搜索

波兰IAESTE实习总结

发布时间: 2020.10.27

时光飞逝,这个阶段的工作很快就要结束了,这一阶段的工作即将结束了,不知不觉中这一阶段的工作就要收尾了,回顾归纳自己工作中的问题,写工作总结要避免形成一本“流水帐”,使人读后不知总结要说明什么问题,更不能从中得到有益的启示。你正在写工作总结吗?急你所急,小编为朋友们了收集和编辑了“波兰IAESTE实习总结”,欢迎收藏本网站,继续关注我们的更新!

7月15日至8月30日我非常幸运的在中国IAESTE组织和学校的帮助下到波兰罗茨科技大学(Technical University of Lodz, poland)接受实习培训。IAESTE是一个全球高等院校和工商企业合作的国际性机构,有许多国际著名的企业和大学参加。她的宗旨是为世界各国的理工科和包括商科、农科、医科、法律、建筑设计、工商管理等在内的实用性学科的大学生,提供在所在国以外的国家获取专业实习、实际工作经验和短期培训的机会;同时为跨国公司、科研机构和工商企业获得世界各国优秀专业人才、开拓国际市场之需求,提供相关的服务。经过这次IAESATE实习,我学到了很多东西。我最想说的是IAESTE的意义远远不止是为在校学生创造了一个出国工作实习的机会;扩大与世界上其它国家大学、科研机构和企业的联系和合作;提高学校及其专业教育在全球企业界的知名度;及时了解和收集现代企业对人才和专业的需求信息,为进一步改革教学提供可贵的参考资料。对于想我这样的学生来说,它的意义更为可贵。 在申请之前就从上一届同学那里得知申请IAESTE实习项目就像申请offer一样繁琐,要写pS,要找导师写推荐信,都寄出去以后还要茫茫无期的等,有的人往往会得不偿失。我申请的项目是后来到的几个之一,所以得到了其他同学和老师的很多帮助。但是由于我实习的时间紧接期末考,所有这些繁琐的手续都要与复习迎考同时进行,而且看似在一两个小时就能办完的一些小手续,往往会因为时间不凑巧等诸多原因,要花上一个早上或是下午去办,搞的人身心疲惫。这些事,对于我,一个事一多就会烦,找不到头绪的人,的确是一个很大的挑战。虽然,最后我并不是处理得很好,但有了很大的进步,身边的同学也给了我很多建议。人毕竟不可能just do one thing at one time,就算你不找事情做,事情也会找你。这也是我们在大学生活中必须学会的。在读大学之前,我们遇到的事情是很少,除了读书,或许其他的事情家长都帮我们做好了,什么都不用操心。虽然这不是我第一次一次遇上那么多事情,但这些小事确实能让人进步。 一到波兰,我就遇上了大麻烦。先是出海关的时候,他们好像对我很怀疑,又是看介绍信又是要回程机票,还把我叫到一个小房间里等了一会儿。我想反正我又没做什么犯法的事,他要查就查好了。可是奇怪的是,同行的日本人只让他们看了护照就能过了。耽搁了十几分钟他们还是让我走了。谁知出了机场就找不到接我的人了。因为我到华沙的时间是晚上九点多,说好有人会来机场接我。因为从华沙到罗茨还要另外坐火车,而且听说火车站很乱。我开始在那儿等,半个小时之后,我拿着去换,买了张电话卡,Lodz这边没人接,因为他们给我的是办公室的电话,虽然我希望有奇迹出现。我只好给中国大使馆打电话,但是我不得不说他们很不帮忙。在这期间一个韩国人热情的帮助了我,一直帮我打电话,本来他还让我住在他那边,直到我遇见还有一个来接丈夫和孩子的女人和她的一个朋友,那个小女孩叫他叔叔。他们说让我住在他们那边,热情地帮我推行李,我想让他们给我看一下名片,他们说你不相信我们就算了。我只能在心里感谢他们,我能怎么样呢,我相信的人不愿帮我,愿意帮我的人我不能相信,我能怎么样呢,我只是要保护自己,报纸上说女大学生受骗,或许就是不忍拒绝一些好心人的帮助,我也只能在心里和他们说谢谢。机场的旅馆很贵,我不敢也不愿,本来打算在机场等一夜算了,可真的是太累了,而且夜里呆在机场有点怕,问机场的一个工作人员时,有个人在旁边说知道有个旅馆只要19.9欧元,我答应了,因为他和机场小姐说过话,小姐说旅馆是他开的,坐在他的车上我有点怕了,有点后悔,不知道他会把我带到哪?以至于后来到了那个三星级的旅馆夜里都没有好好睡觉,很多原因是怕那个开旅馆的闯进来,虽然看上去那个旅馆很大很正规,如果再让我选择,我一定会安心睡的,即使在睡觉的时候我还告诉自己要好好睡,一个小时要70元,一定要睡回来,可是还是睡不着。那个旅馆真得很好,除了贵之外。要说的是到了那边发现住一夜是要90欧元,而不是说好的19.9。反正一切都很乱,哪怕是我到了Lodz,开始还是没人来接我,我就不停打电话,终于遇见了来接我的人。我把这件事写得那么具体,只是想说出我最深的体会:有的时候你一定要说不,拒绝真得很重要。直到这一刻,我才真正体会到什么是不怕一万,只怕万一。 到了罗茨之后,我花了两天的时间安顿下来,也初步去了解了情况。无论是政治还是经济,波兰都是处于东西,南北的十字交界处,位于欧洲中部,地处德国和俄罗斯之间。不论从面积大小或是人口多寡来看,波兰无疑是东欧最大的国家,也因地理位置居中,历史上的波兰背负着悲情命运,受到周围邻国的不断侵略,瓜分国土甚至于亡国,尽管如此,向来坚强的波兰人还是可以走出伤痛,二次世界大战之后,要紧牙根重建家园,逐渐走向西方世界的繁荣。罗茨是波兰的第二大城市,位于波兰的中部。它与波兰首都华沙和波兰其他重要城市都很近,由于它有利的地理位置在波兰经济交流中有着很重要的地位。有五十多年历史的波兰罗茨科技大学是波兰现在最大的几所大学之一。最奇怪的是,因为罗茨大学的规模是逐步扩大的,所以她并没有像我们一样的校门和围墙。学校的各幢教学楼、办公室,在不同的地方沿街而建,除到罗茨,还真的是很难分辨出来。甚至可以说,波兰罗茨科技大学完全融合在这个城市之中,也是一所很开放的大学。 [1] [2] [3] [4] 下一页

[1]

GZ85.com更多工作总结范文扩展阅读

示波器实验报告11篇


报告是用口头或书面的形式所做的陈述,每当我们的任务结束后。我们常常会用到报告这种实用文,到底如何才能写好报告?有关“示波器实验报告”的信息已经为您准备好了一定要看看,欢迎大家阅读,希望对大家有所帮助!

示波器实验报告【篇1】

一、 实验目的

1.熟悉面板控制件各开关旋钮的功能和调节使用方法。

2.学会用示波器观测电信号的波形及电压、频率、周期等参数

二、实验仪器

YB4328示波器、YB1602函数信号发生器

三、 示波器的使用

1.示波器

①双踪示波器一般有五种工作方式,即“Y1”、“Y2”、“Y1+Y2”三种

单踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一般适宜于输入信号频率较低时使用。

②为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。

③触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。有时,由于选择了较慢的扫描速率,显示屏上将会出现闪烁的光迹,但被测信号的波形不在X轴方向左右移动,这样的现象仍属于稳定显示。

④适当调节“扫描速率”及“Y轴灵敏度”旋钮使屏幕上显示1-2个周期的被测信号波形。在测量幅值时,应注意将“Y轴灵敏度微调”旋钮置于“校准”位置,即顺时针旋到底。在测量周期时,应注意将

“X轴扫速微调”旋钮置于“校准”位置,即顺时针旋到底。还要注意“扩展”旋钮的位置。

根据被测波形在屏幕坐标刻度上垂直方向所占的格数(div或cm)与“Y轴灵敏度”旋钮指示值(v/div)的乘积,即可得到交流电压的峰峰值Up-p:

Up-p=(V/div)×div

根据被测信号波形一个周期在屏幕水平方向所占的格数(div或cm)与“扫速”旋钮指示值(t/div)的乘积,即可算得信号频率的实测值:

T=(S/div)×div,f=1/T

2. 函数信号发生器

函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。 通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏特级范围内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。

注意:函数信号发生器作为信号源,它的输出端不允许短路。

四、实验内容及步骤

1.用校正信号对示波器进行自检

(1) 扫描基线调节

将示波器的工作方式开关置于“单踪CH1”(触发CH1或CH2),触发方式开关置于“自动”。开启电源开关预热后,调节“辉度”、“聚焦”、“辅助聚焦”等旋钮,

线。再调节“X位移”和“Y位移”使基线位于屏幕的中间位置。(若基线与水平刻度线有夹角,可以用螺丝刀调节“光迹旋转”电位器,使基线与水平刻度线重合。)

(2)测试“校正信号”波形的幅度、频率

将示波器的“校正信号”通过探头引入选定的Y通道(CH1或CH2),将Y轴输入耦合方式开关置于“AC(交流)”或“DC(直流)”,触发源选择开关置“内”,内触发源选择开关置“CH1”或“CH2”。调节X轴“扫描速率”旋钮(t/div)和Y轴“输入灵敏度”旋钮(V/div),使示波器显示屏上显示出一个或数个周期稳定的方波波形。

2.用示波器测量信号电压和周期

调节信号发生器有关旋钮,使输出频率分别为1KHz、10KHz,有效值均为1V的正弦波信号。改变示波器“t/div”及“V/div”等旋钮,测量信号源输出电压峰峰值及信号周期。

五、小结与注意事项

1.信号发生器、示波器预热几分钟以后才能正常工作。

2.测试过程中合理选择量程,并牢记将“微调”开关置于“校准”位置。

3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。

示波器实验报告【篇2】

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1 示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

1.荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

2.电子枪及聚焦

电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3.偏转系统

偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4.示波管的电源

为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2 示波器的基本组成

从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

示波器实验报告【篇3】

1.基础操作:

了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。

明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。

2.观测李萨如图形:

向CH1、CH2分别输入两个信号源的正弦波,扫描时间的粗调旋钮置于X-Y方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。

设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值fy进行比较,一一求出它们的相对误差。

示波器实验报告【篇4】

示波器的使用

预习思考题

1.示波器的功能是什么? 2.扫描同步如何理解? 3.什么是李萨如图?

