,电脑演示相应的图形。

板书:121=12 62=12 43=12

(设计意图:从摆小正方形入手,提出每排摆了几个?摆了几排?这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜可能是怎么摆的。 用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。学生充分经历了由形到数、再由数到形的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。)

3、谈话:用12个同样的小正方形可以摆出三种不同的长方形,写出三道不同的乘法算式。根据一道乘法算式,如43=12,我们可以说

12是4的倍数,12也是3的倍数。

3是12的因数,4也是12的因数。(边说边在屏幕上显示)

指名像老师一样说一说。

一起横着读一读,再竖着读一读,你读懂了些什么?

师:如果我说 4是因数,12是倍数,行吗?

明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数。

根据62=12,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因数吗?根据121=12呢?

(设计意图:结合具体的乘法算式介绍倍数和因数时,让学生充分地读一读,使学生初步感受倍数和因数是相互依存的,再通过对反例的辨析,使学生的感受更加深刻。)

4、这就是我们今天要研究的因数和倍数。为了研究方便,通常在研究因数和倍数时,所说的数都是指不为零的自然数。

5、练习。

谁也能说一道算式,考考大家谁是谁的倍数,谁是谁的因数?

若学生没有举到除法算式,就由老师举例一道除法算式。能说谁是谁的倍数,谁是谁的因数吗?

学生自由发言,统一认识。

小结:除法可以转化成乘法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。

(设计意图:将想想做做第1题改为学生自己出题,说说谁是谁的倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子比较单一,教师就需及时介入,发挥引导作用,让学生从内涵上加深对倍数和因数意义的理解。)

二、自主探索,学会找一个数的倍数。

1、谈话:刚才我们认识了倍数和因数,知道了12是3的倍数,3的倍数还有哪些?

让学生思考片刻后自己试着找一找,再小组交流。

全班汇报:(学生可能是无序地找的;也可能是有序地找的。)

在引导学生相互评价的基础上明确:

3与一个数相乘的积就是3的倍数,所以可以用3依次乘1、2、3、4、5来找3的倍数;也可以每次加3来找3的倍数。

提问:写的完吗?(写不完)那怎么办?(用省略号表示)

2、能总结一下找一个数的倍数的方法吗?

3、能找出2的倍数或5的倍数吗?选择一个找找看。

指名汇报,教师板书:2的倍数有2、4、6、8、10

5的倍数有3、6、9、12、15

4、观察上面的例子,你有什么发现?先小组讨论,再交流。

(设计意图:在学生自主探索的基础上,小组合作,全班交流,学生之间积极互动,捕捉对方的想法,完善自己的认识,初步掌握找一个数倍数的方法。并通过交流比较,发现一个数的倍数的个数是无限的,一个数最小的倍数是它本身,没有最大的倍数。)

三、比较交流,探索找一个数的因数的方法

1、谈话:下面我们研究找一个数的因数。

你能想办法找出36的所有因数吗?有困难的也可以小组里先商量一下。

教师巡视,有目的地将学生中出现的各种情况指名板演。

(可能是用乘法想的,有的找的不全,而有的找的很有序;也可能是利用除法来思考的,同样有可能出现无序和有序。)

2、比较有序和无序两种情况,引导:对他的方法有没有什么需要补充或提问的?(使学生在比较、交流中感悟有序思考的必要性和科学性。)

3、比较乘法找和除法找的两种方法,你发现了什么?

(利用学生对乘、除法运算及其相互关系的已有认识,学会灵活的思考,在新旧知识之间建立起合适的联系。)

4、回顾刚才的交流,你觉得要找出一个自然数的所有因数,最大的诀窍是什么?(按一定的顺序一对一对地找,找到两个数接近为止。)

5、能找出15的因数或16的因数吗?选择一个找找看。

交流:15的因数有1、3、5、15。

16的因数有1、2、4、8、16。

6、观察上面三个例子,你发现了什么?

(从学生的角度看问题是教学取得实效的关键。本环节对学生可能出现的情况做了充分的预设,并通过两次针对性的比较,使学生学会灵活地、有序地思考,及时引导学生用自己的语言总结找一个数因数的方法。然后通过尝试做题巩固方法。而在观察三个例子发现一个数的因数的特征时,由于有一个数倍数特征的借鉴,所以让学生自由发言总结。)

四、联系生活,巩固应用。

1、做想想做做第2题。

让学生自己读题填表。

因数和倍数教案【篇3】

教学目的:

1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2、培养学生观察、比较、抽象、慨括的能力。

3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。

教学难点:质数、台数、济数、偶数的区别

教学过程:

课前谈话:

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小_的分类方法。明确:分类的际准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找约数的方法来给自然数分类。

复习:什么叫约数?怎样找一个数所有的约数?

