搜索

容积和容积单位课件

发布时间: 2023.12.18

容积和容积单位课件。

“教案课件是教师教学工作的起始环节,每个老师都应该按要求准备教案课件。详细的教学教案能够帮助教师了解学生的学习情况。那么,一个好的教案课件应该具备哪些特点呢?如果您对这个话题还不是很了解,可以尝试阅读一下“容积和容积单位课件”,并认真了解本文中的重要概念。”

容积和容积单位课件(篇1)

教学内容:

义务教育教科书人教版教材五年级下册第三单元第七课时

教学目标:

1.理解容积的概念,知道常用的容积单位与体积单位间的关系,会计算长方体和正方体容器的容积解决单间的实际问题。

2.经历直观、实验、观察、想象、推理等数学活动过程,充分感知容积单位的实际意义及大小,建立健立1升、1毫升的表象,进一步发展学生的空间观念。

3.体验数学与生活的联系,培养学生的空间想象能力和推理能力。

教学重点:

理解容积的概念,知道容积单位与体积单位间的关系,会计算容积解决实际问题。

教学难点:

推导容积的进率,建立1升、1毫升的表象,培养学生的空间观念。

教学资源:

多媒体课件。标有1升的量杯,标有1毫升的量杯,1个试管,四个纸杯,1个1立方分米的容器。

教学过程:

一、创设情境,导入新课

1.课件出示长方体纸盒。这是一个长方体纸盒,我想知道这个长方体纸盒的体积,怎么办?(量出它的长宽高,算出体积。)从哪量?课件出示长宽高分别为8分米上、6分米、5分米。计算出体积。

2.往这个盒子里面装满沙子,猜这个盒子能装多少沙子?为什么装入的沙子的体积比盒子的体积少?(纸盒的体积是从处面量的,有厚度,而沙子在纸盒的里面,要把厚度去掉,从里面量)

3.盒子面所能容纳的沙子的体积就是盒子的容积,再比如,这个盆子,盆子里所能容纳的水的体积就是这个分子的体积。你能用自己的话说一说什么是容积吗?(箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。)

4.这节课我们就来研究容积的知识,板书课题:容积和容积单位。

二、自主探索,合作交流

1.讲述:计量容积,一般就用体积单位,板书:——,计量液体的体积时,常用容积单位升、毫升。板书:——升、毫升。

2.课件出示:眼药水瓶上写的:10mL;果蔬汁盒上写的:250mL;绿茶瓶子上写的:1L,你知道它们的含义吗?把升用字母L表示,毫升用字母mL表示,板书——

3.(1)我要将这一升水,倒入这个1000毫升的量杯中,请同学们认真观察,10毫升水大约是这么多,想象一下毫升水大约有多少?100毫升水是这么多,500毫升水是这么多,把这一升水全部倒入这1000毫升的量杯中了,你发现什么了?(1升=1000毫升板书:——)

(2)把这1升水倒进这个1立方米的容器里,你发现什么了?我再把这样升水倒入这个1立方分米的容器中,你发现了什么?(容积单位和体积单位有这样的关系:1升=1立方分米。1Ml=1立方厘米。)

4.生活中哪些物品上标有毫升和升,这些物品的容积大约是多少?计这个纸杯大约能装多少水?(把纸杯倒满水,再倒入量杯中,发现这个纸杯大约能装200毫升水);估计一下几杯水大约是一升?(装满一升水,倒入纸杯量,发现5杯水大约是的升水)。

5.教学例5。学生独立完成,交流方法,强调长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但是要从容器里面量长、宽、高。

三、巩固练习,拓展应用

1.在括号里填上合适的单位。

(1)一瓶墨水约50()

(2)一桶色拉油约5()

(3)泡泡液约100()

(4)汽车集装箱约6()

2.单位换算。

30升=()毫升

20000mL=()L

46立方分米=()L

430mL=()立方厘米

2100立方厘米=()=mL=()L

8.04升=()立方分米=()立方厘米

3.P40页第5题。某海岛战士为解决岛上淡水缺乏问题,和当地居民共同修建了一个长20m、宽10m、深1.8m的淡水蓄水池。这个蓄水最多可蓄水多少立方米?合多少升?

四、反思总结,自我建构

这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。

容积和容积单位课件(篇2)

教学目标

知识与技能:使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。感受1毫升的实际意义,和应用所学之事解决生活中的简单问题。

过程与方法:培养学生的观察能力和解决问题的能力

情感态度价值观:培养学生独立思考、严肃认真的学习态度。

教学重点

建立容积和容积单位观念,容积单位换算

教具、学具准备

长方体纸盒、木盒各一个,一些细沙;若干个容积为500ml的易拉罐,1dm3的正方体容器若干个,量杯、滴管若干个,一些水,例6的多媒体课件。

教学过程

一、复习导入

1、什么叫物体的体积?它常用的计量单位是什么?

2、师:(用橡皮泥做两个体积相等的长方体模型,空心,一个壁厚些)同学们,怎样才能知道这两个长方体体积?

生:可以先量出它们的长、宽、高各是多少,再算出它们的体积。

生:(动手测量)计算

师:(出示一堆细沙)请同学们再想一想,如果把这两个盒子都装满细沙,两个盒子里装的细沙会一样多吗?

师:同学们,像刚才你们看到的那样,盒子所能容纳细沙的体积,就是盒子的容积。

二、探求新知

1、教学容积的概念。

师:你认为还有什么物体也有容积呢?

生1:水桶里盛满水,这些水的体积就是水桶的容积。

生2:饮料瓶里装满饮料,饮料的体积就是饮料瓶的容积。

生3:茶叶桶所能容纳茶叶的体积,就是茶叶桶的容积。

……

(补充)仓库能容纳货物的体积,箱子里装书的体积,一个妈妈正往桶里装水,等。

教师:瓶子、油筒、仓库所能容纳的物体的体积,通常叫做它们的容积,这节课我们就来研究容积和容积单位。(板书课题)

2、认识容积单位。

(1)因为物体的容积通过所容纳物体的体积表现出来的,因此容积的计量单位一般就用体积单位。如上面盒子的容积可以用什么单位?

(2)计量液体的体积,如水、油等。通常容积单位升和毫升也可以写成L和ml。

举例:护工把一瓶药水交给病人,嘱咐说:“每天吃2毫升。”。司机对加油站的工作人员说,“加20升汽油。”商店里货架上的可乐,外包装上标着500ml……

(3)感知毫升和升

师:1ml究竟有多少呢?请大家认真观察。

(出示一个小量杯,请学生上台指出1ml所在的刻度。)

师:请同学们猜一猜,如果用滴管来滴水,滴几滴水可能是1ml?

(生猜测)

师生验证。

实际猜测药瓶容积。

师:把这1毫升的水倒进1立方厘米的正方体容器里面,刚好到满。

提问:这个这实验说明什么?(1ml=1cm3)

提问:大家想一想1升是多少毫升?相互讨论。

汇报:因为1升是1立方分米,1毫升是1立方厘米,而1立方分米=1000立方厘米,所以,1升就等于1000毫升。即1L=1000ml。

(出示一个易拉罐)每个小组都有一个易拉罐,请先看一看,它的容积是多少毫升?然后根据活动内容分小组进行活动。

(屏幕出现活动内容:易拉罐的容积有多少毫升?几个易拉罐的容积是1L?1L水大约可以倒满几杯?一杯水大约有多少毫升?然后再动手试一试,通过实验你发现了什么?)……

师:请你们想一想,除了上面的易拉罐,哪些物品上也标有毫升或升?

生1:牛奶盒子上标有毫升。

师:不错,有一种牛奶盒子上就标着250ml。

生2:我家的“凉拌醋”瓶子上标有500ml。

生3:我家吃的“金龙鱼”油瓶上标有5L。

……

师:请大家看屏幕,先认真想一想,再看怎么填。

[屏幕出示:5L=()ml,500ml=()L,2.4L=()ml=()cm3,2750ml=()L=()dm3。]

3、教学例5

师:请大家认真想一想,长方体和正方体容器容积的计算方法是什么?

教师讲解:容器容积的计算方法,跟体积的计算方法相同。但必须注意,计量的时候要从容器的里面量长、宽、高,才能更准确地算出它的容积是多少。

(屏幕出示例5,学生读题。)

①让学生尝试解答。

②解答:5×4×2=40(dm3)

40dm3=40L

答:这个油箱可装汽油40L。

讲评时要强调是从容器面量长、宽、高,并要注意,要把立方分米换算成长。汽油是液体,最用好“L”作单位。

“做一做”

三、巩固应用

1、填空

1L=()ML,450毫升=()升,6.4升=()毫升

2、判断

(1)一个游泳池的容积大约是2000毫升。()

(2)一个杯子能装水1升,这个杯子的容积就是1升。()

(3)一个正方体的木箱,它的体积和容积一样大。()

3、完成教材第53页练习九的第1~3题

四、全课总结

师:谁能谈谈这节课的收获?(生回答略)

容积和容积单位课件(篇3)

教学目标:

1、认识常用的容积单位:升、毫升,掌握升与毫升间的进率及它们和体积单位的关系。

2、通过动手操作,小组合作等探究活动,理解容积和体积的联系与区别,培养学生自主学习能力。

3、体会数学与生活的联系,激发学习兴趣

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯、长方体纸盒。

教学过程:

一、复习准备:

1、什么叫物体的体积?

2、常用的体积单位有( )、( )、( );相邻的两个体积单位间的进率是(  )。

3、说说长方体和正方体体积的计算方法。

二、探究新知:

教师引入后,按上面上个问题自学书第50页的第三段,说说计量容积用什么作单位。

1、学习容积的概念。

(1)打开长方体纸盒,讲解容积的概念。

(2)让学生例举说说什么叫容积。

(3)比较容积和体积的区别。

2、学习容积单位。

(1)了解容积单位一般就用体积单位,计量液体时用升和毫升。并说说生活中哪里见过容积单位升和毫升。

(2)出示量筒和量杯,师演示将1升的水倒入量筒,让学生观察,得出:1升(L)=1000毫升(mL)

(3)演示:体积单位与容积单位的关系。

将1升的水倒入1立方分米的容器里,让学生观察得出:

1升(L) = 1立方分米(dm3 )

1000毫升  1000立方厘米

1毫升(mL)= 1立方厘米(cm3 )

(4)小组活动:(1)将一瓶矿泉水倒在玻璃杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

(3)渗透养生知识,一个成年人每天大约要和2.5瓶矿泉水。

(4)讲解世界及我国水资源情况,渗透节约用水,保护环境思想。

2、学习容积的计算方法。

(1)怎样计算长方体和正方体的容积?

(2)出示:一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2=40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

(3)小结:计算容积的步骤是什么?