1.电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。

2.用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。

3.当示波器在Y轴与X轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作“李萨如图”

实验数据记录

实验仪器:

YB4320F双追踪示波器,SG1642函数信号发生器 实验步骤:

1.用示波器观察信号波形

(1)调节扫描旋钮,使示波器的扫描线至长短适当的稳定水平亮线

(2)将信号发生器接到ch1或ch2 输入上,频率选用数百或数千赫兹方式开关及触发源开关的位置与信号输入通道一致的出稳定的波形。

(3)改变输入信号电压的波形,如正弦波,三角波,方波调节扫描微调,以得到2个 (4)可以在调节其他该扫描熟悉示波器 2.用李萨如图测定频率

(1)当示波器在Y轴与X轴同时输入正弦信号电压,且他们的频率式简单的整数比的的荧光屏上出现各种形式的图形,这类图形称作“李萨如图”

(2)当fg:fx=1:1时输入fg=50hz.fx=50hz ,绘出一种李萨如图 (3)当fg:fx=1:2时输入fg=300hz.fx=200hz,绘出一种李萨如图

数据处理如上

思考题

1.示波器为接通前,有那些注意事项?

2.波形不稳定时,应调节那个旋钮?

3.为了观察李萨如图,应该怎样设置按钮?

4.欲关闭示波器,首先应把那个旋钮扭到最小?

1,1。确定是否接地2。是否正确连接探头3。查看所有的终端额定值4。在是使用一个通道的情况下触发源选的通用一致

2.应调节水平微调使之稳定,再调节CH通道

3.首先示波器应该在XY轴输入正弦电压,且加上fg与fx上的频率成整数比

4.将示波器探头脱开测量电路,将输入选择开关,达到接地位置,关机,如果是模拟示波器的话,需要将聚集旋钮和亮度旋钮调低,然后在关闭电源。

示波器实验报告3

【实验目的】

1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合;

2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率; 3.观察李萨如图形。

【实验仪器】

1、双踪示波器 GOS-6021型1台 2、函数信号发生器YB1602型 1台 3、连接线 示波器专用 2根

示波器和信号发生器的使用说明请熟读常用仪器部分。

[实验原理]

示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成,

1、示波管

如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。

示波管结构简图 示波管内的偏转板

2、扫描与同步的作用

如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图

图扫描的作用及其显示

如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如图

如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。由此可见:

(1)要想看到Y轴偏转板电压的图形,必须加上X轴偏转板电压把它展开,这个过程称为扫描。如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。

(2)要使显示的波形稳定,Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数,即:

fy

nn=1,2,3, fx

示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。为此,在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节到接近满足式频率整数倍时的条件下,再加入“同步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。

(1)如果Y轴加正弦电压,X轴也加正弦扫描电压,得出的图形将是李萨

如图形,如表所示。李萨如图形可以用来测量未知频率。令fy、fx分别代表Y轴和X轴电压的频率,nx代表X方向的切线和图形相切的切点数,ny代表Y方向的切线和图形相切的切点数,则有

nxfxny

李萨如图形举例表

fy

如果已知fx,则由李萨如图形可求出fy。 【实验内容】

1.示波器的调整

(1)不接外信号,进入非X-Y方式 (2)调整扫描信号的位置和清晰度 (3)设置示波器工作方式 2.正弦波形的显示

(1)熟读示波器的使用说明,掌握示波器的性能及使用方法。

(2)把信号发生器输出接到示波器的Y轴输入上,接通电源开关,把示波器和信号发生器的各旋钮调到正常使用位置,使在荧光屏上显示便于观测的稳定波形。

3.示波器的定标和波形电压、周期的测量

(1)把Y轴偏转因数和扫描时间偏转因数旋钮都放在“校准”位置(指示灯“VAR”熄灭)。

(2)把校准信号输出端接到Y轴输入插座

(3)把信号发生器的正弦电压接到Y轴输入端,用示波器测量正弦电压的幅值和周期,并和信号发生器上显示的频率值比较。

(4)选择不同幅值和频率的5种正弦波,重复步骤(3),记下测量结果。 4.李莎如图形的观测 (1) 把信号发生器后面50Hz输出信号接到X通道,而Y通道接入可调的

正弦信号

(2) 分别调节两个通道让他们能够正常显示波形 (3) 切换到X-Y模式,调整两个通道的偏转因子,使图形正常显示 (4) 调节Y信号的频率,观测不同频率比例下的李萨如图

数据记录 1、频率测量

示波器频率计数器的测频精度 0.01% 示波器测频仪器误差3%

示波器测量电压仪器误差3%

(1) 示波器测量频率

f=57.4KHz ffEf57.43%1.722KHz

f57.41.8KHz或f572KHz

(2) 函数信号发生器测频

f=55.45 KH ffE0.0155.451%f

f55.450.56KHz或f55.40.6KHz

或0.01KH0.z0.6KHz

(3) 示波器测量电压

V1=5.68V V1V1EV5.683%0.16V或0.2V

V15.680.16V或V15.70.2V (4) 函数信号发生器测量电压

V2=5.3VV2V2EV1字5.315%0.10.81V或0.9V

V25.300.81V或V25.30.9V

注意:一般可写为后面的形式更加科学,因为原始数据的有效数字只有2位,不可能经处理后提高精度变成3个有效数字。

示波器实验报告4

【实验目的】

1、了解示波器的基本结构和工作原理,学会正确使用示波器。 2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。

3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。

【实验仪器】

固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。

【实验原理】

示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。在各行各业与各个研究领域都有着广泛的应用。其基本结构与工作原理如下

1、示波器的基本结构与显示波形的基本原理

本次实验使用的是台湾固纬公司生产的通用双踪示波器。基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。 “示波管(CRT)”是示波器的核心部件如图1所示的。可细分为电子枪,偏转系统和荧光屏三部分。

1)电子枪

电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。阴极被灯丝加热后,可沿轴向发射电子。并在荧光屏上显现一个清晰的小圆点。

2)偏转系统

偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。

从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。若受到横向电场的作用,电子束的运动方向就会偏离轴线,

F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X竖直、水平偏转板

图1示波管结构简图

屏上光点的位置就会移动。x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位移。如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。

3)荧光屏

荧光屏的作用是将电子束轰击点的轨迹显示出来以供观测。

4)显示波形的原理

在竖直偏转板上加一交变正弦电压,可看到一条竖直的亮线,如图3所示。在水平偏转板上加“锯齿波电压”扫描电压,使荧光屏上的亮点沿水平方向拉开。电子的运动是两相互相垂直运动的合成。当锯齿波电压与正弦电压的变化周期相等时,在荧光屏上将显示出一个稳定的正弦电压波形图如图4所示。

当波形信号的频率等于锯齿波频率的整数倍时,荧光屏上将呈现整数个完整而稳定的被测信号的波形,当两者不成整数倍时,对于被测信号来说,每次扫描的起点都不会相同,结果造成波形在水平方向上不断的移动。为了消除这一现象,必须使被测信号的起点与扫描电压的起点保持“同步”,这一功能由机内 “触发同步”电路来完成。

2、利用利萨如图测正弦电压的频率基本原理

通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fy加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比

fyfx

是整数时,在荧光屏上将出现利萨如

图。

图5给出了几种不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为NX,竖直线上的切点数最多为NY,则

fyfx

nx

ny

图5的第一个图形,nx2,ny4,Y轴上的信号频率fy与x轴上的信号频率

2

fx之比为,若fx已知,则fy可求。

4

【实验内容与步骤】

开机前完成以下准备工作:扫描微调、电压灵敏度微调置校准档(顺时针打死)、扫描方式(置自动)、触发源选项(置CH1或CH2)、耦合方式(置AC);按压电源按钮预热3分钟。

(2)初始化示波器面板获得“点”:辉度、聚焦、三个位置旋钮置于居中位置,扫描灵敏度置于正交模式。(五居中一归零);

(3)顺时针旋转扫描灵敏度选扭置0.2ms档获取扫描线; (4)利用CH1观察机内方波校准信号并作为待测电信号1,记录其相关参数于黑板给出的数据记录表格第一行;

