回不去的时光总是可惜的,马上到来的新工作也会有许多挑战,我们要开始对这段时间的工作进行一个总结了,总结是对取得的成绩、存在的问题及得到的经验进行评价与描述的一种书面材料,那么该如何完成一篇高质量的工作总结呢?以下是小编收集整理的“2019高一数学知识点总结集合”,供有需要的朋友参考借鉴,希望可以帮助到你。
XX高一数学集合知识点总结
一.知识归纳:
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则ab)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:n,z,q,r,n*
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对xa都有xb,则a b(或a b);
2)真子集:a b且存在x0b但x0 a;记为a b(或 ,且 )
3)交集:ab={x| xa且xb}
4)并集:ab={x| xa或xb}
5)补集:cua={x| x a但xu}
注意:①? a,若a?,则? a ;
②若 , ,则 ;
③若 且 ,则a=b(等集)
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。
4.有关子集的几个等价关系
①ab=a a b;②ab=b a b;③a b c ua c ub;
④acub = 空集 cua b;⑤cuab=i a b。
5.交、并集运算的性质
①aa=a,a? = ?,ab=ba;②aa=a,a? =a,ab=ba;
③cu (ab)= cuacub,cu (ab)= cuacub;
6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:
【例1】已知集合m={x|x=m+ ,mz},n={x|x= ,nz},p={x|x= ,pz},则m,n,p满足关系
a) m=n p b) m n=p c) m n p d) n p m
分析一:从判断元素的共性与区别入手。
解答一:对于集合m:{x|x= ,mz};对于集合n:{x|x= ,nz}
对于集合p:{x|x= ,pz},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以m n=p,故选b。
分析二:简单列举集合中的元素。
解答二:m={, ,},n={, , , ,},p={, , ,},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。
= n, n,m n,又 = m,m n,
= p,n p 又 n,p n,故p=n,所以选b。
点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。
变式:设集合 , ,则( b )
a.m=n b.m n c.n m d.
解:
当 时,2k+1是奇数,k+2是整数,选b
【例2】定义集合a*b={x|xa且x b},若a={1,3,5,7},b={2,3,5},则a*b的子集个数为
a)1 b)2 c)3 d)4
分析:确定集合a*b子集的个数,首先要确定元素的个数,然后再利用公式:集合a={a1,a2,,an}有子集2n个来求解。
解答:∵a*b={x|xa且x b}, a*b={1,7},有两个元素,故a*b的子集共有22个。选d。
变式1:已知非空集合m {1,2,3,4,5},且若am,则6?am,那么集合m的个数为
a)5个 b)6个 c)7个 d)8个
变式2:已知{a,b} a {a,b,c,d,e},求集合a.
解:由已知,集合中必须含有元素a,b.
集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
评析 本题集合a的个数实为集合{c,d,e}的真子集的个数,所以共有 个 .
【例3】已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且ab={1},ab={?2,1,3},求实数p,q,r的值。
解答:∵ab={1} 1b 12?41+r=0,r=3.
b={x|x2?4x+r=0}={1,3}, ∵ab={?2,1,3},?2 b, ?2a
∵ab={1} 1a 方程x2+px+q=0的两根为-2和1,
变式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且ab={2},ab=b,求实数b,c,m的值.