3、计算不规则物体的体积。

我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

三、实践应用:(多媒体出示,并动画演示。)

4、讲解爱迪生的小故事。

1、书第51页的“做一做”

2、书第52页的第1、2题。

3、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

4、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

提高题:书第55页的第16题。

四、归纳总结

五、板书设计

容积和容积单位

什么是            例5(略)

单位是

怎样算            例6(略)

容积和容积单位课件(篇4)

目标

①使学生认识常用的容积单位:升、毫升。

②掌握升与毫升间的进率以及它们和体积单位的关系。

③理解容积和体积的概念既有联系又有区别。

教学及训练

重点

容积和体积概念的联系与区别。

仪器

教具

容纳1升液体的量杯和1000毫升液体的量筒各一个。一个长20厘米、宽18厘米、高10厘米的长方体纸盒和木盒各一个。

教学内容和过程

教学札记

一、创设情境

1、填空。

(1)叫做物体的体积。

(2)常用的体积单位有、、,相邻的两个体积单位间的进率是。

2、一个长方体纸盒,它的长是2分米,宽是1.8分米,高1分米,它的体积是多少?

二、探索研究

1、教学容积的概念。

(1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?

师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。

(2)学生举例。

①谁能举例说一说什么叫做容积?②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)

(3)容积的计算方法。

师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

师:这是为什么?(出示一个木盒)

2、教学容积单位(板书课题)

(1)翻开书第28页,让学生看第三自然段。

板书:升毫升

(2)出示量杯和量筒,倒入1升的水进行演示,让学生得出:

1升=1000毫升。

(3)容积单位与体积单位的关系。

1升=1立方分米1毫升=1立方厘米

3、应用。

出示例4,指一名学生读题。

(1)分析理解题意:求这个油箱可以装汽油多少升?就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?

(2)学生做完后集体订正。

643=72(立方分米)

72立方分米=72升

三、巩固练习

1、第28页的练一练中的第1题、第2题;

2、练习五的第5、6、7题。

四、课堂小结

学生小结今天学习的内容。

五、思考练习

做练习五的第8、9、10题。

容积和容积单位

1、什么是容积?

2、哪些物体有容积?

3、怎样计算容积?

容积单位:

1升=1立方分米

1毫升=1立方厘米

容积和容积单位课件(篇5)

学情介绍:

从本学期开始,笔者在所教班级启动数学课前预习工作,学生的预习水平尚在初始阶段,即能够在预习时将重要的内容、定理用笔进行勾画;能够用自己的语言简单描述一些概念;能够正确理解例题想要表达的意思,找出所运用的知识。

预习要求:(一日三问)

1、通过预习,我能找到书上哪些概念、定理、规律?

2、我能用自己的话来说一说这些概念、定理、规律吗?

3、我还有哪些不明白的地方?

(评析:孔子一日有三省,我让孩子一日要有三问,通过这三问来自己检验预习的效果。)

课堂实录:

1、揭示课题。

师:今天我们要学习什么内容啊?

生:容积和容积单位。

师:看来你确实是预习了!

2、了解容积的概念。

通过预习,你了解到了什么知识呢?你能够有条理地给大家介绍一下吗?

生1:我知道了容积,一个物体所能装的物体多少,叫做容积。

师:你怎么知道的。

生1:我看书上28页,第一行的。(其他学生都不约而同地看书上的概念)

师:好像你说的和书上有一点不同哦!

生1:我觉得书上说的就是这个意思。

师:哦!你能用自己的语言表达出来这个含义,真了不起,看来你的预习成效不小!

(评析:看,学生已经有了自己的理解了,看来孩子的潜力是无穷的。孩子的回答让我震惊,也让我对孩子更加有信心,看来预习确实可以帮助孩子理解知识,更好地把握知识。)

生2:箱子、瓶子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

师:是吗?

生齐回答:是的!

师:除了箱子、瓶子、油桶,还有什么物体有容积呢?

生1:纸盒!

生2:杯子!

生3:还有这个!(举起医药用的盐水袋)

师:确实有容积!一般我们把纸盒、杯子、箱子等物体叫做容器。(板书:容器)

(评析:孩子预习过了只是对知识有初步的了解,当孩子只可意会,不可言传时,老师还是要勇敢地站出来,为孩子点拨、指引。)

师:你们了解了什么是容积吗?

生(非常自信)齐回答:了解。

师:(出示一个小纸盒)什么是它的容积?

生1:(把盒盖打开,用手在纸盒里捞一捞)这就是它的容积。

(其他学生频频点头)

(评析:从这里可以看出,孩子是真的理解容积一词的含义了!)

师:能用语言描述一下吗?

生1:它能装多少,就是这个纸盒的容积。

师:很形象,谁能运用我们知道的概念,用规范的数学描述吗?

生2:这个纸盒所能容纳物体的大小,叫做这个纸盒的容积。

生3:还要补充一点,是容纳物体体积的大小,才叫做这个纸盒容积。

师:听得真仔细,这样就更加完整了。你能再给大家说一遍。

生2:这个纸盒所能容纳物体体积的大小,叫做这个纸盒的容积。(着重说了体积)

师:(出示一个水杯)什么是它的容积?

生4:(把瓶盖打开,用手在里面捞一捞)这个被子能装水的体积,就是这个杯子的容积。

师:除了装水,还能装

生4:能容纳物体的体积,叫做这个杯子的容积。

师:这样更加准确。

师:再问自己一遍,你了解容积了吗?

生:(更加自信,一齐大声说)了解!

(评析:这是真的理解了,不但了解了字面的含义,我想在每个孩子的心里能够像放电影一样回忆到底什么是容积,它不再是冰冷的一串文字符号,而是活生生的形!)

师:什么是容积?(学生回答,板书补充完整:(容器)所能容纳物体体积的大小,叫做它的容积。)

师:(课间出示碗、鱼缸、高压锅、水池)选择你最喜欢的一幅,说一说什么是这个容器的容积?

(学生迫不及待地自己说起来。)

等说得声音渐渐小起来,指明几学生说。(说的时候都自然地配合着相应的动作。)

师:看来大家都了解了容积了。

3、比较容积与体积的不同。

(竞猜游戏,师出示两个尺寸一样的盒子,一个是塑料制成的,一个外面用白纸蒙着,看不出材质。)

师:猜一猜,那一个容积大?

生1:塑料盒子容积大。

师:为什么有这种感觉?

生1:感觉比较大。

生2:旁边那个白纸蒙着的容积大。

师:为什么?

生2:说不定那个盒子的材料还要薄一点。

生3:我还是觉得塑料盒子容积大,因为塑料已经很薄了。

生4:我也觉得是塑料盒子大。

(在学生的争论声中宣布揭晓谜底,全班突然安静下来,师缓缓地把两个盒子口转过来,对着大家,大家一起叫道:塑料盒子!)

(评析:难以用语言来表达当时孩子的神情,那时一副怎样的迫不及待啊!有的孩子紧张地握紧拳头,有的孩子脖子伸得不能再长了,有的孩子干脆巴在了讲台边从那一双双渴求的眼睛里,我看到了孩子对知识的向往!心情无比激动啊!)

师:为什么?

生5:很明显,它装的物体体积小。

师:你是目测的。

生6:这个木盒子的材料比较厚,所以装的物体肯定少,容积就小。

(其他学生会意地点头。)

师:看来大家都觉得两个盒子的容积由大小之分,这是它们的不同,那有没有什么相同呢?

(学生仔细地看着,几秒钟后,有些学生举起了手,有些学生却有点茫然。此时,教师将盒子一起翻扣在讲台上。)

生7:它们的体积相同。

(大家都表示同意。)

师:怎么又相同了,刚才不是说不同吗?

生8:一个是容积,一个是体积,不一样。

(其他同学纷纷附和。)

生9:体积是从外面量的,容积是从里面量的。

师:怎么知道的?

生9:我预习时看到书上有。

师:在什么地方?

生9:28页第二段。(大家纷纷看书。)

(评析:书的作用多大啊!相比起以前,有的新授课上完都没有打开书一下,把孩子最有力的学习利器丢在一边,真是得不偿失!而现在,书的作用被充分发挥出来了!)

师:书上还说什么了?

生10:体积计算的方法和容积的计算方法相同。

师:这句话大家怎么理解?

生11:都要用长宽高来求容积。

师:长、宽、高怎么测量?

生12:从里面测量。

生13:也可以从外面测量。(其他同学一片哗然,教师示意大家安静。)

生13:有些物品从里面测量不方便,可以从外面测量,减去它的厚度。

(大家若有所思,之后表示同意。)

师:你们觉得呢?我们要注意听话的艺术!不过,从外面测量再计算容积,中间的计算还不是很简单的呢,课后大家可以试一试。

(评析:预习后的课堂容易让孩子乱,因为觉得所学习的知识都弄懂了,大家都急于发表意见。此时,教师的调控机制显得尤为重要,既要把孩子都安抚住,还不能打消学习的积极性。)

师:那么体积和容积有什么区别,又有什么联系?

生14:计算的方法相同,但是体积一般量物体的外面,容积一般物体的里面。

(教师正准备小结,见有一学生举手。)

生15:还有。(捧起书朗读28页第三段。)计量容积,一般就用体积单位。但是计量液体的体积,如药水、汽油等,常用容积单位升和毫升。(板书:升、毫升)

(评析:如果没有预习,学生不可能注意到这样的一个细节,就是因为在课前进行了充分的预习,所以学生才能对知识的把握更加完善。)

师(激动):你预习的真仔细!这是两者的联系和区别吗?

(学生都表示同意。教师顺势往下引导。)

4、认识容积单位。

师:你在生活当中见过这些容积单位吗?在哪里见过?

生1:(实物投影展示饮料瓶)饮料瓶上有,350ml。

师:(板书:ml。)这是什么意思。

生2:毫升。

师:350毫升表示什么意思呢?

生3:表示这个瓶子的容积是350毫升。

生4:不是,表示里面盛的饮料是350毫升。

师:哪一个更准确?

(大家大部分都同意生4。)

生5:应该是饮料350毫升,因为前面有几个字我看见了,净含量。

师:观察的真仔细,这几个就说明问题了,350毫升表示的应该是

(学生齐声说,饮料)

(评析:生活中常见的事例孩子往往容易忽视,有必要给大家一个正确的认识!)

生6:(出示药用的针管)这里也有,到这里是2毫升,到这里是4毫升。

师:只有毫升吗?

生7:(出示一个大饮料瓶)大的饮料瓶上有升。这个L就表示升。

(教师板书:L。)

师:还有其他的吗?大家互相看一看。

(学生互相看看自己带的实物和周围同学带的实物。)

师:你还知道哪些升和毫升的知识?