(5)分别利用CH1与CH2两个通道观察左右两个音频信号发生器提供的10V1000Hz与15V20xHz的正弦交流信号,并作为待测电信号2与待测电信号3,记录其相关参数于黑板给出的数据记录表格第二行与第三行。

(6)扫描灵敏度选钮置正交模式,按压下触发交替旋钮,显示模式置双踪模式观测不同频率比的利萨如图形。

(7)申请课堂考核,归整仪器结束实验。

【实验数据与实验结果】

图5利萨如图

附表 电信号电压、频率的测量数据记录表(11海科曹丽安娜提供)

实验结果:详见下页附图(11海科曹丽安娜提供)

注意事项

1.信号发生器、示波器预热3分钟以后才能正常工作。

2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);

3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。

4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。

示波器实验报告【篇5】

示波器是测量信号波形的仪器,是应用最广的测量仪器之一。它不仅广泛应用于实验室,而且成为现代工业不可缺少的辅助工具。利用示波器对电子产品的电路进行信号的检测和分析,可以快速地发现并解决问题,因此正确分析示波器显示波形的原理,以及熟悉使用示波器是非常有必要的,对学生以后学习和工作有很大的帮助。在大学物理实验教学中,示波器原理与使用是一个必不可少的实验。然而,该实验仪器的原理复杂,大多数学生理解起来难度偏大,特别是面板旋钮多使得学生熟悉起来很困难。通过该实验对提高学生在信号波形测量方面的实践能力、创新能力,以及理论联系实际的能力提高有着极其重要的作用。在实验教学过程总是会出现各种各样的问题,因此我结合大学物理实验示波器实验中出现的问题,介绍一些经验。

1、示波器原理的阐述

实验教学首先讲解的就是仪器原理,但是示波器的原理比较复杂,学生掌握起来比较困难。为解决这个难题,将示波器显示波形的原理与单摆运动中沙漏形成波形的原理相类比,利用简单易懂的知识对示波器的原理进行形象的讲解,使其简化,加深学生对示波器原理的理解和掌握。在大学生物理实验教学中利用类比简化思维帮助学生理解和学习新知识的方法效果明显。

示波管结构非常简单,主要由电子枪、偏转系统和荧光屏三个部分组成,偏转系统由水平偏转板(x轴方向)和竖直偏转板(y轴方向)组成。在偏转板上加电压,则电子束的运动是发生偏转,加不同的电压,电子运动也不一样,从而在荧光屏上所观察到的图形也有所不同。如果我们在竖直偏转板上接入待观察的正弦交流电压,同时在水平偏转板上接入锯齿波电压,则电子的运动将是水平方向的匀速直线运动与竖直方向的简谐振动两个相互垂直方向上运动的合成,屏上将显示正弦波。

把沙漏的单摆运动与示波器显示波形的原理相结合进行类比,以帮助学生理解示波器的工作原理。实践表明示波器显示波形的原理虽然复杂,但是利用沙漏的单摆运动实验对其进行类比简化,可以很容易地让学生理解掌握。示波器的工作原理可以如此掌握,在进行其他物理知识的学习和物理实验的探讨时,实验老师也可以采用这种类比的方法,利用学生理解的知识点甚至是其他学科的知识去简化复杂的物理内容。掌握了这种教学法,不仅可以使学生将新知识与已有的知识融会贯通,而且能使学生加深记忆和理解,为他们的学习提供极大的帮助。

2、功能键的使用技巧及注意事项

在教师准备实验仪器阶段,应注意示波器在使用一段时间或经较长时间存放或修理后,应重新进行校准,示波器精度校准分垂直校准和时基校准两个方面。待示波器开机20分钟后,内部稳定即可进行校准工作。扫描基线的校正,示波器应用在不同的场合,会受外磁场的影响引起扫描基线发生倾斜,此时需要对扫描基线进行校正。校正的方法:用螺丝刀调节“基线旋转”,使扫描线和示波器的水平刻度线平行。

在示波器功能键的讲解上要做到示波器面板上各开关、按键、旋钮都要详细地讲解相关功能特性,同时进行示范性的屏幕显示演示,使得学生有更直观形象的了解。要求做实验前学生对照仪器面板说明书,体会一些常用开关、按键、旋钮的作用,如辉度、聚焦、位移、X―Y等,让学生有一个自己独立操作仪器的过程。

非常有必要在黑板上板示示波器使用注意事项及技巧:

(1)测试前,在不明确被测信号幅度大小,可先将示波器的VOLTS/DIV选择开关置于最大挡,避免电压过高而造成示波器损坏,同时避免该档位过小往往出现信号显示远远大于屏幕,以至于学生误认为没有信号输入。一般选择合适档位使得信号显示高度约占荧光屏高度的二分之一到三分之二之间,这样减小在信号测量时出现的误差。

(2)在用示波器测量频率较低信号时,其波形不容易同步,表现为波形不稳定。一般情况规定学生输入较高频率信号,同时仔细调节示波器上的触发电平控制(LEVEL)旋钮,使被测信号稳定和同步。“触发电平”键是示波器面板上众多旋钮中非常重要的旋钮,其作用在众多物理实验教材中只是介绍而已,通过触发扫描使待测信号与扫描信号同步以达到图形的稳定,图形不稳定的情况在学生实验中出现得最多。

(3)TIME/DIV(扫描速率选择)旋钮。此旋钮的作用是改变加在水平偏转板上锯齿波扫描信号的频率。在不明确被测信号频率大小,可将TIME/DIV选择扫描时间置于最小挡,避免低频率信号一直闪动。合适的档位是信号波形显示2到3个周期,这样在时间测量时可以减少误差。

(4)“触发方式”、“触发源”和“触发电平”的选择。这三者选择的不正确,往往出现波形不稳定的情况,屏幕上的波形发生向左或向右的连续移动。要使波形能够稳定下来,跟示波器使用的“触发方式”、“触发源”及“触发电平”选择有关,合理运用触发方式、触发源来观察信号,要求学生在实验中掌握。

(5)在利萨如图实验部分,为了避免视觉上的混乱,要求学生在关闭通道1的前提下再调整好通道2的信号显示。

(6)示波器工作时,周围不要放置大功率的变压器,否则,对示波器会有很大影响和噪声干扰。

3、示波器常见故障的分析

示波器用于实验教学使用频繁,且使用时间较长,很容易出故障。掌握示波器的常见故障的分析检修方法,有利于缩短维修周期,避免因为仪器故障耽误教学。在遇到各种问题时,学生一般无法解决,往往需要教师引导性地解决。这就要求教师要具备解决这些问题的能力。当然这些需要在教学中不断地总结经验,多途径地提高解决问题的能力,进而能够更好地指导学生排除故障。

在教学过程中,学生在出现问题时,经常性地乱按功能键,到了后面他自己都不知道按了什么键,有时的确是仪器出现问题。教师应该把出现的各种原因都考虑进去,先考虑仪器正常是仪器参数设置的问题,再考虑仪器元件出现问题。例如示波器屏幕上没有任何信号或者信号在示波器上显示闪动的比较厉害。首先,看信号输入端的问题即信号发生器示波器的相关设置是否正常,例如波形按钮是否有选择、频率的设置是否正确,等等,然后检查与示波器的接线,以及探头接触是否良好、探头线断线等问题,再检查示波器相关按键的设置是否和信号发生器输出信号一直,可能是学生按了所用通道的接地旋钮,这样信号就会对地短路,没有任何信号输入到示波器测量端,以及示波器电源开关有没有打开,可以调节亮度旋钮看是否亮度设置太低。其次,调节上下位移旋钮和左右位移旋钮看波形是否偏离屏幕显示区。所以首先要求老师要一定程度的对仪器硬件有所了解,那些元件出现问题可能会出现什么样的现象,对仪器的操作那就要求非常熟悉,总之做到软件硬件都过关。

4、结语

以上是我在示波器实验教学实践中总结的一些经验。在有限学习时间内,学习、掌握基本的仪器操作方法,让学生做到实验目标明确,理论与实践相结合,在掌握好基本技能的基础上进行开放式自主训练。教师应引导学生解决实验中遇到的一些问题,提高学生的创新能力,使学生体会到大学物理实验这门课的作用与重要性,从而逐渐地让学生有意识地去提高自己的动手能力。

示波器实验报告【篇6】

一、实验目的及要求:

(1)了解示波器的基本工作原理。

(2)学习示波器、函数信号发生器的使用方法。

(3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。

二、实验原理:

1)示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。

2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。

3)示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。

4)李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为f(x):f(y)=N(y):N(x)。

三、实验仪器:

示波器、函数信号发生器。

四、实验操作的主要步骤:

(一)示波器的使用与调节

1)将各控制旋钮置于相关位置。

2)接通电源,按下面板左下角的“POWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状态。

3)经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、POSITION,使亮点清晰。

4)将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水平扫描线,按(3)使线清晰。

(二)实验内容:

1)观察正弦波波长:

a)将ACGNDDC转换开关置于AC

b)讲面板右上角的SOURCE置于CH2

c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)

d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)

e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。

2)观察并描绘李萨如图形,测量正弦信号频率。

利用利萨如图测正弦电压的频率基本原理

通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。

不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则fy/fx=Nx/Ny

五、数据记录及处理:

用李萨如图测量正弦信号频率

六、实验注意事项:

1.信号发生器、示波器预热3分钟以后才能正常工作。

2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);

3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。

4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。

七、趣味物理实验心得:

一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益菲浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。

通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。

拓展阅读:示波器实验小论文

摘要:

在物理实验教学中正确使用示波器并及时解决遇到的问题是必不可少的。本文简要介绍了示波器实验教学的方法、技巧,以及实验中出现的问题的解决方法。

关键词:

大学物理实验教学、示波器、信号

示波器是测量信号波形的仪器,是应用最广的测量仪器之一。它不仅广泛应用于实验室,而且成为现代工业不可缺少的辅助工具。利用示波器对电子产品的电路进行信号的检测和分析,可以快速地发现并解决问题,因此正确分析示波器显示波形的原理,以及熟悉使用示波器是非常有必要的,对学生以后学习和工作有很大的帮助。在大学物理实验教学中,示波器原理与使用是一个必不可少的实验。然而,该实验仪器的原理复杂,大多数学生理解起来难度偏大,特别是面板旋钮多使得学生熟悉起来很困难[1]。通过该实验对提高学生在信号波形测量方面的实践能力、创新能力,以及理论联系实际的能力提高有着极其重要的作用。在实验教学过程总是会出现各种各样的问题[2],因此我结合大学物理实验示波器实验中出现的问题,介绍一些经验。

1.示波器原理的阐述

实验教学首先讲解的就是仪器原理,但是示波器的原理比较复杂,学生掌握起来比较困难。为解决这个难题,将示波器显示波形的原理与单摆运动中沙漏形成波形的原理相类比,利用简单易懂的知识对示波器的原理进行形象的讲解,使其简化,加深学生对示波器原理的理解和掌握。在大学生物理实验教学中利用类比简化思维帮助学生理解和学习新知识的方法效果明显。

示波管结构非常简单,主要由电子枪、偏转系统和荧光屏三个部分组成,偏转系统由水平偏转板(x轴方向)和竖直偏转板(y轴方向)组成。在偏转板上加电压,则电子束的运动是发生偏转,加不同的电压,电子运动也不一样,从而在荧光屏上所观察到的图形也有所不同。如果我们在竖直偏转板上接入待观察的正弦交流电压,同时在水平偏转板上接入锯齿波电压,则电子的运动将是水平方向的匀速直线运动与竖直方向的简谐振动两个相互垂直方向上运动的合成,屏上将显示正弦波。

把沙漏的单摆运动与示波器显示波形的原理相结合进行类比,以帮助学生理解示波器的工作原理。实践表明示波器显示波形的原理虽然复杂,但是利用沙漏的单摆运动实验对其进行类比简化,可以很容易地让学生理解掌握。示波器的工作原理可以如此掌握,在进行其他物理知识的学习和物理实验的探讨时,实验老师也可以采用这种类比的方法,利用学生理解的知识点甚至是其他学科的知识去简化复杂的物理内容。掌握了这种教学法,不仅可以使学生将新知识与已有的知识融会贯通,而且能使学生加深记忆和理解,为他们的学习提供极大的帮助。

2.功能键的使用技巧及注意事项

在教师准备实验仪器阶段,应注意示波器在使用一段时间或经较长时间存放或修理后,应重新进行校准,示波器精度校准分垂直校准和时基校准两个方面。待示波器开机20分钟后,内部稳定即可进行校准工作。扫描基线的校正,示波器应用在不同的场合,会受外磁场的影响引起扫描基线发生倾斜,此时需要对扫描基线进行校正。校正的方法:用螺丝刀调节“基线旋转”,使扫描线和示波器的水平刻度线平行。

在示波器功能键的讲解上要做到示波器面板上各开关、按键、旋钮都要详细地讲解相关功能特性,同时进行示范性的屏幕显示演示,使得学生有更直观形象的了解。要求做实验前学生对照仪器面板说明书,体会一些常用开关、按键、旋钮的作用,如辉度、聚焦、位移、X―Y等,让学生有一个自己独立操作仪器的过程。

非常有必要在黑板上板示示波器使用注意事项及技巧:

(1)测试前,在不明确被测信号幅度大小,可先将示波器的VOLTS/DIV选择开关置于最大挡,避免电压过高而造成示波器损坏,同时避免该档位过小往往出现信号显示远远大于屏幕,以至于学生误认为没有信号输入。一般选择合适档位使得信号显示高度约占荧光屏高度的二分之一到三分之二之间,这样减小在信号测量时出现的误差。

(2)在用示波器测量频率较低信号时,其波形不容易同步,表现为波形不稳定。一般情况规定学生输入较高频率信号,同时仔细调节示波器上的触发电平控制(LEVEL)旋钮,使被测信号稳定和同步。“触发电平”键是示波器面板上众多旋钮中非常重要的旋钮,其作用在众多物理实验教材中只是介绍而已,通过触发扫描使待测信号与扫描信号同步以达到图形的稳定,图形不稳定的情况在学生实验中出现得最多。

(3)TIME/DIV(扫描速率选择)旋钮。此旋钮的作用是改变加在水平偏转板上锯齿波扫描信号的频率。在不明确被测信号频率大小,可将TIME/DIV选择扫描时间置于最小挡,避免低频率信号一直闪动。合适的档位是信号波形显示2到3个周期,这样在时间测量时可以减少误差。

(4)“触发方式”、“触发源”和“触发电平”的选择。这三者选择的不正确,往往出现波形不稳定的情况,屏幕上的波形发生向左或向右的连续移动。要使波形能够稳定下来,跟示波器使用的“触发方式”、“触发源”及“触发电平”选择有关,合理运用触发方式、触发源来观察信号,要求学生在实验中掌握。

(5)在利萨如图实验部分,为了避免视觉上的混乱,要求学生在关闭通道1的前提下再调整好通道2的信号显示。

(6)示波器工作时,周围不要放置大功率的变压器,否则,对示波器会有很大影响和噪声干扰。

3.示波器常见故障的分析

示波器用于实验教学使用频繁,且使用时间较长,很容易出故障。掌握示波器的常见故障的分析检修方法,有利于缩短维修周期,避免因为仪器故障耽误教学。在遇到各种问题时,学生一般无法解决,往往需要教师引导性地解决。这就要求教师要具备解决这些问题的能力。当然这些需要在教学中不断地总结经验,多途径地提高解决问题的能力,进而能够更好地指导学生排除故障。

在教学过程中,学生在出现问题时,经常性地乱按功能键,到了后面他自己都不知道按了什么键,有时的确是仪器出现问题。教师应该把出现的各种原因都考虑进去,先考虑仪器正常是仪器参数设置的问题,再考虑仪器元件出现问题。例如示波器屏幕上没有任何信号或者信号在示波器上显示闪动的比较厉害。首先,看信号输入端的问题即信号发生器示波器的相关设置是否正常,例如波形按钮是否有选择、频率的设置是否正确,等等,然后检查与示波器的接线,以及探头接触是否良好、探头线断线等问题,再检查示波器相关按键的设置是否和信号发生器输出信号一直,可能是学生按了所用通道的接地旋钮,这样信号就会对地短路,没有任何信号输入到示波器测量端,以及示波器电源开关有没有打开,可以调节亮度旋钮看是否亮度设置太低。其次,调节上下位移旋钮和左右位移旋钮看波形是否偏离屏幕显示区。所以首先要求老师要一定程度的对仪器硬件有所了解,那些元件出现问题可能会出现什么样的现象,对仪器的操作那就要求非常熟悉,总之做到软件硬件都过关。

4.结语

以上是我在示波器实验教学实践中总结的一些经验。在有限学习时间内,学习、掌握基本的仪器操作方法,让学生做到实验目标明确,理论与实践相结合,在掌握好基本技能的基础上进行开放式自主训练。教师应引导学生解决实验中遇到的一些问题,提高学生的创新能力,使学生体会到大学物理实验这门课的作用与重要性,从而逐渐地让学生有意识地去提高自己的动手能力。

参考文献:

[1]刘淑聪,郭纯生,王薇,彭宏伟.示波器操作与使用的实践教学研究[J].中国现代教育装备,2010,17,(105):20-23.

[2]张磊.浅谈示波器的实验教学[J].大学物理实验,2008,21,(3):12-14.

[3]张锐波,彭永昱,俞诚.示波器电子运动规律与波形显示关系研究[J].大学物理实验,2009,22,(4):45-47.

示波器实验报告【篇7】

示波器,是显示被测量的瞬时值轨迹变化情况的仪器。那么,怎样正确使用示波器?