解:∵ab={2} 1b 22+m?2+6=0,m=-5
b={x|x2-5x+6=0}={2,3} ∵ab=b
又 ∵ab={2} a={2} b=-(2+2)=4,c=22=4
b=-4,c=4,m=-5
【例4】已知集合a={x|(x-1)(x+1)(x+2)0},集合b满足:ab={x|x-2},且ab={x|1
分析:先化简集合a,然后由ab和ab分别确定数轴上哪些元素属于b,哪些元素不属于b。
解答:a={x|-21}。由ab={x|1-2}可知[-1,1] b,而(-,-2)b=ф。
综合以上各式有b={x|-1x5}
变式1:若a={x|x3+2x2-8x0},b={x|x2+ax+b0},已知ab={x|x-4},ab=,求a,b。(答案:a=-2,b=0)
点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。
变式2:设m={x|x2-2x-3=0},n={x|ax-1=0},若mn=n,求所有满足条件的a的集合。
解答:m={-1,3} , ∵mn=n, n m
①当 时,ax-1=0无解,a=0 ②
综①②得:所求集合为{-1,0, }
【例5】已知集合 ,函数y=log2(ax2-2x+2)的定义域为q,若pq,求实数a的取值范围。
分析:先将原问题转化为不等式ax2-2x+20在 有解,再利用参数分离求解。
解答:(1)若 , 在 内有有解
令 当 时,
所以a-4,所以a的取值范围是
变式:若关于x的方程 有实根,求实数a的取值范围。
解答:
点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。
gz85.COM更多工作总结范文编辑推荐
高中数学知识点总结——函数
一、函数的定义域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于1;
5、三角函数正切函数y=tanx中xk+/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:
1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法
三、函数的值域的常用求法:
1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法
四、函数的最值的常用求法:
1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法
五、函数单调性的常用结论:
1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数
2、若f(x)为增(减)函数,则-f(x)为减(增)函数
3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:
1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)
2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。
2019小升初数学知识点总结
1、小升初数学知识点(年龄问题的三大特征)
年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:
①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的;
③两个人的年龄的倍数是发生变化的;
解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。
例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍
⑴ 父子年龄的差是多少?54 18 = 36(岁)
⑵ 几年前父亲年龄比儿子年龄大几倍? 7 - 1 = 6
⑶ 几年前儿子多少岁? 366 = 6(岁)
⑷ 几年前父亲年龄是儿子年龄的7倍? 18 6 = 12 (年)
答:XX年前父亲的年龄是儿子年龄的7倍。
2、小升初数学知识点(归一问题特点)
归一问题的基本特点:
问题中有一个不变的量,一般是那个单一量,题目一般用照这样的速度等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;
复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。这样的应用题就叫做归一问题,这种解题方法叫做归一法。有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。
由上所述,解答归一问题的关键是求出单位量的数值,再根据题中照这样计算、用同样的速度等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
3、小升初数学知识点(植树问题总结)
植树问题基本类型:
在直线或者不封闭的曲线上植树,两端都植树
在直线或者不封闭的曲线上植树,两端都不植树
在直线或者不封闭的曲线上植树,只有一端植树
封闭曲线上植树
基本公式:
棵数=段数+1 棵距段数=总长 棵数=段数-1
棵距段数=总长 棵数=段数 棵距段数=总长
关键问题:
确定所属类型,从而确定棵数与段数的关系
4、小升初数学知识点(鸡兔同笼问题)
鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数总头数)(兔脚数一鸡脚数)
关键问题:找出总量的差与单位量的差。
5、小升初数学知识点(盈亏问题)
盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)两次每份数的差
基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
2019中考数学知识点【方程】
一、基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2.分类:
二、解方程的依据等式性质
1.a=ba+c=b+c
2.a=bac=bc(c0)
三、解法
1.一元一次方程的解法:去分母去括号移项合并同类项
系数化成1解。
2.元一次方程组的解法:⑴基本思想:消元⑵方法:①代入法
②加减法
四、一元二次方程
1.定义及一般形式:
2.解法:⑴直接开平方法(注意特征)
⑵配方法(注意步骤推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3.根的判别式:
4.根与系数顶的关系:
逆定理:若,则以为根的一元二次方程是:。
5.常用等式:
五、可化为一元二次方程的方程
1.分式方程
⑴定义
⑵基本思想:
⑶基本解法:①去分母法②换元法(如,)
⑷验根及方法
2.无理方程
⑴定义
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法
3.简单的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
小学数学(分数)知识点总结
1、分数的意义
把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的读法:读分数时,先读分母再读分之然后读分子,分子和分母按照整数的读法来读。
3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
4、比较分数的大小:
⑴ 分母相同的分数,分子大的那个分数就大。
⑵ 分子相同的分数,分母小的那个分数就大。
⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
⑷ 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
5、分数的分类
按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
⑴ 真分数:分子比分母小的分数叫做真分数。真分数小于1。
⑵ 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
⑶ 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
6、分数和除法的关系及分数的基本性质
⑴ 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
⑵ 由于分数和除法有密切的关系,根据除法中商不变的性质可得出分数的基本性质。
⑶ 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
7、约分和通分
⑴ 分子、分母是互质数的分数,叫做最简分数。
⑵ 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
⑶ 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
⑷ 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
⑸ 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
8、倒 数
⑴ 乘积是1的两个数互为倒数。
⑵ 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
⑶ 1的倒数是1,0没有倒数