生1:1升=1000毫升。1升=1立方分米,1毫升=1立方分米。

师:在哪里知道的?

生1:看书的,在28页红色方框里。

师:看来预习帮助你了解了不少知识啊!对这三句话有疑问吗?

(都摇头表示没有疑问。)

师:真理总是通过实践来证明的,想验证一下吗?

(教师试验,出示量筒和量杯。)

师:谁认识它们,能给大家介绍一下吗?

生1:这是量杯和量筒。

师:(再实物投影上展示刻度。)能具体一点吗?

生1:这是一个1000毫升的量筒和1升的量杯。

(用1000毫升的量筒里装红药水,倒入1升的量杯里,学生发现正好倒满。在倒的过程中,学生非常激动,尤其当最后一些水倒入量杯里,发现正好倒满,学生情不自禁地鼓起掌。)

师:想说什么?

生:1升真的等于1000毫升。(板书:1升=1000毫升)

师:他用了一个真的,是真的吗?

生(大声说):真的!

(评析:如果只是让大家把书上的知识读读背背,孩子势必会觉得索然无趣。但是用实验来验证,得到的知识印象深刻不说,对孩子的思想上也会有不少冲击。切记不要将书本神圣化,不要将老师神圣化,只有敢于怀疑的人才会有更多的创造!)

生1:老师,那1升真的等于1立方分米吗?

师:还是试验证明。

(将1升量杯里的红药水倒入1立方分米的塑料盒里。当试验进行到后半段有的学生激动地站起来,当最后一滴水倒入盒子里,水面虽然颤颤巍巍,但是没有泼洒出来,学生欢呼起来,课堂气氛达到了高潮。)

师(等待了约5秒,大家情绪稍稍平复):想说什么?

生(齐声):1升真的等于1立方分米。(特地重读真的二字)(板书:1升=1立方分米)

师:我们下面来试验:1毫升=1立方厘米。

(有的学生不同意,表示不需要试验了,请他来说理由。)

生1:不需要试验,我们根据1升=1000毫升,1立方分米=1升,就知道1立方分米=1000毫升,1立方分米=1000立方厘米,所以1毫升=1立方厘米。)

生2:我也觉得是这样。1升就是1立方分米,1立方分米是1000立方厘米,1升又是1000毫升,所以1000立方厘米=1000毫升,1毫升当然就等于1立方厘米。)

(学生们仔细听着,微微地点着头。)

师:是吗?大家明白了吗?

生表示都明白。

师:这两位同学真了不起,把我们大家都教会了,省去了我们不必要的试验,我提议

(没有等老师说完,大家都鼓掌表示感谢,两位同学都非常高兴。)

(评析:学生的主体意识充分发挥,在这样的课堂上,由于每个孩子都有一定的知识基础,所以就敢于站出来表现自己,如果没有预习给他的底气,我想,这样的场景可能不会出现。)

小节容积单位间的进率,巩固。

1、通过刚才的试验,我们现在可以理直气壮地说

(齐说,1升=1000毫升,1升=1立方分米1毫升=1立方厘米。)

2、利用这个知识能解决什么问题呢?

生:能够将一些有关的名数进行改写。

3、独立完成28页练一练1。

指名汇报答案。选择其中不同类型,说说是怎样想的。

4、你还能出几道给大家练习吗?

生1:3800毫升=()升。(板书)

师:谁能解答曹老师的这个问题。曹老师,这么多同学举手,你来点一个。

生2:3800毫升=3.8升。

生1:对。

(学生纷纷举手要做小老师。)

师:下面要求高一点,要出一个类型不一样的!

生3:0.3升=()立方分米。(点名)

生4:0.3升=300立方分米。

生3:对。

(见一学生情绪很激动,让其说一说。)

生5:大家听好,0.25毫升=()升。(板书)

(很多学生都喊出来250毫升,生5笑着摇头。大家觉得很奇怪,陷入沉思。不一会儿,有些学生脸上露出了恍然大悟的神情,迫不及待的举起手来,生5点了一个学生。)

生6:0.25毫升=0.00025升。

生5:对!

师:能说说为什么?

生6:毫升转化成升,是从低级单位的名数改写成高级单位的名数,要除以进率1000,所以应该是0.00025升。(有些一开始不明白的学生露出恍然大悟的表情。)

师:(生5)出的题目很有水平,让我们很多同学一开始都上当了,失败是成功之母,总结一下失败的教训?

生7:我们一看到这个数觉得很小,就觉得应该先乘进率1000,其实这是一个低级单位的名数改写成高级单位的名数,要除以进率1000。(大家纷纷点头)

师:以后我们一定要先看清楚类型再作,而不能凭感觉。好了,总结失败的教训,下次就一定能成功!

(评析:这个环节非常有趣,没有想到这么多孩子原来都是渴望做老师的,尤其是那个难住大家的孩子,获得了很多来自于其他孩子的注目礼,不只是孩子,连我都很敬佩!真的没看出来,原来我们的学生很有水平,是我以前太过小心翼翼,在不经意间,其实他们都长大了!)

5、容积的计算。

师:所有的知识都介绍完了吗?

生1:还有一个例题,这是求容积的。

师:大家能看懂例题吗?

(学生都表示懂了。)

师:谁来教大家呢?

生2:这个例题告诉我们这个长方体油箱的长、宽、高,因为求容积的方法和求体积的方法一样,所以只要用长宽高,就得到长方体的容积。

生3:还有。求出来的单位是立方分米,要把它转化为升,因为问题中问的是多少升。(没有人举手。)

师:通过这两位老师教,大家弄懂例题了吗?(学生表示懂了。)

师:刚才(生2)王老师说求容积的方法和求体积的方法一样,所以只要知道长、宽、高就行,是吗?什么地方的长、宽、高。

生4:里面的长、宽、高。

师:外面的行不行?

生5:外面的不行。外面的就是求体积。

师:对啊!一定要从里面量,这一点很重要。

(评析:该出手时就出手,千万不要以为预习以后就应该把课堂完全让位给孩子,孩子是需要老师的,尤其当孩子把握知识不到位、不准确时,一定要及时指出、纠正,让孩子有正确的认识。)

6、容积计算巩固。

师:长方体行,正方体呢?自己完成书上28页练一练2。

(学生独立完成,展示学生作业。)

师:有问题吗?你怎么知道0.064立方米=64升?

生1:1立方米=1000立方分米,1立方分米=1升,所以1立方米=1000升。

师:言之有理吗?(学生点头)(生1)李老师也很不错啊,教会了大家一个重要的知识,那就是1立方米等于

(学生齐回答:1000升)

(评析:孩子教孩子,一样可以教的好!而且,那是真正的丛学生实际出发!)

8、课堂小结。

师:通过预习上课,你有什么感受?获得了哪些知识?

生1:通过预习,我了解了一点书上的知识,但是经过今天的学习,我觉得自己学的更加深刻了。(师:更牢固了是吗?)

生2:我知道了容积单位之间的进率,还知道了容积的概念。

生3:还有容积和体积的区别,要知道容积的话,一定要从里面量。

(评析:没有预习,对于孩子来说,课堂就是知识的幼苗成长的过程;课前预习过后,对于孩子来说,课堂时知识的小树蓬勃生长的过程,孩子那一个更加说的多好!)

7、巩固练习。

1、想想填填。

6.09立方分米=()升=()毫升

1750立方厘米=()毫升=()升

9.8升=()升()毫升(你是怎么想的?)

2、联系实际填适当的单位。

一瓶可乐有250()

一桶色拉油有2.1()

一瓶红药水有20()

一个集装箱的容积是120()

一辆冰箱的容积是180()

(一个集装箱的容积是120(),学生有疑问,有的说填升,有的说填立方米。)

师:1立方米有多大?

生1:如果把一张课桌想想成一个长方体,两个这样的长方体大约有1立方米。

师:120升有1立方米吗?

生2:没有,10个120升差不多1立方米。(学生若有所思地点头。)

师:哇!如果填升怎么样?

生3:差不多十个集装箱才有这么大!(学生作手势)(学生们都笑了!)

生4:应该填立方米,升太小了。

(学生表示同意。)

师:如果以后有同学有机会看到集装箱,一定要给大家描述一下!

(评析:孩子没有见过集装箱,就会产生认识上的偏差,利用身边的实物来比一比,可以帮助孩子更好的理解立方米升的区别,从而正确地进行判断。)

3、进一步了解生活中的数学。

师:在我们的生活中,还有很多地方都运用到了容积的有关知识,出示:

一瓶墨水是()毫升一瓶葡萄糖水是()毫升摩托车油箱的容积是()升

师:希望大家通过课后学习,了解这些知识好吗?下课!

(评析:从从课中拓展到课后,从课堂延伸到课外,学习就是一个无止尽的过程,不要因为铃声的想起而把美妙的数学知识中断。)

课后反思:

我一直在想一个问题,那就是预习后的数学课该如何定位?因为通过预习学生已经大致了解了书上的知识,有一些高层次的学生甚至还对这些知识有自己独到的见解,这就决定了我们的课堂不可能再像从前一样,把所有的新知识都一一呈现,而是要把握好度的问题,重点要突出,难点要突破,还要注重拓展和研究,力求使学生在预习后上课既觉得轻松,又能有更多的收获。这就是我对预习后的数学课堂的总体定位。具体来说有以下几点:

1、吸引学生的眼球,体现一个趣字。

孩子在对所要学习的知识有了一定的了解之后,总觉自自己已经会了,学习兴趣上就会受到影响,怎样调动学生的积极性呢?这就对教师的教学设计提出了一个更高的要求,所以,我觉得预习后的课堂应该趣字为先。增强学习趣味性的方法有这样几种:(1)话趣语言幽默风趣,抑扬顿挫;(2)事趣要让学生看到听到有趣的内容;(3)形趣形式多样新颖,依据环节、内容的不同不断变换。在本节课中,教师始终都以一个积极的状态和孩子一起学习,教师的语言也是高低起伏,充满激情。在设计中,增加了猜一猜哪个盒子的容积大游戏,验证1升=1000毫升、1升=1立方分米的两个试验,还在一些细节的处理上下了功夫,例如:为了让孩子理解容积概念,在教学中教师注重调动孩子的多种感官,不但让学生听概念,看实物,还让学生摸容积;为了解决集装箱的容积到底用升还是立方米,让大家把两张桌子和集装箱作比较。