示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。

选择Y轴耦合方式:根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC

选择Y轴灵敏度:根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。

选择触发(或同步)信号来源与极性:通常将触发(或同步)信号极性开关置于“+”或“-”档。

选择扫描速度:根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。

输入被测信号: 被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。

示波器为了使波形的读数更加精确、清晰,在原始校正波形时,一定要把波形调得最准、最清晰、线条调至最精细,只有这样,读数才会最为准确,误差才会减至最少,这对故障分析往往有举足轻重的作用。最后还有一点需要注意的是:校正波形调整完毕后,所有补偿按钮都不能调动或更改(即SWP VAP和电压补偿),否则将要再次对示波器重新校正一次。

仪器操作人员的安全和仪器安全,仪器在安全范围内正常工作,保证测量波形准确、数据可靠,应注意: 1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束轰击一点宜在荧光屏上形成暗斑,损坏荧光屏。

2.测量系统- 例如示波器、信号源;打印机、计算机等设备等。被测电子设备- 例如仪器、电子部件、电路板、被测设备供电电源等设备接地线必须与公共地(大地)相连。

3. TDS200/TDS1000/TDS2000 系列数字示波器配合探头使用时,只能测量(被测信号- 信号地就是大地,信号端输出幅度小于300V CAT II)信号的波形。绝对不能测量市电AC220V 或与市电AC220V 不能隔离的电子设备的浮地信号。(浮地是不能接大地的,否则造成仪器损坏,如测试电磁炉。)

4.通用示波器的外壳,信号输入端BNC 插座金属外圈,探头接地线,AC220V 电源插座接地线端都是相通的。如仪器使用时不接大地线,直接用探头对浮地信号测量,则仪器相对大地会产生电位差;电压值等于探头接地线接触被测设备点与大地之间的电位差。这将对仪器操作人员、示波器、被测电子设备带来严重安全危险。

5. 用户如须要测量开关电源(开关电源初级,控制电路) 、UPS(不间断电源)、电子整流器、节能灯、变频器等类型产品或其它与市电AC220V 不能隔离的电子设备进行浮地信号测试时,必使用DP100高压隔离差分探头。 示波器使用中的其他注意事项

(1)热电子仪器一般要避免频繁开机、关机,示波器也是这样。

(2)如果发现波形受外界干扰,可将示波器外壳接地.

(3)“Y输入”的电压不可太高,以免损坏仪器,在最大衰减时也不能超过400 V.“Y输入”导线悬空时,受外界电磁干扰出现干扰波形,应避免出现这种现象。

(4)关机前先将辉度调节旋钮沿逆时针方向转到底,使亮度减到最小,然后再断开电源开关.(5)在观察荧屏上的亮斑并进行调节时,亮斑的亮度要适中,不能过亮。

示波器分为万用示波表,数字示波器,模拟示波器,虚拟示波器,任意波形示波器, 信号发生器,函数发生器。

示波器实验报告【篇8】

【实验题目】

示波器的原理和使用

【实验目的】

1、了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。

2、学会使用示波器观测电信号波形和电压副值以及频率。

3、学会使用示波器观察李萨如图并测频率。

【实验原理】

1、示波器都包括几个基本组成部分:

示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。

2、李萨如图形的原理:

如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。

如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。

【实验仪器】

示波器×1,信号发生器×2,信号线×2。

【实验内容】

1、基础操作:

了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。

明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。

2、观测李萨如图形:

向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X—Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。

设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。

【实验数据】

【实验结果】

【误差分析】

1、两台信号发生器不协调。

2、桌面振动造成的影响。

3、示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。

4、取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。

5、机器系统存在系统误差。

6、fy选取时上下跳动,可能取值不准。

示波器实验报告【篇9】

示波器的使用实验报告

示波器的使用实验报告1

在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。

1 示波器工作原理

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1 示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

1、荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

2、电子枪及聚焦

电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3、偏转系统

偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4、示波管的电源

为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2 示波器的基本组成

从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

被测信号①接到“Y“输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的'被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

2 示波器使用

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1 荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2 示波管和电源系统

1、电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2、辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3、聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4、标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

2.3 垂直偏转因数和水平偏转因数

1、垂直偏转因数选择(VOLTS/DIV)和微调

在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2、时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0.2μS

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

2.4 输入通道和输入耦合选择

1、输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10”位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2、输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。

2.5 触发

第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。

示波器实验报告【篇10】

示波器实验报告1

【实验题目】 示波器的原理和使用

【实验目的】

1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。

2.学会使用示波器观测电信号波形和电压副值以及频率。

3.学会使用示波器观察李萨如图并测频率。

【实验原理】

1.示波器都包括几个基本组成部分:

示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。

2.李萨如图形的原理:

如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。

如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。

【实验仪器】

示波器×1,信号发生器×2,信号线×2。

【实验内容】

1.基础操作:

了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。

明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。

2.观测李萨如图形:

向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。

设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值f′y进行比较,一一求出它们的相对误差。

【实验数据】

【实验结果】

【误差分析】

1.两台信号发生器不协调。

2.桌面振动造成的影响。

3.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。

4.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。

5.机器系统存在系统误差。

6.fy选取时上下跳动,可能取值不准。

1 示波器工作原理

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1 示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

1.荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

2.电子枪及聚焦

电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3.偏转系统

偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4.示波管的电源

为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2 示波器的基本组成

从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别

显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

2 示波器使用

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1 荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2 示波管和电源系统

1.电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2.辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3.聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

2.3 垂直偏转因数和水平偏转因数

1.垂直偏转因数选择(VOLTS/DIV)和微调

在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2.时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0.2μS

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

2.4 输入通道和输入耦合选择

1.输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2.输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。

2.5 触发

第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。

1.触发源(Source)选择

要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。

电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。

外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。

正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。

2.触发耦合(Coupling)方式选择

触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。

AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。

直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。

低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。

3.触发电平(Level)和触发极性(Slope)

触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(Hold Off)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。

极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。

2.6 扫描方式(SweepMode)

扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。

自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。

常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。

单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。

上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。

示波器实验报告【篇11】

一、实验目的及要求:

(1)了解示波器的基本工作原理。

(2)学习示波器、函数信号发生器的使用方法。

(3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。

二、实验原理:

1)示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。

2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。

3)示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。

4)李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为f(x):f(y)=N(y):N(x)。

三、实验仪器:

示波器、函数信号发生器。

四、实验操作的主要步骤:

(一)示波器的使用与调节

1)将各控制旋钮置于相关位置。

2)接通电源,按下面板左下角的“pOWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状态。

3)经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、pOSITION,使亮点清晰。

4)将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水平扫描线,按(3)使线清晰。

(二)实验内容:

1)观察正弦波波长:

a)将ACGNDDC转换开关置于AC

b)讲面板右上角的SOURCE置于CH2

c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)

d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)

e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。

2)观察并描绘李萨如图形,测量正弦信号频率。

利用利萨如图测正弦电压的频率基本原理

通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。

不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则

fy/fx=Nx/Ny

图1李萨如图与信号频率的关系

图2fx/fy=1:1时李萨如图与信号相位差的关系

五、数据记录及处理:

用李萨如图测量正弦信号频率

六、实验注意事项:

1.信号发生器、示波器预热3分钟以后才能正常工作。

2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);

3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。

4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。

七、趣味物理实验心得:

一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益菲浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。

通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。

学习廖俊波活动开展情况总结


学习廖俊波活动开展情况总结

根据省局机关党委《关于认真学习习近平总书记重要指示精神深入开展向廖俊波同志学习活动的方案》(闽食药监党委〔20xx〕18号)及相关文件要求,按照省局党组的统一部署,支部认真组织开展向廖俊波同志学习活动。

一、迅速动员,开展专题学习座谈

5月3日,省器械包材所召开支部大会,组织全体党员和干部职工认真学习中共福建省委省直机关工委《关于认真学习贯彻习近平总书记重要指示精神深入开展向廖俊波同志学习活动的通知》和省局机关党委《关于组织学习尤权书记在市、县委书记学习廖俊波先进事迹座谈会上讲话的通知》文件精神,党支部书记、所长于华生主持座谈会,号召全体党员向廖俊波同志学习,学习弘扬廖俊波同志信念坚定、对党忠诚的政治品质,心系群众、勤政为民的公仆情怀,敢于担当、苦干实干的务实作风,无私奉献、忘我工作的敬业精神,廉洁奉公、干净做事的高尚情操。要求全所干部职工要以廖俊波同志为标杆,认真学习他坚定的理想,崇高的信念,将他的崇高精神力量内化于心、外化于行,牢记使命担当,更好地推动医疗器械检验检测工作。同时也希望大家以身边先进典型为榜样,努力向先进看齐,在平凡的岗位上做出不平凡的业绩。在座谈会上,部分党员同志做了重点发言,大家就学习廖俊波先进事迹进行了深入的学习研讨。

二、对照先进,召开专题组织生活会

5月19日下午,支部召开以“学习廖俊波,争做合格党员及五查五看”为专题的组织生活会。组织党员干部对照廖俊波同志的先进事迹和崇高精神,查理想信念、查宗旨观念、查工作作风、查敬业精神、查道德情操,认真开展批评与自我批评,做到思想上有震动、灵魂上有触动、工作上有推动、落实上有行动。

会议由支部书记主持,三位所领导班子成员以普通党员的身份参加了此次专题组织生活会,全体党员干部对照廖俊波同志的先进事迹和崇高精神,围绕“五查五看”认真查摆了自身存在的问题,切实做到有什么问题解决什么问题,什么问题突出就重点解决什么问题,增强学习的针对性和实效性。

通过查摆自身问题,不少党员干部认识到自身存在的不足,并给出整改措施和今后努力的方向,要求互相监督,共同改进。严格要求自己,克服懈怠情绪、自满情绪、畏难情绪,把优秀作为一种习惯、把创新作为一种求索,力争在各自岗位上发挥先锋模范作用,争做廖俊波式的好党员、好干部。牢固树立担当意识,负起应尽之责,努力做忠诚、干净、担当的表率。始终保持奋发有为的精神状态,真心实意地为我所的发展,为我省百姓用药用械安全保驾护航。