同桌合作。找出列举的各数的所有的约数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(约数的个数)

(只有两个约数)(有3个或3个以上的约数)

引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。

明确合数的概念。提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

15 28 31 53 77 89 1ll

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

三、练习巩固

1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22 29 35 49 51 79 83

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

五、布置作业(略)。

因数和倍数教案【篇4】

一、说教材

(1)教材的地位和前后关系:在学习本单元之前,学生已经认识了百以内、千以内、万以内、亿以内以及一些整亿的数。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。

(2)教学目标:

知识、技能目标:

1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

情感、价值目标:

2.让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力,体会教学内容的奇妙、有趣,产生对数学的好奇心。

(3)教学重点:

理解倍数和因数的含义与方法

(4)教学难点:

掌握找一个数的倍数和因数的方法。

二、谈设计理念

首先从学生的操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。

其次以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。

三、谈教学过程:

(1)合作交流、揭示主题

用12个大小完全相同的小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。

(2)教学概念、正反促成

利用横里读、竖里读,形成了比较系统的知识概念,并及时出示整个前提:是在不含0的自然数,让学生自己举例,示范说、相互说,最后以教师举学生不容易想到了例子:4×4=16,18÷6=3,促成学生不仅从乘法的角度去思考,而且也可以从除法的角度进行,也为后面找一个数的因数的方法做好伏笔。

(3)设疑,置疑,激发学生的反思力度

在教学找一个数的倍数时,“才说到12、18是3的倍数(板书:3的倍数),3的倍数是不是只有12、18这两个数呢?”组织交流:3的倍数有哪些呢?同学互评,交流形成自己的学习成果,提高形成了知识的整体性教学,加大了探索的力度,提高了思维的难度,“分钟内你们写完了吗?如果再给半分钟呢?为什么?”

(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机

“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,

“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”

(5)讨论互评,自主学习

放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,

学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”

1×36=3636÷1=36

2×18=3636÷2=18

3×12=3636÷3=12

4×9=3636÷4=9

6×6=3636÷6=6

(6)自主不失指导,掌握不失总结

如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)

小结:不能被这个数整除的数就不是这个数的因数。

小结:我们即可以从乘法算式,也可以从除法算式找到一个数的因数。

提问:那对于一个数的因数从36的因数、15的因数这两个例子又有什么发现?

总结:对于一个数的倍数和因数,它们是不同的,但通过乘法算式、除法算式又是相互依存的、相互联系的。

四、教学板书(略)

xx6月19日

因数和倍数教案【篇5】

教学目标:

1、 从操作活动中理解因数与倍数的意义,会判断一个数不是另一个数的因数或倍数。

2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:

理解因数和倍数的意义

教学难点:

因数和倍数等概念间的联系和区别。

教学过程:

一、认识因数与倍数,预习反馈

1、反馈主题图,根据主题图的不同情况写出乘法算式和除法算式。

反馈:

1×12=122×6=123×4=1212×1=126×2=124×3=1212÷1=1212÷2=612÷3=412÷12=112÷6=212÷4=3

2、观察并回答。

(1)这三组乘法、除法算式中,都有什么共同点?

(2)像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?

(3)这样的三个数,我们也可以怎样说?(2和6是12的因数),请大家也像这样把其余的两组数也说一说。

请看教材12页,2和6与12的关系还可以怎么说?

(4)也就是说2和6与12的关系是因数和倍数的关系,这几组数中,谁和谁还有因数和倍数的关系?

(5)提问:能不能说12是12的因数呢?

(6)小结:上面这三组算式中,我们知道:1、2、3、4、6、12都是12的因数。

3.讨论:23÷4=5……3,提问:23是4的倍数吗?为什么?

谁能举一个算式例子,并说说谁是谁的倍数,谁是谁的因数?

4.讨论:0×3 0×10 0÷3 0÷10

提问:通过刚才的计算,你有什么发现?

5.注意:(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。(2) 这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

二、巩固新知

1.下面每一组数中,谁是谁得因数,谁是谁得倍数?

16和2 4和24 72和8 20和5

2.下面得说法对吗?说出理由。

(1)48是6的倍数

(2)在13÷4==3……1中,13是4的倍数

(3)因为3×6=18,所以18是倍数,3和6是因数。

3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

4、完成P15第2题

学生自己独立完成,讲评时让学生说一说,是怎么想的?