2、学习方式的多元,关注一个适字。

每个孩子学习的能力不同,在学习上所能到达到的程度也是千差万别的,新课标提倡人人在数学上得到不同的发展。预习可以帮助一些学习上有困难的孩子在新课的学习中更加适应,容易接受;可以帮助学有余力的孩子想法更多,挖得更深。在课堂中的学习方式上,除了传统的师生之间的互动之外,学生之间的互动变得越来越多,越来越有实效性。在预习后的课堂上,可以清楚地感受到学生真正成为学习的主人。学习能力强的孩子可以充分展示自己,帮助学习能力弱的孩子理解还不明白的知识,做一个小老师。有时候,这种由学生来教学生的形式比教师直接教学生的效果还要显著,因为我们毕竟是从教师的角度,从成人的角度出发来把握孩子的学习基础,但我们毕竟不是孩子,所以或多或少的和真正孩子的想法有出入,而孩子之间的互教互学就没有这样的障碍了,这才是真正从学生的角度出发,适合学生学习的需要。

3、练习注重扩展,体会一个用字。

一节课有四十分钟,但是这四十分钟的容量到底是多少,却是因人而异的。相比起以前的课堂,我明显感受到课堂的容量变大了,因为有预习的铺垫,新课的内容可以节约不少时间,而这些时间都可以让孩子学到更多的知识,大大开阔了学生的视野。一般练习扩展的内容包括:知识在生活中的运用、知识的扩展与深化、利用所学习的知识解决问题等等。通过这些相关知识的了解,可以大大增强孩子的思维能力,并积极把学习到知识运用到生活中去,感受到数学在生活中是非常有用的。

凡事预则立,不预则废。通过有效的预习,不但可以提高效率,而且能够让学生学得轻松,学得愉快,不失为一个好举措。当然,在这个过程中还要注意研究方法,积累资料,让我们的课堂越来越开放和精彩。

容积和容积单位课件(篇6)

大家好,今天我说课的内容是人教版义务教育课程五年级数学下册《容积和容积单位》的第一课时。

我准备从以下六方面进行说课:

一、基于课程标准;

二、基于教材;

三、基于学生经验;

四、叙写学习目标;

五、评价设计;

六、教学流程。

下面我针对这六方面详细介绍。

一、基于课程标准

课标中指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

《容积和容积单位》属于第二学段“空间和图形”这一领域里的内容。依据课程标准,本课的具体目标是:“通过实例,了解容积的意义及度量单位,会进行单位之间的换算,感受1升和1毫升的实际意义。

二、基于教材

《容积和容积单位》是这一单元第4个内容,它是在学生掌握了长方体和正方体的特征、表面积、体积的基础上进行的,是一节数学概念课。教材把这一内容安排在“体积和体积单位”的后面,意图就是让学生运用体积的知识来学习容积的知识。

三、基于学生经验

在容积概念的教学中,学生对于容积和体积容易混淆,甚至认为容积就是体积。在“升和毫升”的教学中,学生容易出现这两个问题:一是机械记忆升和毫升的进率,对升和毫升的体验比较肤浅,认识也模糊;二是认为升和毫升只有在计量容积时才会使用,其实不然。

四、叙写学习目标

根据上述分析,我将容积和容积单位的教学,设计成为动态的教学,通过教学活动让学生充分经历与体验容积和容积单位,所以制定以下的目标。

1.理解容积的概念,认识常用的容积单位,感知1升和1毫升的实际大小,并掌握容积单位、体积单位间的进率。

2.通过观察、实验的方法,使学生经历探究容积单位、容积单位和体积单位之间关系的过程。

3.体验数学与生活的密切联系,激发学习数学的兴趣。

教学重点:理解容积的概念,感知1升和1毫升的大小。

教学难点:建立容积单位、容积单位和体积单位之间的关系。

五、评价设计

本节课我采用的评价方式是交流性评价、表现性评价和应用式评价。根据确定的学习目标,力求评价的可操作性和可检测性。

针对目标1,我采用交流式评价和应用式评价,评价任务是推导梯形的面积公式和会求梯形的.面积。

针对目标2,我采用交流式评价和表现式评价,评价任务是利用梯形的面积公式解决生活中的实际问题。

针对目标3,我采用交流式评价和表现式评价,评价任务是渗透转化、迁移的数学思想方法。

下面我就结合我的课堂教学实践将本课的教学媒体应用以及效果向大家做一个简要的介绍。

六、教学流程

(一)联系旧知,引发思考。

孔子曾说过:温故而知新。新知识的构建是以已有的旧知识为载体的。因此,在课的开始我设计了复习体积、体积单位以及长方体体积的计算,能够较好的为学习新知识做好铺垫,同时,提出问题引发学生思考,流动的液体、气体能像长方体那样通过计算长、宽、高求体积吗?

(二)创设情境,感知概念

1.初步体会容积的概念

出示:茶叶筒、药盒、烧杯、墨水瓶,问同学们看到的这些物品都有什么用途呢?当学生说出来用来装东西时,教师指出能装东西的这些物体叫做容器,并把学生所说的“装东西”规范成“容纳物体”,并板书:容纳物体。

2.深刻体会容积的概念

出示长方体塑料盒,问:塑料盒的容积指的是什么?引导学生说出所能容纳的最大的正方体的体积就是塑料盒的容积。

设计意图:通过观察盒子中沙子的体积是否是盒子的容积的这组图片,让学生在具体实例中,体会容积的概念,没装满还能再装和装得太满了已经超过了的这两种情况沙子的体积都不是盒子的容积,只有装得不多不少,正好装满时才能体现容器的容积。

3.感知容积和体积的不同

出示两个体积一样的杯子,让学生比较它们的容积是否一样?

(三)联系生活,认识容积单位

通过问学生知道容积单位吗?在哪里见过?指出容积的单位是升和毫升,然后出示教具找出容积。

设计意图:让学生了解数学知识不是老师告诉的,而是自己知道的,体会数学知识到处都有,就在我们身边。

(四)实验操作,感知容积单位大小

通过实验操作,让学生有两次感知:第一次是感知1升和1毫升的大小,从而得出升和毫升之间的关系;第二次是感知容积单位与体积单位的互化,再次感知1升和1毫升的大小。

(五)回归生活,运用知识

第一关是基础练习,第二关是拔高练习。

(六)课堂小结

容积和容积单位课件(篇7)

教学目标

1、经历体积与容积的概念的建立过程,理解体积和容积的意义。感知常用体积和容积单位的大小,能正确地选择合适的单位进行相应数量的计量。

2、在亲历感知,在感悟中形成对学科学习的内在兴趣。

教学重点

教学难点通过参与试验、分析与尝试,掌握体积和容积概念,会确定体积和容积相应并能正确地把握体积的大小。

教学方法动手操作、分析、合作

教学准备每个小组准备一个盛水的量杯一个土豆

教学过程:

一、导入新课

师:我们已经学习了长方体和正方体表面积的知识,这节课,我们继续探究长方体和正方体的体积和容积。

二、感受物体的体积

1、分组实验

方法:将土豆放入一个盛水的量杯中,注意记录放入前后的水位高度。

猜想:量杯中的水位会发生什么变化?

观察:通过对上面实验的观察,有什么发现?看到土豆放入时,水位上升了;取出时,水位又基本复原。

思考:这个现象说明了什么?

生:土豆占有空间,入水时,水会被挤开,造成水位上升;而取出时,土豆所占的位置空出,水于是又复原。

2、体积的意义:

师引导学生读书57页中间文字并结合实验同桌交流自己所理解的体积的概念。

3、想一想:你还能用其它方法感受物体的体积吗?

三、感受物体的容积

1、①1箱牛奶的体积与6盒牛奶的体积比?(1箱牛奶体积大于6盒牛奶的体积。)②1盒牛奶的体积与1杯牛奶的体积比?(1盒牛奶的体积大于1杯牛奶的体积。)

从上面的结论中你想到了什么?(整个容器体积大于内中装的体积)

2、归纳容积的意义(板书)

3、同桌互相举例说明物体的体积与容器,及其大小比较。

四、体积单位

1、长度、面积和体积基本单位的确定:

棱长为1厘米的正方体的体积为1立方厘米

棱长为1分米的正方体的体积为1立方分米

棱长为1米的正方体的体积为1立方米

感觉一下1立方米的大小

(1)如果同学们在正方体模型中蹲着,会蹲下几个?

(2)如果把书包放在这个正方体模型中垒起来,大约可以垒多少个?

2、容积单位的确定:

师指出:我把能容纳1立方厘米和1立方分米物体的容积的大小分别叫做1毫升和1升。

在生活中计量液体的体积常以毫升和升为单位。(让学生认真阅读理解5960页中的文字,然后同桌相互说一说)

3、课堂活动:60页1、2题。通过课堂互动,让学生在搜索和交流中熟悉和增强体积和容积单位大小的实感。

五、全课总结

这节课你学会了什么?有什么新的感受?

六、布置作业

课本62-63页练习十二第1、2、5题。

第二课时

教学目标

1、掌握体积单位、容积单位之间的进率,能正确地进行单位间的改写。

2、让学生参与单位间进率的探究中感知。深化认识与把握。

3、感悟数学与生活息息相关,进而体验成功的乐趣。

教学重点

教学难点让学生借助对模型的分层探讨,理解常用体积单位和容积单位间的进率的由来,并掌握体积单位改写的方法。

教学方法知识迁移法、练习法

教学准备课件

教学过程:

一、复习导入新课

1、复习体积与容积的意义

一瓶矿泉水的标签写着:净含550ML,表示瓶中水的(容量、体积、容积)是550ML。

让学生认真一议,弄清问题是什么。显然是针对水的,由于水不是容器,不可能有容量、容积之说。所以只能是体积。

2、复习常见的体积单位

回顾一下常见的体积单位

3、导入新课

板书:体积与体积单位

二、合作探究

1、例5的教学:体积单位进率的的探讨

(1)课件展示例5:1立方分米=()立方厘米

小组探究

全班反馈:一排10个,一层100个,10层1000个。

(2)探讨

(3)填空

(4)熟记。

找出体积单位之间的进率的规律

同桌互说互测

2、例6的教学:体积单位之间的改写

(1)课件展示例6;说一说,算一算

先让学生议一议:

所示问题的实质是什么?怎么解决?再独立完成,最后进行全班反馈

反馈:问题的实质方法

思路的再反思

三、课堂活动:练习与操作

1、小组合作:估一估,量一量

2、练一练

四、全课总结

这节课主要学习体积单位,容积单位之间的进率和转化方法。

五、布置作业

4、6、7

容积和容积单位课件(篇8)

教学目标

1、使学生进一步认识体积、容积单位,并能比较熟练地化聚和换算。

2、进一步掌握长方体和立方体体积计算公式,并能比较熟练地计算长方体和立方体的表面积和体积,以及解答相应的应用题。

教学重点、难点

重点、难点:比较熟练地计算长方体和立方体的表面积和体积,以及解答相应的应用题。

教具、学具准备

教学过程

备注

一、整理长度单位、面积单位、体积单位和容积单位。

1、复习长度单位、面积单位、体积单位和容积单位相邻单位之间的进率。

2、说说化聚的方法

3、独立填括号。

5.4立方米=()立方分米

0.12立方分米=()立方厘米

6800立方分米=()立方米

3590立方厘米=()立方分米

470厘米=()分米=()米

6200平方厘米=()平方分米=()平方米

1.65升=()毫升=()立方厘米

7300毫升=()升=()立方分米

4、反馈。

二、复习长方体和立方体。

1、复习长方体和立方体表面积、体积的计算方法。

长方体的表面积=(长宽+长高+宽高)2

长方体的体积=长宽高

立方体的表面积=棱长棱长6

立方体的体积=棱长棱长棱长

2、独立计算:填表

长(a)

宽(b)

高(h)

底面积

(S)

表面积

体积

(V)

长方体

1.8米

0.6米

1.5米

10厘米

42平方厘米

教学过程

备注

立方体

棱长

8分米

3、应用题

(1)一个长方体油箱,长和宽都是0.5米,高是0.4米。它的容积是多少升?要做这样一个油箱至少需要铁皮多少平方米?