三、提升认识,深化学习力争实效

深刻认识开展向廖俊波同志学习活动的意义, 并以此为动力,激励和引导全体党员干部践行“四讲四有”,做到“四个合格”。引导党员干部像廖俊波同志一样不忘初心、扎实工作、廉洁奉公,大力发扬马上就办、真抓实干的优良作风,提高工作效能,提振干事创业的精气神,在检验检测工作中攻坚克难,履职尽责,担当作为。

党支部书记结合我所党支部工作实际,提出三点要求:一是深化学习,开展主题实践活动。要开展多种形式的主题活动,把学习廖俊波同志先进事迹作为“党风廉政建设”、“两学一做”、“三会一课”的重要内容。二是对党忠诚、强化意识,旗帜鲜明讲政治。要学习廖俊波同志从来不对组织安排布置的任务说“不”、不对上级交办的工作说“不”的工作态度。三是履职担当,干事创业,实实在在推动工作。要学习廖俊波同志,带领当地干部群众凝心聚力、撸起袖子加油干,扑下身子抓落实。工作上要做到每周有进展,每月有成效。将学习廖俊波先进事迹、精神转化成工作的干劲、动力,全面完成国家和省级监督抽检工作,切实履行好我所职能,为全省医疗器械和药品包装材料产业发展和省局行政监管提供强有力的技术支撑。

开展向廖俊波同志学习活动总结


开展向廖俊波同志学习活动总结

为认真贯彻落实习近平总书记关于向廖俊波同志学习的重要指示和省委、市委关于开展向廖俊波同志学习活动的文件精神,近期以来,南平市、县两级老干部工作部门把学习廖俊波同志先进事迹和崇高精神,作为深入推进“两学一做”学习教育的重点内容,结合工作实际,通过各种形式加强组织引导,从而在全市老干部工作者和广大离退休干部中掀起学习热潮,营造积极浓厚的良好氛围。

一是广泛开展学习。市、县老干部局通过中心组学习、党支部学习、全体学习会等形式组织全体干部职工认真学习,市委老干部局、市关工委还分别向市直各单位、县(市、区)相关工作部门下发《关于深入开展学习宣传廖俊波同志活动的通知》,对学习活动提出具体要求,推动全市老干部工作部门、离退休干部和青少年认真学习,营造人人参与的良好氛围。

二是加强座谈交流。南平、建瓯、邵武、顺昌分别组织离退休老同志或工作人员座谈会,组织观看廖俊波同志先进事迹的新闻报道、视频短片等,结合学习让大家说感受、谈体会,互相交流,并让与廖俊波同志熟识的老同志或工作人员谈其生前的动人事迹,通过身边人员的亲身经历加强直观了解,进一步感受其可贵精神。

三是撰写心得体会。市委老干部局要求每位工作人员都要认真撰写一篇心得体会,引导大家结合岗位实际,认真进行思考,进一步激发大家通过学习先模人物自觉加强榜样引领,把学习成果转化为实际行动。

四是参与榜样宣传。市委老干部局、市老年大学组织老年大学艺术团进行“廖俊波之歌”、“廖俊波我们的好书记”“高山吟诵楷模”歌伴舞、配乐诗朗诵等节目创作,通过艺术形式展现先模人物的光辉形象,并将积极参与省、市各类文艺晚会及演出宣传。

最新示波器实验报告汇总10篇


古代智者有言,实践的指路明灯就是理论,再现今生活工作场景,我们经常需求做报告,然而报告并不要求篇幅浩渺,反而应当精炼到位,切题要义。那么,如何才能撰写出一份优质的报告呢?在此,工作总结之家编辑经过不懈的奋斗和努力,特地为您呈上最新的“示波器实验报告”,诚挚邀请您细心阅读,也别忘了收藏备查哦!

示波器实验报告 篇1

一、示波器的介绍:

示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。

示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。

示波器显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。

在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注:如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。

二、示波器的基本作用:

用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。

三、示波器的分类:

(1)按照信号的不同分类

模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。

数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。

模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。

(2)按照结构和性能不同分类

①普通示波器:电路结构简单,频带较窄,扫描线性差,仅用于观察波形。

②多用示波器:频带较宽,扫描线性好,能对直流、低频、高频、超高频信号和脉冲信号进行定量测试。借助幅度校准器和时间校准器,测量的准确度可达±5%。

③多线示波器:采用多束示波管,能在荧光屏上同时显示两个以上同频信号的波形,没有时差,时序关系准确。

④多踪示波器:具有电子开关和门控电路的结构,可在单束示波管的荧光屏上同时显示两个以上同频信号的波形。但存在时差,时序关系不准确。

⑤取样示波器。采用取样技术将高频信号转换成模拟低频信号进行显示,有效频带可达GHz级。

⑥记忆示波器:采用存储示波管或数字存储技术,将单次电信号瞬变过程、非周期现象和超低频信号长时间保留在示波管的荧光屏上或存储在电路中,以供重复测试。

⑦数字示波器:内部带有微处理器,外部装有数字显示器,有的产品在示波管荧光屏上既可显示波形,又可显示字符。被测信号经模一数变换器(A/D变换器)送入数据存储器,通过键盘操作,可对捕获的波形参数的数据,进行加、减、乘、除、求平均值、求平方根值、求均方根值等的运算,并显示出答案数字。

四、简约介绍示波器的基本构造:

显示电路

显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。

(1)电子枪

电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。

(2)偏转系统

示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。

(3)荧光屏

荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。

Y轴放大电路

由于示波管的偏转灵敏度甚低,例如常用的示波管13SJ38J型,其垂直偏转灵敏度为0.86mm/V(约12V电压产生1cm的偏转量),所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的图形。

X轴放大电路

由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的图形。

扫描同步电路

扫描电路产生一个锯齿波电压。该锯齿波电压的频率能在一定的范围内连续可调。锯齿波电压的作用是使示波管阴极发出的电子束在荧光屏上形成周期性的、与时间成正比的水平位移,即形成时间基线。这样,才能把加在垂直方向的被测信号按时间的变化波形展现在荧光屏上。

电源供给电路

电源供给电路:供给垂直与水平放大电路、扫描与同步电路以及示波管与控制电路所需的负高压、灯丝电压等。

五、示波器的使用方法:

示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。

(一)面板装置SR-8型双踪示波器的面板图如图所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。

1.显示部分主要控制件为:

(1)电源开关。

(2)电源指示灯。

(3)辉度 调整光点亮度。

(4)聚焦调整光点或波形清晰度。

(5)辅助聚焦 配合“聚焦”旋钮调节清晰度。

(6)标尺亮度调节坐标片上刻度线亮度。

(7)寻迹 当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。

(8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。

2.Y轴插件部分

(1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:

“交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电

子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。

“断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。

“YA”、“YB ”:显示方式开关置于“YA ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“YA”或“YB ”通道的信号波形。

“YA + YB”:显示方式开关置于“YA + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。

(2)“DC-⊥-AC”Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。

(3)“微调V/div”灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。

(4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。

(5)“↑↓” Y轴位移电位器,用以调节波形的垂直位置。

(6)“极性、拉YA ”YA 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。

(7)“内触发、拉YB ”触发源选择开关。在按的位置上(常态) 扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。

(8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。

3.X轴插件部分

(1)“t/div” 扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从0.2μs~1s共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。

(2)“扩展、拉×10”扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展 拉×10”适于观察波形细节。

(3)“→←” X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线左移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。

(4)“外触发、X外接”插座采用BNC型插座。在使用外触发时,作为连接外触发信号的插座。也可以作为X轴放大器外接时信号输入插座。其输入阻抗约为1MΩ。外接使用时,输入信号的峰值应小于12V。

(5)“触发电平”旋钮 触发电平调节电位器旋钮。用于选择输入信号波形的触发点。具体地说,就是调节开始扫描的时间,决定扫描在触发信号波形的哪一点上被触发。顺时针方向旋动时,触发点趋向信号波形的正向部分,逆时针方向旋动时,触发点趋向信号波形的负向部分。

(6)“稳定性”触发稳定性微调旋钮。用以改变扫描电路的工作状态,一般应处于待触发状态。调整方法是将Y轴输入耦合方式选择(AC-地-DC)开关置于地档,将V/div开关置于最高灵敏度的档级,在电平旋钮调离自激状态的情况下,用小螺丝刀将稳定度电位器顺时针方向旋到底,则扫描电路产生自激扫描,此时屏幕上出现扫描线;然后逆时针方向慢慢旋动,使扫描线刚消失。此时扫描电路即处于待触发状态。在这种状态下,用示波器进行测量时,只要调节电平旋钮,即能在屏幕上获得稳定的波形,并能随意调节选择屏幕上波形的起始点位置。少数示波器,当稳定度电位器逆时针方向旋到底时,屏幕上出现扫描线;然后顺时针方向慢慢旋动,使屏幕上扫描线刚消失,此时扫描电路即处于待触发状态。