三、思维训练

1、判断

(1)12的因数有:1、2、3、4、6、12。

(2)整数32的因数共有4个。

(3)自然数a的最大因数是a,最小因数是1。

(4)一个数的因数都小于这个数。

2.游戏。记住自己的学号,听老师说要求,符合要求的同学请举手。

(1)( )是4的倍数 (2)( )是60的因数

(3)( )是5的倍数 (4)( )是36的因数

四、课后小结:

五、 布置作业

因数和倍数教案【篇6】

学习内容:

人教版小学数学五年级下册第23、24页。

学习目标:

1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。

2.我知道100以内的质数,记住了20以内的质数。

3.我能在自主探究中独立思考,合作探究时畅所欲言。

学习重点:

能理解质数、合数的意义,正确判断一个数是质数还是合数。

学习难点:

用恰当的方法找出100以内的质数;会给自然数分类。

教学过程:

一、导入新课

二、检查独学

1.互动分享收获。

2.质疑探讨。

3.试试身手:第23页做一做。

三、合作探究

1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。

2.展示、交流:你们是怎样找出100以内质数的?

3.小组讨论:(1)有没有最大的质数或合数?(2)根据因数的个数,可把非零自然数分成哪几类?

我的想法________________________________

4.我能很快熟记20以内的质数。

5.独立思考:

(1)是不是所有的质数都是奇数?(2)是不是所有的奇数都是质数?

(3)是不是所有的合数都是偶数?(4)是不是所有的偶数都是合数?

6.组内交流。

因数和倍数教案【篇7】

一、教学内容

1、因数和倍数

2、2、5、3的倍数的特征

3、质数和合数

二、教学目标

1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2、使学生通过自主探索,掌握2、5、3的倍数的特征。

3、逐步培养学生的数学抽象能力。

三、编排特点

1、精简概念,减轻学生记忆负担。

三方面的调整:

A、不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B、不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C、公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2、注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1、因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2、2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――_猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3、质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2、要注意培养学生的抽象思维能力。

因数和倍数教案【篇8】

教学内容

认识自然数和整数,倍数和因数。

教学目标

1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。初步探索找一个数的倍数的方法,能在1——100的自然数中,找出10以内某数的所有倍数。

2、学生经历探索认识倍数和因数的含义,能对生活中有关的数字作出合理的解释。在教师帮助下,初步学会选择有用的信息进行简单地归纳与类比,发展合情推理能力。

3、在老师、同学的帮助下,对身边与数学有关的某些事物有好奇心,参与数学活动,体验数学与日常生活密切联系。

教学重点

探究倍数和因数

教学难点

倍数和因数的关系的理解

教学过程

一、结合“水果店”情境图,认识自然数和整数。

1、谈话引入。

2、出示水果店情境图。

(1)学生活动:找一找。仔细观察图中有哪些数?我能找到几个?全班进行交流。

(2)教师提示:还有要补充的吗?(目的是让学生找出图中隐含的数字,比如0,1/2等。

(3)学生活动:分一分。你能把它们分分类吗?学生单独活动,教师帮助有困难的学生。全班再进行交流。交流时让学生说出分类的标准和分类的结果。教师要适当地进行引导,为下面教学自然数和整数做准备。

(4)根据学生的分类情况,加上教师的适当引导,揭示什么样的数是自然数,什么样的数是整数?并让学生举出例子来进一步说明和巩固。

二、利用整数乘法认识倍数和因数。

1、解决:买5千克梨需要多少钱?

5×4=20(元)

2、利用算式说明倍数和因数的含义。

(1)说明含义。20是4和5的倍数;4和5是20的因数(需进一步使学生明确,20是4的倍数也是5的倍数;4是20的因数,5也是20的因数)关于倍数和因数这种相互依存的关系,学生第一次接触,教师要让学生多说一说,并通过一定的例证进一步说明。

(2)举例说明。举出一个乘法算式,说出其中的因数和倍数关系。

(3)练习:说一说。第3页“说一说”先自己试说,同桌之间交流后,再进行全班交流。

3、说明研究倍数和因数的范围。教师根据课堂生成,相机给出“只在自然数(零除外)的范围内研究倍数和因数”这个规定。

三、练习巩固,加深理解。

1、第3页:找一找。学生独立理解题意后,先自己找出7的倍数,小组内交流自己找的方法。全班交流时让学生在比较后得出用乘法算式的方法来找一个数的倍数比较方便快捷。同时使学生领悟到:这个数是7的倍数,那么7同时也是这个数的因数。通过试一试:你还能找出7的其它倍数吗?使学生体会到一个数的倍数是无限的。

2、同桌练习:你写我说。在学生弄懂题目意思后,再开展活动。活动后让中后生进行全班交流。

3、比一比:看谁找的快。(1)自己找,比比谁找的快。要求作出各自的符号。(2)组织交流,比比谁的方法好,比比谁找的对。(3)归纳。说说哪几个数既是4的倍数,又是6的倍数。为学习公倍数作准备。

4、独立练习。写出100以内全部6的倍数。交流时,体会怎样做到不重复,不遗漏,进一步明确方法。

5、讨论:根据除法算式如何说倍数和因数。例如:15÷3=5.