(2)一个理发法庭铜块,棱长16厘米,每立方分米的铜重8.9千克。10个这样的铜块重多少千克?

(3)一个长方体的长是12厘米,宽是5厘米,体积是360立方厘米。这个长方体的表面积是多少?

(4)一个长方体游泳池的长是50米,宽是20米,深是2.5米。

①环绕游泳池的水面,在池壁上用红漆画一条界线,这条界线的长是多少?

②如果用瓷砖贴池的四周和底面,贴瓷砖的面积是多少?

③如果池内水深2米,这个游泳池注水多少吨?(1立方米水重1吨)

a、弄清题意,认真审题

b、在理解题意的基础上,独立计算。

C、反馈,说一说解题思路和解题过程。

三、课堂总结

四、课堂作业《作业本》

通过复习学生进一步认识体积、容积单位,也能比较熟练地化聚和换算。还复习了长方体和立方体体积计算公式,以及解答相应的应用题。从学生的练习情况来看,单位的化聚和换算掌握得比较好,长方体和立方体的具体应用,有一部分学生由于理解、分析能力比较差,造成错误也比较多,对这些学生要加强训练。

GZ85.com扩展阅读

体积和体积单位课件(精华十篇)


教案课件是老师上课中非常重要的一种工具,故需老师用心设计和准备。教师应当以教案课件为基础来进行授课。本文是小编认真整理的“体积和体积单位课件”,如果您觉得它不错,一定要与您的朋友分享哦!

体积和体积单位课件【篇1】

教学目标

1、使学生认识体积单位立方米、立方分米、立方厘米之间的进率,并能正确地把高一级的体积单位化成低一级的体积单位,把低一级的体积单位聚成高一级的体积单位。

2、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算.

教学重点、难点

重难点:

体积单位进率和单位之间的互化。

教具、学具准备

教学过程

备注

一、复习准备

1、教师提问:

(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?

板书:长度单位1米=10分米1分米=10厘米

(2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?

板书:面积单位1平方米=100平方分米

1平方分米=100平方厘米

2、口答填空,并说明算法和算理.

(1)4米=()分米=()厘米

算法:进率高级单位的数

(2)500厘米=()分米=()米

算法:低级单位的数进率

3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化.

二、学习新课

(一)认识体积单位间的进率

1、认识立方分米和立方厘米的关系

(1)指导学生自学.出示自学提纲:

a、棱长是1分米的正方体的体积是多少?

b、棱长是10厘米的正方体的体积是多少?

c、1立方分米与1000立方厘米哪个大?为什么?

b、棱长是10厘米的正方体的体积是多少?

c、1立方分米与1000立方厘米哪个大?为什么?

教学过程

备注

1分米1分米1分米=1(立方分米)

10厘米10厘米10厘米=1000(立方厘米)

板书:1立方分米=1000立方厘米

2、推导立方米与立方分米的关系.

(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?

用什么方法可以验证你的想法是否正确呢?(学生分组讨论,汇报)

棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1000个体积为1立方分米的正方体.

板书:1立方米=1000立方分米

(3)思考:1立方米等于多少立方厘米呢?

3、小结:相邻的两个体积单位间的进率是1000.

4、比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同处?

(二)体积单位的互化.

1、出示例:8立方米、0.54立方米各是多少立方分米?

8立方米=()立方分米0.54立方米=()立方分米

看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?

想:因为1立方米=1000立方分米,8立方米有8个1000立方分米

列式:10008=8000,填8000

2、出示例:3400立方厘米、96立方厘米各是多少立方分米?

3400立方厘米=()立方分米

96立方厘米=()立方分米

审题时首先要注意什么?试说出这两道小题的解答过程和算理

想:因为1000立方厘米为1立方分米,3400立方厘米中包含有多少个1000立方厘米,就有几立方分米,列式:34001000=3.4,填3.4(第2题同上理)961000=0.096填0.096

3、教师:请对比,说一说这两道题有什么不同?

板书:高级单位低级单位,用进率高级单位的数.

低级单位高级单位,用低级单位的数进率.

4、教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同.)

(三)练习

8立方米=()立方分米

0.4立方分米=()立方厘米

50立方厘米=()立方分米

4580立方分米=()立方米

(四)练习解决实际问题.

1、出示例:一块长方体钢板长2.2米,宽1.5米,厚0.01米.它的体

教学过程

备注

积是多少立方分米?

方法一:2.21.50.01=0.033(立方米)

0.033立方米=33立方分米

方法二:2.2米=22分米1.5米=15分米0.01米=0.1分米

22150.1=33(立方分米)

2、完成书上试一试

三、巩固反馈

1、4平方米=()平方分米

4立方米=()立方分米

2.5平方米=()平方分米

2.5立方米=()立方分米

0.3立方分米=()立方厘米

1.08立方米=()立方分米

4600立方分米=()立方米

3450立方厘米=()立方分米

2、练一练2、3、4、5

四、课堂总结

课后反思:

在教学中让学生动手做出1立方厘米、1立方分米的学具,并用学具装一装沙子或大米一类的东西,还可以让学生用1立方厘米的学具凑在一起拼一拼1立方分米,用米尺利用墙角实际体会一下1立方米的大小。通过这些活动使学生充分感知什么是物体的体积、常用体积单位的大小、相邻体积单位之间的进率为什么是1000......并在此基础上让学生想象1立方千米究竟有多大,引导学生独立概括出体积、体积单位以及它们之间的进率。通过动手操作,学生可以直观地认识数学知识、理解数学概念,这是一种引导学生逐步学会概括抽象的数学知识的重要方法。

体积和体积单位课件【篇2】

教学目标

1、了解并掌握体积单位间的进率.

2、理解并掌握体积高级单位与低级单位间的化和聚.

3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚

法进行计算.

教学重点

体积单位进率和单位之间的互化.

教学难点

复名数和单名数之间的转化.

教学过程

一、复习准备.

1、教师提问:

(1)常用的长度单位有哪些?相邻的两个单位间的进率是多少?

板书:长度单位

1米=10分米

1分米=10厘米

厘米

(2)常用的面积单位有哪些?相邻的两个单位间的进率是多少?

板书:面积单位

1平方米=100平方分米

1平方分米=100平方厘米

平方厘米

2、口答填空,并说明算法和算理.

(1)4米=()分米=()厘米

算法:进率高级单位的数

(2)500厘米=()分米=()米

算法:低级单位的数进率

3、谈话引入:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化.(板书课题:体积单位间的进率)

二、学习新课.

(一)认识体积单位间的进率

1、认识立方分米和立方厘米的关系.

(1)指导学生自学.出示自学提纲:

A、棱长是1分米的正方体的体积是多少?

B、棱长是10厘米的正方体的体积是多少?

C、1立方分米与1000立方厘米哪个大?为什么?

(2)学生分组汇报.教师演示动画体积单位间的进率1

因为1分米=10厘米,所以棱长是1分米的正方体也可看作棱长是10厘米的正方体.

1分米1分米1分米=1(立方分米)

10厘米10厘米10厘米=1000(立方厘米)

(3)板书:1立方分米=1000立方厘米

2、推导立方米与立方分米的关系.

(1)教师提问:请同学们猜想一下立方米与立方分米之间有什么关系?

用什么方法可以验证你的想法是否正确呢?

(学生分组讨论,汇报)

(2)(演示动画体积单位间的进率2)

棱长是1米的正方体的体积是1立方米.而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1000个体积为1立方分米的正方体.

板书:1立方米=1000立方分米

(3)思考:1立方米等于多少立方厘米呢?

3、小结:相邻的两个体积单位间的进率是1000.

4、比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同处?

(名称、进率两方面.)

(二)体积单位的互化.(演示课件体积单位间的进率)

1、出示例3:8立方米、0.54立方米各是多少立方分米?

8立方米=()立方分米

0.54立方米=()立方分米

教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?

想:因为1立方米=1000立方分米,8立方米有8个1000立方分米

列式:10008=8000,填8000

(第2题同上理)10000.54=540,填540

2、出示例4:3400立方厘米、96立方厘米各是多少立方分米?

3400立方厘米=()立方分米

96立方厘米=()立方分米

教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理.

想:因为1000立方厘米为1立方分米,3400立方厘米中包含有多少个1000立方厘米,就有几立方分米,列式:34001000=3.4,填3.4

(第2题同上理)961000=0.096填0.096

3、教师:请对比例3,例4,说一说这两道题有什么不同?

板书:

(例3下面)高级单位低级单位,用进率高级单位的数.

(例4下面)低级单位高级单位,用低级单位的数进率.

4、教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同.)

(三)练习.

1、2立方米80立方分米=()立方米

提示:哪部分需要转化?没转化的部分如何办?

板书:2+801000=2+0.08=2.08,填2.08

2、5.34立方分米=()立方分米()立方厘米

提示:哪部分可以直接填?哪部分需要转化?

板书:10000.34=340填5和340.

3、3.09立方米=()立方米()立方分米

老师:从上面三道题的解答中,你们有什么体会?

(复名数与单名数的互化,除了要注意是由高级单位向低级单位转化还是低级单位向高级单位转化外,还要注意审清题中哪一部分需要转化.)

(四)练习解决实际问题.

出示例5:一块长方体钢板长2.2米,宽1.5米,厚0.01米.它的体积是多少立方分米?

方法一:2.21.50.01=0.033(立方米)

0.033立方米=33立方分米

方法二:2.2米=22分米1.5米=15分米0.01米=0.1分米

22150.1=33(立方分米)

答:这块钢板的体积是33立方分米.

三、巩固反馈.