(7)“内、外” 触发源选择开关。置于“内”位置时,扫描触发信号取自Y轴通道的被测信号;置于“外”位置时,触发信号取自“外触发X 外接”输入端引入的外触发信号。

(8)“AC”“AC(H)”“DC”触发耦合方式开关。“DC”档,是直流藕合状态,适合于变化缓慢或频率甚低(如低于100Hz)的触发信号。“AC”档,是交流藕合状态,由于隔断了触发中的直流分量,因此触发性能不受直流分量影响。“AC(H)”档,是低频抑制的交流耦合状态,在观察包含低频分量的高频复合波时,触发信号通过高通滤波器进行耦合,抑制了低频噪声和低频触发信号(2MHz以下的低频分量),免除因误触发而造成的波形幌动。

(9)“高频、常态、自动”触发方式开关。用以选择不同的触发方式,以适应不同的被测信号与测试目的。“高频”档,频率甚高时(如高于5MHz),且无足够的幅度使触发稳定时,选该档。此时扫描处于高频触发状态,由示波器自身产生的高频信号(200kHz信号),对被测信号进行同步。不必经常调整电平旋钮,屏幕上即能显示稳定的波形,操作方便,有利于观察高频信号波形。“常态”档,采用来自Y轴或外接触发源的输入信号进行触发扫描,是常用的触发扫描方式。“自动”挡,扫描处于自动状态(与高频触发方式相仿),但不必调整电平旋钮,也能观察到稳定的波形,操作方便,有利于观察较低频率的信号。

(10)“+、-”触发极性开关。在“+”位置时选用触发信号的上升部分,在“-”位置时选用触发信号的下降部分对扫描电路进行触发。

(二)使用步骤

用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。

下面介绍用示波器观察电信号波形的使用步骤。

1.选择Y轴耦合方式

根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC。

2.选择Y轴灵敏度

根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。

3.选择触发(或同步)信号来源与极性

通常将触发(或同步)信号极性开关置于“+”或“-”档。

4.选择扫描速度

根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。

5.输入被测信号

被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。

六、示波器使用前的检查:

示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。示波器能否正常工作的检查方法、垂直放大电路增益和水平扫描速度的校准方法,由于各种型号示波器的校准信号的幅度、频率等参数不一样,因而检查、校准方法略有差异。

示波器实验报告 篇2

1.基础操作:

了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。其中最主要也是经常使用的旋钮为横向和纵向两个。横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。

明确操作步骤及注意事项后,接通示波器电源开关。先找到扫描线并调至清晰。

2.观测李萨如图形:

向CH1、CH2分别输入两个信号源的正弦波,扫描时间的粗调旋钮置于X-Y方式(即使两路信号进行合成)。调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。绘出所观察到的各种频率比的李萨如图形。

设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值fy进行比较,一一求出它们的相对误差。

示波器实验报告 篇3

示波器的使用实验报告

示波器的使用实验报告1

在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。

1 示波器工作原理

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1 示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

1、荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

2、电子枪及聚焦

电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3、偏转系统

偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4、示波管的电源

为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2 示波器的基本组成

从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

被测信号①接到“Y“输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的'被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

2 示波器使用

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1 荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2 示波管和电源系统

1、电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2、辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3、聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4、标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

2.3 垂直偏转因数和水平偏转因数

1、垂直偏转因数选择(VOLTS/DIV)和微调

在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2、时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0.2μS

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

2.4 输入通道和输入耦合选择

1、输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10”位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2、输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。

2.5 触发

第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。

示波器实验报告 篇4

示波器,是显示被测量的瞬时值轨迹变化情况的仪器。那么,怎样正确使用示波器?

示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。

选择Y轴耦合方式:根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC

选择Y轴灵敏度:根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。

选择触发(或同步)信号来源与极性:通常将触发(或同步)信号极性开关置于“+”或“-”档。

选择扫描速度:根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。

输入被测信号: 被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。

示波器为了使波形的读数更加精确、清晰,在原始校正波形时,一定要把波形调得最准、最清晰、线条调至最精细,只有这样,读数才会最为准确,误差才会减至最少,这对故障分析往往有举足轻重的作用。最后还有一点需要注意的是:校正波形调整完毕后,所有补偿按钮都不能调动或更改(即SWP VAP和电压补偿),否则将要再次对示波器重新校正一次。

仪器操作人员的安全和仪器安全,仪器在安全范围内正常工作,保证测量波形准确、数据可靠,应注意: 1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束轰击一点宜在荧光屏上形成暗斑,损坏荧光屏。

2.测量系统- 例如示波器、信号源;打印机、计算机等设备等。被测电子设备- 例如仪器、电子部件、电路板、被测设备供电电源等设备接地线必须与公共地(大地)相连。

3. TDS200/TDS1000/TDS2000 系列数字示波器配合探头使用时,只能测量(被测信号- 信号地就是大地,信号端输出幅度小于300V CAT II)信号的波形。绝对不能测量市电AC220V 或与市电AC220V 不能隔离的电子设备的浮地信号。(浮地是不能接大地的,否则造成仪器损坏,如测试电磁炉。)

4.通用示波器的外壳,信号输入端BNC 插座金属外圈,探头接地线,AC220V 电源插座接地线端都是相通的。如仪器使用时不接大地线,直接用探头对浮地信号测量,则仪器相对大地会产生电位差;电压值等于探头接地线接触被测设备点与大地之间的电位差。这将对仪器操作人员、示波器、被测电子设备带来严重安全危险。

5. 用户如须要测量开关电源(开关电源初级,控制电路) 、UPS(不间断电源)、电子整流器、节能灯、变频器等类型产品或其它与市电AC220V 不能隔离的电子设备进行浮地信号测试时,必使用DP100高压隔离差分探头。 示波器使用中的其他注意事项

(1)热电子仪器一般要避免频繁开机、关机,示波器也是这样。

(2)如果发现波形受外界干扰,可将示波器外壳接地.

(3)“Y输入”的电压不可太高,以免损坏仪器,在最大衰减时也不能超过400 V.“Y输入”导线悬空时,受外界电磁干扰出现干扰波形,应避免出现这种现象。

(4)关机前先将辉度调节旋钮沿逆时针方向转到底,使亮度减到最小,然后再断开电源开关.(5)在观察荧屏上的亮斑并进行调节时,亮斑的亮度要适中,不能过亮。

示波器分为万用示波表,数字示波器,模拟示波器,虚拟示波器,任意波形示波器, 信号发生器,函数发生器。

示波器实验报告 篇5

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1 示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

1.荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

2.电子枪及聚焦

电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3.偏转系统

偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4.示波管的电源

为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2 示波器的基本组成

从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

示波器实验报告 篇6

示波器的使用

预习思考题

1、示波器的功能是什么?

2、扫描同步如何理解?

3、什么是李萨如图?

1、电子示波器是用来直接显示,观察和测量电压波形机器参数的电子仪器。

2、用每一个触发脉冲产生于同触发电压所对应的触发信号的同相位点,故每次扫描起点会准确地落在同相位点于是每次扫描的起始点会准确地落在同相位点,于是每次扫描出的波形完全重复而稳定地显示被测波的波形。就是触发扫描实现同步的原理。

3、当示波器在Y轴与X轴同时输入正弦信号电压且他们的频率式简单的整数比时荧光屏上出现各式各样的图形这类图形称作“李萨如图”

实验数据记录

实验仪器:

YB4320F双追踪示波器,SG1642函数信号发生器实验步骤:

1.用示波器观察信号波形

(1)调节扫描旋钮,使示波器的扫描线至长短适当的稳定水平亮线

(2)将信号发生器接到ch1或ch2输入上,频率选用数百或数千赫兹方式开关及触发源开关的位置与信号输入通道一致的出稳定的波形。

(3)改变输入信号电压的波形,如正弦波,三角波,方波调节扫描微调,以得到2个

(4)可以在调节其他该扫描熟悉示波器2.用李萨如图测定频率

(1)当示波器在Y轴与X轴同时输入正弦信号电压,且他们的频率式简单的整数比的的荧光屏上出现各种形式的图形,这类图形称作“李萨如图”

(2)当fg:fx=1:1时输入fg=50hz.fx=50hz,绘出一种李萨如图

(3)当fg:fx=1:2时输入fg=300hz.fx=200hz,绘出一种李萨如图

数据处理如上

思考题

1、示波器为接通前,有那些注意事项?

2、波形不稳定时,应调节那个旋钮?

3、为了观察李萨如图,应该怎样设置按钮?

4、欲关闭示波器,首先应把那个旋钮扭到最小?