四、全课小结。

五、板书设计:

倍数与因数

像0,1,2,3,4,5,6,…这样的数是自然数。

像-3,-2,-1,0,1,2,3,…这样的数是整数。

买5千克梨需要多少元?

5×4=20(元)

因数和倍数教案【篇9】

设计说明

1.自主学习,构建知识网。

一位学者曾说过:“今后的文盲不再是不识字的人,而是那些不会学习的人。”所以当今社会,自主学习就显得尤为重要。因此本节课在设计上,着重引导学生自主将这部分内容进行归纳和整理,形成全面的结构图,既培养了学生整理信息的能力,又使他们对所学知识有一个完整的、系统的印象,在头脑中形成清晰的思路。

2.重点复习,强化提高。

在复习过程中先使学生进一步明确因数与倍数的概念及2、5、3倍数的特征。然后在小组内合作整理相关知识,把这部分内容梳理后,教师结合学生的汇报引导学生系统地复习有关倍数和因数的知识。最后通过练习巩固这部分的知识点。

课前准备

教师准备 PPT课件

学生准备 习题卡

教学过程

⊙回顾整理,建构知识网络

1.同学们回忆一下,因数与倍数这一单元最基本的概念有什么?

2.小组合作,整理“因数与倍数”的相关知识,对所学的知识用自己喜欢的方式进行整理,对有特色的整理方式可以在班内交流。

3.把整理的内容在班内交流,展示学生作品。

因数与倍数

4.教师组织学生汇报,引导学生系统地复习有关因数与倍数的知识,试着举例说明。(板书重点知识)

设计意图:在小组合作中梳理因数与倍数的相关知识,使学生对数的概念有进一步的认识。

⊙重点复习,强化提高

1.课件出示教材118页1题,学生独立完成后汇报结果。

(1)根据2的倍数的特征:“个位上是0,2,4,6,8的数都是2的倍数”,可以看出56,204,630,22,78这五个数符合条件,它们都是2的倍数。

(2)根据5的倍数的特征:“个位上是0或5的数都是5的倍数”,可以看出195,630,65这三个数符合条件,它们都是5的倍数。

(3)根据3的倍数的特征:“一个数各个数位上的数的和是3的倍数,这个数就是3的倍数”,可以看出87,195,204,630,57,78这六个数符合条件,它们是3的倍数。

(4)根据质数的特征:“只有1和它本身两个因数”,可以看出79,31,83这三个数是质数。

(5)根据合数的特征:“除了1和它本身还有其他因数”,可以看出除了79,31,83这三个质数,其他的数都是合数。

(6)根据奇数的特征:79,87,195,31,57,65,83这七个数是奇数

因数和倍数教案【篇10】

一、谈话导入,激发兴趣

1、回顾学过的数

2、明确学习主题

二、自主学习,探究新知

1、自主学习

自学指导:阅读课本P12和P13例1

(1)2脳6=12,表示的意义是什么?在这个乘法算式中,谁是谁的因数,谁是谁的倍数?

(2)想一想:什么情况下,两个不是零的自然数之间是因数(倍数)的关系?

(3)怎样找出18的全部因数?你是怎样想的?

怎样表示出18的因数?

要求:1、独立学习

2、时间6分钟

3、全班交流

问题一:初建模型

在图式结合中构建因数、倍数的概念,并从中感受因数和倍数是相互依存的,有着互逆关系的一组概念。

问题二:深化模型

明确因数与倍数的外延,进一步认识、内化因数、倍数的内涵,从中提炼出因数、倍数模型的本质意义。

ab=c(a、b、c为非零自然数)

问题三:应用模型

①交流找一个数的因数的'方法及表示方法。

②找30、36的因数。

3、议一议

(1)今天学习的因数与乘法算式中的因数一样吗?倍数与倍一样吗?

(2)通过找一个数的因数,你有什么发现?

三、检测反馈,拓展运用

四、板书设计

因数和倍数

2脳6=12

2和6是12的因数。

12是2和6的倍数。

3脳4=12

ab=c(a、b、c为非零自然数)

a和b是c的因数,c是a和b的倍数。

《人教版:五年级下册《因数与倍数》教学设计》

"公倍数教案"延伸阅读