1、口答填空,说出计算过程.

0.9立方米=()立方分米540立方厘米=()立方分米

38立方分米=()立方米4立方分米50立方厘米=()立方分米

10.35立方米=()立方米()立方分米

2、判断正误,并说明理由.

0.5立方米=500立方厘米()2.6立方分米=2立方米60立方厘米()

四、课堂总结.

1、体积单位的进率.

2、体积单位的转化方法.

体积和体积单位课件【篇3】

体积与体积单位(二)

【教学内容】

教科书第44--45页的例3、例4和课堂活动第1题和第2题,练习十一的第1--4题。

【教学目标】

1.知识与技能:使学生明确1m3的概念,建立1m3的大小观念。

2.过程与方法:能区别使用1cm3,1dm3,1m3去度量物体的体积。

3.情感、态度与价值观:感受数学与生活的密切联系,激发学生的学习兴趣。

【教具准备】

米尺,棱长分别为1cm,1dm的正方体。

【教学重点】

各种体积单位的大小。

【教学难点】

用体积单位去度量物体的大小。

【教学过程】

一、复习引入

师(出示一根线、一张纸):一根线的长度用什么单位去度量?(长度单位)一张纸的大小用什么单位去度量?(面积单位)

师(拿出一盒粉笔):粉笔盒的体积大小又该用什么单位去度量呢?今天,我们就来认识体积单位。

二、教学例3

师:刚才同学们知道了1cm3,1dm3的大小,你能说说1m3的大小吗?

引导学生得出:棱长为1m的正方体的体积是1立方米,写作1m3。

师:你能用手比划一下1m3的大小吗?

做游戏:

3个学生用3块1m长的尺子在老师的帮助下在墙角围成一个正方体,这个正方体的体积是1m3,然后让学生依次钻进去。呀!1m3能装10个学生。

将书包放在这个正方体模型里垒起来,能垒多少个书包?

师:我们已经认识了哪些体积单位?(1cm3,1dm3,1m3)

师:你能说说这三个体积单位谁是最大的?(1m3)谁是最小的?(1cm3)

三、教学例4

出示例4:1dm3等于多少立方厘米?

师:1dm3等于多少立方厘米?能用类似的方法推导出来吗?

1.将学生分组,用棱长是1dm的正方体推导。教师巡视指导,让每个学生在1dm2的纸上画出100个小格,然后贴在棱长为1dm的正方体纸盒(木块)的6个面上。

2.展示推导过程:一排有10个,一层有100个,10层就是1000个,所以1dm3里有1000个1cm3。

3.归纳总结:课件展示将一个棱长为1dm的正方体分割成1000个棱长为1cm的小正方体的过程,并板书:1dm3=1000cm3。

4.你能推导出1m3=()dm3吗?

学生可以分组讨论出结果,再抽生说一说推导的方法。

用刚才的方法推导出1m3=1000dm3。

5.总结相邻两个体积单位间的进率。

提问:你学过哪些体积单位请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。

1dm3=1000cm3

1m3=1000dm3

得出:相邻两个体积单位间的进率是1000。

四、构建长度、面积和体积单位的计量系统

出示表格,学生独立填写,并集体订正

相邻两个单位间的进率

长度单位mdmcm10

面积单位m2dm2cm2100

体积单位m3dm3cm31000

五、课堂活动

第1题是一个开放性的题,可以让学生在小组内先说一说,再全班汇报。

第2题学生可先独立完成,再集体订正。

六、课堂练习

第48页练习十一第1题。

可分组活动,先用1cm3的小正方体拼出一个和墨水瓶盒大小差不多的长方体,估算一个墨水瓶盒的体积。再将小正方体装在墨水盒里,比较一下估算的结果。

七、课堂作业

练习十一第2--4题。

八、全课小结

同学们,今天这一节课我们学习了什么?你有什么收获?

体积和体积单位课件【篇4】

第五课时体积和体积单位(1)

教学内容:教科书第19-20页的例6、例7及相应的试一试,完成练一练和练习五1--4题。

教学要求:

1、引导学生通过操作活动,初步认识体积和容积的意义。

2、使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

3、使学生进一步激发学生探究立体图形的兴趣。

教学重点与难点:

通过操作活动,初步认识体积和容积的意义。

学前准备:

大小不同的水果、玻璃杯等

教学过程:

一、导入

谈话:同学们,前几节课我们认识立体图形,大家都掌握得不错。这节课老师想和大家一起进行几个小实验,考考大家的眼力,愿意接受挑战吗?

让我们来试试看。

二、操作探究

1、学习例6

(1)教师出示一个空杯,给空杯倒满水。

再出示一个同样的空杯:这两个杯子同样大,装的水也是一样多吗?

下面请同学们仔细观察:

教师往空杯中装入一个桃,将满杯的水往装桃的杯中倒,直至倒满。

问:杯子中为什么会剩下一些水呢?

引导学生发现桃占去了一定的空间。

(2)教师出示两个水果,分别装入两个空杯,倒满水。

你觉得倒入几号杯里的水多?为什么?

指名学生回答,验证。

将两个杯中的水果取出,以验证哪个背的水多。

进一步明确:桃占的空间大,因而相应杯中的水就少;荔枝张的空间小,因而相应杯中的水就多。

(3)出示大小不同的三个水果,分别装入三个空杯,倒满水。

引导学生思考:

这三个水果,哪一个占的空间大?把它们放在同样的杯子里,在倒满水,哪个杯子里水占的空间大?

引导学生比较、推想。操作验证。

(4)师指出:物体所占空间的大小叫做物体的体积。

板书:体积

追问:你能举例比较两个物体的体积吗?

指名学生回答,再同桌互相举例。

2、学习例7

(1)出示两盒书

引导学生观察,那个盒子里的书的体积大一些?

学生比较后回答。

师:你们看,书的体积大,也就是书盒所能容纳的书的体积大。

这个书盒就是一个容积。

我们把容器所能容纳的物体的体积,叫做这个容器的容积

板书:容积

追问:这两个书盒,谁的容积大一些?为什么?

(2)试一试

下面那个玻璃杯的容积大一些,你能想办法比一比吗?

师:什么是玻璃杯的容积,你能想办法解决这个问题吗?

学生在小组里交流比较方法,指名汇报。

三、巩固练习

1、完成练一练第1题

借助示意图,先由学生进行直接判断,再通过操作演示验证。

指名说说,溢出的水的体积分别相当于哪个物体的体积。

2、完成练一练第2题

引导学生根据容积的意义进行解释。

3、完成练习五第1题

独立思考,指名回答

说说三堆饼干的体积为什么相等。

4、完成练习五第2题

独立思考,指名回答

5、完成练习五第3题

学生按要求进行操作,同桌互相检查交流。

6、完成练习五第4题

先让学生说说体积和容积分别指的是什么,有什么不同?再回答问题,集体交流。

四、全课总结

通过这节课的学习,你获得了哪些知识?你觉得这节课哪些地方值得大家注意?

板书设计体积和容积

物体所占空间的大小叫做物体的体积。

容器所能容纳的物体的体积,叫做这个容器的容积

体积和体积单位课件【篇5】

体积单位间的进率(课本第34—35页内容)。

1、通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的 改写。

2、使学生学会用名数的改写解决一些简单的实际问题。

3、培养学生根据具体情况灵活应用不同的单位进行计算的能力。

1、学习体积单位间的进率。

(1)老师出示教材第34页例2:一个棱长为1dm的正方体,体积是1dm3。 想一想:它的体积是多少立方厘米?

(2)学生读题,理解题意。

(3)老师出示棱长为1dm的正方体模型。

提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)

(4)计算。

请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。 ②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。

老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3) 1dm3=1000cm3

(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)

(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。

(7)观察板书内容。

想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。

2、体积单位,面积单位,长度单位的比较。

(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。

(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。

单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。

3、学习体积单位名数的改写。

(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)

(2)学习教材第35页的例3。

(2)2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。 指名让学生说一说是怎样做的。

想:( ) cm3=1dm3 (3)学习教材第35页的例4。 出示例4,让学生先读题,理解题意:明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少? 学生独立思考,然后解答,指名板演。 V=abh=50×30×40=60000(cm3)=60(dm3)=0、06(m3)

【巩固练习】完成课本第35页的“做一做”第1、2题。学生完成后,要求他们口述解答的过程。第2题指名学生板演。

今天我们学习了哪些内容?你有什么收获?

体积和体积单位课件【篇6】

教学内容:人教版小学数学第十册第3031页的内容。

教学目的:

1、通过实验观察,使学生理解体积的含义,认识常用的体积单位:立方米、立方分米、立方厘米。

2、使学生知道计量物体的体积,就要看它所含体积单位的个数。

3、使学生初步了解体积单位与长度单位、面积单位的区别和联系。

4、通过学生对体积意义的探索,发展学生的空间观念,培养学生的推理能力。

教学重点:使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的大小。

教学难点:学生对体积和体积单位概念的理解。

教具准备:盛有红色墨水的玻璃杯两只,用绳捆着的大小石块各一块,1立方分米、1立方厘米的实物各一个,1立方米的框架一个。

教学过程:

一、初步感知,导入课题

1、感知课本。

(1)请同学们拿出朝夕相处的好朋友数学课本。问:根据近几天学习的知识,你能知道什么?你能量出什么,算出什么?

(2)请摸一摸它的长、宽和高,要计量长、宽、高分别是多少,用什么单位比较合适?再摸一摸它的封面,封面的大小就是它的什么,用什么单位计量比较合适?

2、信息激发。

(1)出示信息:数学课本的体积大约是248立方厘米。问:根据这条信息,你能知道什么?有什么不明白的问题?关于体积,你还想知道什么?

(2)揭示课题:体积(板书)

二、引导观察,讲解新课

(一)教学体积的概念。

1、回忆《乌鸦喝水》的故事。

师:还记得乌鸦喝水的故事吗?谁来说一说?

学生说完后,师问:,水面真的会升高吗?

师:看了这个故事,你发现了什么?

生1:我发现乌鸦非常善于动脑。

生2:我发现乌鸦往瓶子里填小石子,水面上升了。

师:为什么往瓶子里填小石子,水面就上升了呢?

生3:因为石头占了瓶子的一部分空间,把水挤上去了。(师板书:空间)

师:体积和空间之间到底有怎样的关系?让我们一起来做个实验研究研究。

2、实验演示,揭示概念。

(1)老师做实验:

拿一个盛水的红色玻璃杯,再把一个小石子投入杯中,请同学观察水面的情况,为什么会出现这种情况?水与原来相比有没有增减?为什么水面会升高?

(2)学生分组做实验:

用一只杯子装满细沙,然后倒出细沙,放入木块,再倒入细沙,会出现什么情况?为什么?