1、确定是否接地。

2、是否正确连接探头。

3、查看所有的终端额定值。

4、在是使用一个通道的情况下触发源选的通用一致。

5、应调节水平微调使之稳定,再调节CH通道。

6、首先示波器应该在XY轴输入正弦电压,且加上fg与fx上的频率成整数比。

7、将示波器探头脱开测量电路,将输入选择开关,达到接地位置,关机,如果是模拟示波器的话,需要将聚集旋钮和亮度旋钮调低,然后在关闭电源。

示波器实验报告 篇7

扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。

自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。

常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。

单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。

上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。

示波器实验报告 篇8

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2示波管和电源系统

1.电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2.辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3.聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

2.3垂直偏转因数和水平偏转因数

1.垂直偏转因数选择(VOLTS/DIV)和微调

在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的`电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于"校准"位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2.时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

"微调"旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0.2μS

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

2.4输入通道和输入耦合选择

1.输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到"×1"位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到"×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2.输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择"地"时,扫描线显示出"示波器地"在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择"直流"方式,以便观测信号的绝对电压值。

2.5触发

第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。

1.触发源(Source)选择

要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。

电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。

外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。

正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。

2.触发耦合(Coupling)方式选择

触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。

AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。

直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。

低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。

3.触发电平(Level)和触发极性(Slope)

触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。

极性开关用来选择触发信号的极性。拨在"+"位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在"-"位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。

2.6扫描方式(SweepMode)

扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。

自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。

常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。

单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。

上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。

示波器实验报告 篇9

示波器是测量信号波形的仪器,是应用最广的测量仪器之一。它不仅广泛应用于实验室,而且成为现代工业不可缺少的辅助工具。利用示波器对电子产品的电路进行信号的检测和分析,可以快速地发现并解决问题,因此正确分析示波器显示波形的原理,以及熟悉使用示波器是非常有必要的,对学生以后学习和工作有很大的帮助。在大学物理实验教学中,示波器原理与使用是一个必不可少的实验。然而,该实验仪器的原理复杂,大多数学生理解起来难度偏大,特别是面板旋钮多使得学生熟悉起来很困难。通过该实验对提高学生在信号波形测量方面的实践能力、创新能力,以及理论联系实际的能力提高有着极其重要的作用。在实验教学过程总是会出现各种各样的问题,因此我结合大学物理实验示波器实验中出现的问题,介绍一些经验。

1、示波器原理的阐述

实验教学首先讲解的就是仪器原理,但是示波器的原理比较复杂,学生掌握起来比较困难。为解决这个难题,将示波器显示波形的原理与单摆运动中沙漏形成波形的原理相类比,利用简单易懂的知识对示波器的原理进行形象的讲解,使其简化,加深学生对示波器原理的理解和掌握。在大学生物理实验教学中利用类比简化思维帮助学生理解和学习新知识的方法效果明显。

示波管结构非常简单,主要由电子枪、偏转系统和荧光屏三个部分组成,偏转系统由水平偏转板(x轴方向)和竖直偏转板(y轴方向)组成。在偏转板上加电压,则电子束的运动是发生偏转,加不同的电压,电子运动也不一样,从而在荧光屏上所观察到的图形也有所不同。如果我们在竖直偏转板上接入待观察的正弦交流电压,同时在水平偏转板上接入锯齿波电压,则电子的运动将是水平方向的匀速直线运动与竖直方向的简谐振动两个相互垂直方向上运动的合成,屏上将显示正弦波。

把沙漏的单摆运动与示波器显示波形的原理相结合进行类比,以帮助学生理解示波器的工作原理。实践表明示波器显示波形的原理虽然复杂,但是利用沙漏的单摆运动实验对其进行类比简化,可以很容易地让学生理解掌握。示波器的工作原理可以如此掌握,在进行其他物理知识的学习和物理实验的探讨时,实验老师也可以采用这种类比的方法,利用学生理解的知识点甚至是其他学科的知识去简化复杂的物理内容。掌握了这种教学法,不仅可以使学生将新知识与已有的知识融会贯通,而且能使学生加深记忆和理解,为他们的学习提供极大的帮助。

2、功能键的使用技巧及注意事项

在教师准备实验仪器阶段,应注意示波器在使用一段时间或经较长时间存放或修理后,应重新进行校准,示波器精度校准分垂直校准和时基校准两个方面。待示波器开机20分钟后,内部稳定即可进行校准工作。扫描基线的校正,示波器应用在不同的场合,会受外磁场的影响引起扫描基线发生倾斜,此时需要对扫描基线进行校正。校正的方法:用螺丝刀调节“基线旋转”,使扫描线和示波器的水平刻度线平行。

在示波器功能键的讲解上要做到示波器面板上各开关、按键、旋钮都要详细地讲解相关功能特性,同时进行示范性的屏幕显示演示,使得学生有更直观形象的了解。要求做实验前学生对照仪器面板说明书,体会一些常用开关、按键、旋钮的作用,如辉度、聚焦、位移、X―Y等,让学生有一个自己独立操作仪器的过程。

非常有必要在黑板上板示示波器使用注意事项及技巧:

(1)测试前,在不明确被测信号幅度大小,可先将示波器的VOLTS/DIV选择开关置于最大挡,避免电压过高而造成示波器损坏,同时避免该档位过小往往出现信号显示远远大于屏幕,以至于学生误认为没有信号输入。一般选择合适档位使得信号显示高度约占荧光屏高度的二分之一到三分之二之间,这样减小在信号测量时出现的误差。

(2)在用示波器测量频率较低信号时,其波形不容易同步,表现为波形不稳定。一般情况规定学生输入较高频率信号,同时仔细调节示波器上的触发电平控制(LEVEL)旋钮,使被测信号稳定和同步。“触发电平”键是示波器面板上众多旋钮中非常重要的旋钮,其作用在众多物理实验教材中只是介绍而已,通过触发扫描使待测信号与扫描信号同步以达到图形的稳定,图形不稳定的情况在学生实验中出现得最多。

(3)TIME/DIV(扫描速率选择)旋钮。此旋钮的作用是改变加在水平偏转板上锯齿波扫描信号的频率。在不明确被测信号频率大小,可将TIME/DIV选择扫描时间置于最小挡,避免低频率信号一直闪动。合适的档位是信号波形显示2到3个周期,这样在时间测量时可以减少误差。

(4)“触发方式”、“触发源”和“触发电平”的选择。这三者选择的不正确,往往出现波形不稳定的情况,屏幕上的波形发生向左或向右的连续移动。要使波形能够稳定下来,跟示波器使用的“触发方式”、“触发源”及“触发电平”选择有关,合理运用触发方式、触发源来观察信号,要求学生在实验中掌握。

(5)在利萨如图实验部分,为了避免视觉上的混乱,要求学生在关闭通道1的前提下再调整好通道2的信号显示。

(6)示波器工作时,周围不要放置大功率的变压器,否则,对示波器会有很大影响和噪声干扰。

3、示波器常见故障的分析

示波器用于实验教学使用频繁,且使用时间较长,很容易出故障。掌握示波器的常见故障的分析检修方法,有利于缩短维修周期,避免因为仪器故障耽误教学。在遇到各种问题时,学生一般无法解决,往往需要教师引导性地解决。这就要求教师要具备解决这些问题的能力。当然这些需要在教学中不断地总结经验,多途径地提高解决问题的能力,进而能够更好地指导学生排除故障。

在教学过程中,学生在出现问题时,经常性地乱按功能键,到了后面他自己都不知道按了什么键,有时的确是仪器出现问题。教师应该把出现的各种原因都考虑进去,先考虑仪器正常是仪器参数设置的问题,再考虑仪器元件出现问题。例如示波器屏幕上没有任何信号或者信号在示波器上显示闪动的比较厉害。首先,看信号输入端的问题即信号发生器示波器的相关设置是否正常,例如波形按钮是否有选择、频率的设置是否正确,等等,然后检查与示波器的接线,以及探头接触是否良好、探头线断线等问题,再检查示波器相关按键的设置是否和信号发生器输出信号一直,可能是学生按了所用通道的接地旋钮,这样信号就会对地短路,没有任何信号输入到示波器测量端,以及示波器电源开关有没有打开,可以调节亮度旋钮看是否亮度设置太低。其次,调节上下位移旋钮和左右位移旋钮看波形是否偏离屏幕显示区。所以首先要求老师要一定程度的对仪器硬件有所了解,那些元件出现问题可能会出现什么样的现象,对仪器的操作那就要求非常熟悉,总之做到软件硬件都过关。

4、结语

以上是我在示波器实验教学实践中总结的一些经验。在有限学习时间内,学习、掌握基本的仪器操作方法,让学生做到实验目标明确,理论与实践相结合,在掌握好基本技能的基础上进行开放式自主训练。教师应引导学生解决实验中遇到的一些问题,提高学生的创新能力,使学生体会到大学物理实验这门课的作用与重要性,从而逐渐地让学生有意识地去提高自己的动手能力。

示波器实验报告 篇10

一、实验目的及要求:

(1)了解示波器的基本工作原理。

(2)学习示波器、函数信号发生器的使用方法。

(3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。

二、实验原理:

1)示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。

2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。

3)示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。

4)李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为f(x):f(y)=N(y):N(x)。

三、实验仪器:

示波器、函数信号发生器。

四、实验操作的主要步骤:

(一)示波器的使用与调节

1)将各控制旋钮置于相关位置。

2)接通电源,按下面板左下角的“pOWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状态。

3)经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、pOSITION,使亮点清晰。

4)将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水平扫描线,按(3)使线清晰。

(二)实验内容:

1)观察正弦波波长:

a)将ACGNDDC转换开关置于AC

b)讲面板右上角的SOURCE置于CH2

c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)

d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)

e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。

2)观察并描绘李萨如图形,测量正弦信号频率。

利用利萨如图测正弦电压的频率基本原理

通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。

不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则

fy/fx=Nx/Ny

图1李萨如图与信号频率的关系

图2fx/fy=1:1时李萨如图与信号相位差的关系

五、数据记录及处理:

用李萨如图测量正弦信号频率

六、实验注意事项:

1.信号发生器、示波器预热3分钟以后才能正常工作。

2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);

3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。

4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。

七、趣味物理实验心得:

一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益菲浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。

通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。

"实习总结"延伸阅读