从上述两种情况说明:石子和木块都占一定的空间(板书:占空间)。

像我们每个人都占一定的空间,教室里每一件物品都占据一定的空间。

让学生举生活中占空间的例子。

(3)摸一摸,感觉谁占谁的空间。

师:请大家在书桌的抽屉里摸一摸,有什么感觉?把书包放进抽屉里再摸一摸,又有什么感觉?

生:第一次感觉抽屉里的空间大一些,第二次感觉抽屉里的空间小一些。

师:为什么两次感觉会不一样呢?

生:因为书包占了抽屉的空间。

师:对!那么只把你的数学书放到桌斗里面,再摸一摸,与刚才放进书包相比,感觉怎样呢?

生:感觉比刚才的空间大了一些。

师:这说明了什么?

生:书包占的空间大,一本数学书占的空间小。

说明:物体所占的空间有大有小(板书:的大小)。

师:观察一下我们的教室,哪个物体占的空间最大?哪位同学占的空间最大。

师:我们的教室是一个较大的空间,课桌、讲台、教师、学生等占教室空间的一部分。请大家想像,走出教室会感到怎样?

生:空间更大了。

师:现在我们学习到这里,你能用自己的话来说一说什么是体积吗?

学生回答后,教室完善板书:(补充完整)

物体所占空间的大小就叫做物体的体积。

师:谁能说说什么是电视机的体积?你还能举出哪些物体的体积?

学生回答:像粉笔盒所占的空间就叫做它的体积;石块所占的空间的大小就是指石块的体积。

师:谁的体积大、谁的体积小呢?师:你们是怎么知道的?

生:我是看出来的。

(二)教学体积单位:

师:有的物体可以通过观察来比较它们的体积大小,那下面两个长方体,你们能比较出大小吗?

生:不好比较。

教师用多媒体将它们分成大小相同的小正方体(如下图),问:现在你们能比较出它们的大小吗?

生1:能,左边的长方体比右边的体积大。

师:为什么?

生1:因为左边的长方体有16个小正方体,而右边的有15个,而且小正方体的大小相同,所以左边的比右边的大。

师:如果左边的长方体和右边的长方体中的分的小正方体块不一样大,行不行?生:不行。因为小正方体大小不同,就不好比较。

师:所以要比较物体的体积大小,需要有一个统一的体积单位。在学习体积单位前,我们先回想一下,常用的长度单位有哪些?常用的面积单位有哪些?

师:那我们今天学习的体积的常用单位有哪些呢?请同学们打开课本39页。

(1)学生自学课本,出示下列思考题:

①常用的体积单位有哪些?

②1立方厘米、1立方分米、1立方米分别有多大?请举例说明。

(2)组织汇报交流:

师:1立方厘米有多大?怎样记住它?请具体说说,生活中有哪些物体的体积大约是1立方厘米?出示1立方厘米的小方块让学生观察,你知道了什么?哪些物体的体积比较适合用立方厘米用单位?

1立方分米有多大?怎样的正方体的体积是1立方分米?(出示1立方分米的正方体让学生感受其大小)你还见过哪些物体的体积大约是1立方分米?请用手势表示出1立方分米的大小。

1立方米有多大?怎样的正方体的体积是1立方米?出示1立方米的正方体框架,让学生钻一钻,具体感觉一下1立方米的正方体大约能容纳班内几个学生?举例说说生活中1立方米的物体。

请同学们闭上眼睛,再次感受一下1立方厘米、1立方分米和1立方米的大小,哪个比较大,哪个比较小,并用手势进行演示。

(三)练习:

①在括号里填上合适的单位名称。

1、一只电冰箱的体积大约是1.2()。

2、一台电视机的体积大约是120()。

3、一只手机的体积约是33()。

4、一只火柴盒的体积是12()。

5、我们五三班的教室的体积大约是280()

②判断下面的单位是否合适?

1、一台家用计算机所占的空间约是15立方米。

2、小华口渴了,一口气就饮了1立方米的水。

3、在学雷锋活动中,同学们干劲特别高,两个人一次就抬了5立方厘米的土,另两人一次就抬了1立方米的铁。

4、粉笔盒的体积约是1立方分米。

(四)比较长度单位、面积单位和体积单位。

师:以前我们学习了长度单位、面积单位,今天我们又学习了体积单位,那么它们有什么不同呢?

学生操作:剪一条1分米长的线,用纸剪一个1平方分米的正方形,拿出1立方分米的模型。

引导学生讨论归纳三者的不同点,使学生知道:

长度单位是一条线段,面积单位是一个正方形,体积单位是一个正方体。

(五)计量物体的体积。

1、师:立方厘米、立方分米、立方米是常用的体积单位,要计量一个物体的体积,就要看这个物体中含有多少个体积单位。请同学们用4个1cm3的小正方体任意摆成一个物体,你知道这个物体的体积是多少吗?

生:4cm3。

师:为什么?

生1:因为它是由4个体积是1cm3的小正方体摆成的。

师:如果改用12个1立方厘米的小正方体块来摆呢?

三、巩固练习,指导总结。

1.做书本练习七的13题。

2.通过今天这节课,你学到了哪些知识?

体积和体积单位课件【篇7】

教学目标:

1、了解并掌握体积单位间的进率。

2、理解并掌握体积高级单位与低级单位间的化和聚。

3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

重点难点:

体积单位间的进率和单位之间的互化

教学过程:

一、导入

1、同学们,我们学过哪些计量单位?它们相邻之间的进率是多少?,现在我们交流一下。

2、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、。

3、思考回答:你觉得他的整理如何?有什么需要补充的?如何进行单位间的互化?

4、猜想今天我们学习的相邻体积单位间的进率可能是多少?

二、自主探究、学习新知

(一)探究立方分米与立方厘米间的进率

1、指导学生分组进行探究,

①棱长1分米的正方体的体积是多少?

②棱长10厘米的正方体的体积是多少?

③1立方分米与1000立方厘米,哪个大?为什么?

2、课件提供

①教师提供1立方分米的正方体,一个标上棱长1分米,一个标上棱长10厘米,供学生观察。

②让学生可以观察分析,从而为得出结论提供感官上的支持。

3、交流学习结果,分组汇报

因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米1分米1分米=1立方分米

10厘米10厘米10厘米=1000立方厘米

所以:1立方分米=1000立方厘米

4、让学生在回顾一下思维的过程,再说说自己的理解。

a、一个棱长1分米的正方体,体积111=1立方分米,这个正方体的棱长也可以想成10厘米,体积101010=1000立方厘米,所以1立方分米=1000立方厘米。

b、1立方分米的正方体,每层有1010=100(个)1立方厘米的小正方体,10层有10010=1000(个),所以是1000立方厘米。

学生讨论:一个棱长1分米的正方体,体积111=1立方分米,这个正方体的棱长也可以想成10厘米,体积101010=1000立方厘米,所以1立方分米=1000立方厘米。

教师课件演示:1立方分米的教具,每层有1010=100(个)1立方厘米的小正方体,10层有10010=1000(个),所以是1000立方厘米。

(二)独立探究立方米与立方分米之间的进率

1、教师提问:立方米与立方分米之间的进率也是1000,用什么方法可以验证自己的想法是正确的呢?

教学1立方米=1000立方分米教学方法同上观察1立方米=1000立方分米,1立方分米=1000立方厘米,你有什么发现?(板书:每相邻两个体积单位间的进率是1000)

2、学生自己尝试解决问题

3、交流各自的思维过程

棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米10分米10分米=1000立方分米。

所以1立方米=1000立方分米(板书)

4、小结:相邻的两个体积单位之间的进率是1000。

5、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?

三、解决实际问题,巩固所学方法

1、教学例1:3.8立方米是多少立方厘米?

2400立方厘米是多少立方分米?

(1)学生尝试练习,在书上完成。

(2)交流方法:高级单位的数改写成低级单位的数,要乘进率,小数点向右移动对应的位数;低级单位的数 改写成高级单位的数,要除以进率,小数点要向左移动对应的位数。

2、完成47页做一做

学生独立作业时。提醒学生要认真审题。请学生说一说相邻两个面积单位的进率是多少。

四、全课总结

今天的学习中你有什么收获?学到了什么?

五、布置课堂作业

完成练习八2题、5题

体积和体积单位课件【篇8】

知识与技能:使学生理解体积的概念,了解常见的体积单位,对体积单位的大小形成比较明确的表象。

过程与方法:培养学生的比较观察能力,拓展学生的思维,进一步发展学生的空间观念。

情感态度与价值观:让学生充分感受数学与现实生活的联系,体验数学知识在生活中处处都有。

教学重点:掌握体积和体积单位的知识,培养学生的动手能力。

教学难点:建立1立方厘米`1立方分米和1立方米的空间观念。

1.让学生讲《乌鸦喝水》的小故事。

2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的新课题《体积和体积单位》。(出示课题)

1、建立“体积”概念。

师出示实验一,“把小石块放入盛有水的烧杯中,你发现了什么?说明什么?”请生读题,分组操作。

师:通过这个实验,你发现了什么?为什么?[说明:物体 占空间]{板书}。

师再出示实验二,“把大小不同的两个石块分别放入盛有高度相同水的两个量杯中,你又发现了什么?说明什么?”请生读题,分组操作。

师:通过这个实验,你发现了什么?它们水面上升的高度相同吗?这说明什么?(大的物体占的空间大,小的物体占的空间小)。[说明:通过2个实验培养学生的小组学习、协作能力,锻炼学生的动手操作能力。]

师:观察这三个物体,哪个所占的空间比较大?哪个所占的空间比较小?

书包与讲桌相比,谁占的空间比较大?

生概括体积的定义:“物体所占空间的大小叫做物体的体积。”{板书}

生齐读。

师:桌上这三个物体,哪个体积最大?哪个体积最小?你知道体积比书包大的物体吗?你知道体积比火柴盒小的物体吗?[说明:体积的意义十分抽象,学生难以理解。这里的第一个实验,让学生通过观察、思考、认识物体“占有空间”。再通过第二个实验,让学生形成“空间有大小”的鲜明表象,帮助学生理解体积的含义,便于建立“体积”的概念。]

2、教学“体积单位”。

师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,学生发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]

师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包含有几个这样的小正方体,就能准确地比出它们的大小。

请生数一数,告诉老师谁的体积比较大?

学生汇报(注意让学生说出数的方法)。

师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。

请生读一读常用的体积单位有哪些。

出示自学要求,“自学课本112页内容。

自学体积单位。用看一看(是什么形 体)、量一量(它的棱长是多少)、摸一摸(它有多大)、说一说(它的定义)、找一找(在日常生活中哪些物体的体积可以用这个体积单位来计量)的方法,小组之间开展讨论和交流。”

请生分小组自学“体积单位”,进行讨论和交流。学生上台汇报自学成果。[说明:教师出示自学提纲,让学生以小组自学的形式开展讨论和交流,并让学生自我展示自学成果,极大地发挥了学生的主体意识和探究学习能力,发展学生的协作能力。]

师(小结)通过以上的学习,我们知道常用的体积单位有立方厘米、立方分米、立方米。并且知道1立方厘米、1立方分米、1立方米各有多大?

今后,我们在计量物体的体积时,就应根据实际情况来选用合适的体积单位

3.教学“计量体积单位”的方法。

师出示图。师:已知每个正方体的棱长是1厘米,它的体积是多少?这个长方体是由几个小正方体构成的?它含有多少个立方厘米?它的体积是多少?

请生说一说。

师(小结)计量一个物体的体积,要看这个物体含有多少个体积单位。

学生操作:

请你用4个1立方厘米的小正方体,摆成不同的长方体,它们的体积各是多少?还能摆成其它形状吗?它们的体积又是多少?[说明:这里的操作有两方面的作用:一是可以认识计量一个物体的体积,要看它含有多少个体积单位;二是可以通过摆小正方体看体积,为后面学习体积的计算做准备。]

( 哪个是长度单位,哪个是面积单位,哪个是体积单位?它们有什么不同?

[说明: 通过比较,有利于学生强化对长度、面积、和体积计量单位的认识,更好地构建认知结构]

体积和体积单位课件【篇9】

第一课时

教学内容:教科书第30页,例11、练一练,练习七第1~4页。

教学目标:

1、使学生通过探索,自主算出相邻体积单位之间的进率,并会运用相邻体积单位间的进率进行不同体积单位的换算。

2、使学生在数学活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思维。

教学重点:会应用相邻体积单位的进率进行不同体积单位的换算。

教学难点:通过探索,自主推算出相邻体积单位间的进率。

教学准备:教学光盘、体积单位的模型。

教学过程:

一、谈话引入

大家已经学会了长方体和正方体的体积计算,说说长方体和正方体的体积应该怎样计算?常用的体积单位有哪些?

我这里有两个正方体,要知道哪一个占的空间大?应该计算它们的什么?

二、教学新课

1、教学例11。

体积相等吗?你怎么想的?

因为1分米=10厘米,所以两个正方体棱长相等,体积也相等。

你能算出这两个正方体的体积吗?算完后,在小组中交流有什么发现?

汇报交流。

板书:101010=1000(立方厘米)

得出:1立方分米=1000立方厘米。

也就是立方分米与立方厘米间的进率是1000。

你能用同样的方法,推算出1立方分米等于多少立方米吗?小组讨论。

说说你是怎样得到这个结论的?

汇报交流。

板书:1米=10分米

1平方米=100平方分米

1立方米=1000立方分米

立方米和立方分米间的进率是多少呢?

2、完成练一练。

独立完成,集体核对。

5立方分米=()立方厘米,你是怎么想的?

7500立方厘米=()立方分米,应该怎样换算?

乘1000或除以1000可以得到怎样的结果?

板书课题:相邻体积单位间的进率。

三、巩固练习

1、完成练习七第1题。

独立完成填表。

你能说说长度、面积和体积单位有什么联系吗?

有什么区别呢?

2、完成第2题。

独立完成,集体核对。

换算时要注意什么?

3、完成第3、4题。

独立完成,集体核对。

四、课堂小结

今天学习了什么内容?相邻单位间的进率是多少?换算时要注意什么?

板书设计:

相邻体积单位间的进率

101010=1000立方厘米

1立方分米=1000立方厘米

立方分米与立方厘米间的进率是1000。

1米=10分米

1平方米=100平方分米

1立方米=1000立方分米

立方米与立方分米间的进率是1000。

第二课时

教学内容:教科书第31~32页,练习七第5~10题。

教学目标:

1、通过练习,使学生进一步掌握相邻体积单位之间的进率,能熟练进行相邻体积单位的换算。

2、通过练习,使学生进一步提高运用所学的图形知识解决简单实际问题的能力。

教学重点:能熟练进行相邻体积单位的换算。

教学难点:在解决与体积单位有关的实际问题时,能正确思考及换算。

教学准备:教学光盘。

教学过程

一、基础练习

3.8立方米=()立方分米

420立方分米=()立方米

3600立方厘米=()立方分米

12立方分米=()立方厘米

独立完成,集体核对。

说说高级单位的数量怎样换算成低级单位的数量?低级单位的数量怎样换算成高级单位的数量?

板书:高级单位的数量低级单位的数量

低级单位的数量高级单位的数量

板书课题:相邻体积单位的进率换算练习。

二、综合练习

1、完成练习七第5题。

分别正好装满右边的容器什么意思?

怎么算出木块的体积呢?容器的容积分别又是什么呢?

独立完成计算。

2、完成第6题。

独立完成计算。

合多少立方分米就是将立方米换算成立方米。

3、完成第7、8题。

独立完成填表,汇报交流。

表面积和体积分别应该怎样算?

4、完成第9题。

理解题意。

每个问题实际是求什么?怎样求?需要什么条件?

独立完成解答。

5、完成第10题。

从外面量的数据与哪个问题有关?

从里面量的数据与哪个问题有关?

独立完成计算。

三、课堂小结

通过今天的练习,你觉得自己在哪些知识上又有了新的收获?

板书设计:

相邻体积单位的进率换算练习

高级单位的数量低级单位的数量

低级单位的数量高级单位的数量

体积和体积单位课件【篇10】

教学内容:书P、30页例11及相应的练一练,练习七第14题。

教材简析:

这节课主要是教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。并与学过的长度单位,面积单位进行对比。

教学目标:

1.让学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理,会正确应用体积单位间的进率进行名数的变换。

2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率。

3.培养学生的合情推理能力,发展学生的空间观念。

教学重点与难点:根据进率进行相邻体积单位的换算。

教具准备:棱长1分米、棱长10厘米的正方体各一个。

教学过程:

一、复习导入

1、提问

(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?

(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?

(3)常用的体积单位有哪些?

2、提问:你能猜出相邻两个体积单位间的进率是多少吗?(揭示课题)

复习旧知是为学习新知作铺垫。

二、探究新知

1、教学例11

(1)出示一个棱长1分米的正方体和一个棱长10厘米的正方体。

(2)提问:这两个正方体的体积是否相等?你是怎样想的?(根据两个正方体棱长的关系作出判断:即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)

(3)用图中给出的数据分别计算它们的体积。

棱长1分米的正方体体积是1立方分米;

棱长10厘米的正方体体积是1000立方厘米。

(4)根据它们的体积相等,可以的出怎样的结论?

1立方分米=1000立方厘米

(5)谁来说一说,为什么1立方分米=1000立方厘米?

通过学生自己的计算得出结论,可有利于学生熟悉之间的换算关系,为后面自学立方米和立方分米的换算关系作铺垫。

2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?(小组交流)

引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,通过计算的出:1立方米=1000立方分米。

3、小结:从1立方分米=1000立方厘米、1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?

4、提问:除了常用的体积单位外,计量液体的体积还使用什么单位?你还记得这两个单位与常用体积单位的关系吗?你还记得升与毫升之间的进率吗?你能用体积单位间的进率解释问什么1升=1000毫升吗?

加深理解液体的体积和常用体积单位之间的联系。

三、巩固练习

1、书P、30页练一练学生独立完成

你是怎样想的?

小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把低级单位的数改写成高级单位的数要除以进率1000,所以要把小数点向左移动三位。

2、出示练习七第1题学生独立完成表格

讨论:长度、面积和体积单位有什么不同?有什么联系?怎样根据长度单位的进率推想面积单位和体积单位的进率?

3、出示练习七第2题你是怎样想的?

做这道题时,你认为应该特别注意什么?

4、出示练习七第3题学生独立完成

结合前两题说一说怎样把高级单位的数改写成低级单位的数,再根据后两题说说怎样把低级单位的数改写成高级单位的数。

5、出示练习七第4题独立完成集体交流

分层练习加深理解和熟悉各种换算进率。

四、小结:通过这节课的学习,你有什么收获?(本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写)

五、作业:

1、用80根同样的方木,堆成一个长2米、宽1.5米,高1.2米的长方体。堆成的这个长方体的体积是多少立方米?平均每根方木的体积是多少立方米?合多少立方分米?

2、一种正方体水箱,从里面量棱长0.4米.这个水箱最多能装水多少升

2023体积和体积单位课件范文7篇


老师会根据预先制备好的教学方案和课件进行教学,所有教师都按规定需要预先备好教学课件。教案是对学生学习过程的管理和评估工具,那么一份优秀的教学课件应该如何编写呢?我们精心搜集并整理了“体积和体积单位课件”的相关信息,以下是详细内容,期待你的阅读和分享,让我的作品能吸引更多关注者,共同感受美!

体积和体积单位课件【篇1】

教学内容:

义务教育课程标准实验教科书《数学》五年级下册第38-40页体积和体积单位。

教学目标:

1、使学生感悟体积的空间观念,建立体积概念,掌握常用的体积单位的意义;学会用体积单位来描述物体的大小;能合理估计物体的体积的大小。

2、通过学生的观察思考、交流探究等学习活动,让学生在经历物体体积概念的形成过程,体验和感悟空间观念。

3、让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识,建立学生的学习自信心。

教学重点:形成体积的概念和掌握常用的体积单位。

教学难点:形成体积概念。

教学准备:两人一份学具(1立方分米和1立方厘米的正方体模型);三把米尺等。

教学过程:

课前谈话:同学们,在我们的生活中,有很多看似平常的事物,如果我们细心去观察和思考,总能发现一些不寻常的知识,这节课你们愿不愿意和老师一起去观察和思考?

一、抓住体积概念本质,就地取材,创设生活情境。

师:同学们,现在你们观察一下自己的抽屉,说一说你们抽屉里有些什么?

师:估计一下,你们现在的抽屉还能放些什么?能放多少?

师:为什么你们的抽屉还能放东西,说明什么?你能用一句话说一说吗?

〔设计意图:通过引导观察和思考,让学生体验抽屉里有空间。将空间这一概念形象化,具体化,丰富学生的空间表象。〕

师:抽屉没塞满说明抽屉还有空间,如果东西放满了,也就没有空间。从有空地儿到没有空间说明什么?

师:在你们的抽屉里再放一个书包或一些书,能让你的抽屉变得满满的,也就是说书包能占抽屉的空间。发挥你们的想象,你们抽屉的那点儿空地或者说空间能放哪些物品?

师:书包可以把抽屉的空间占了,几十本书也能把抽屉的空间占了,放上一箱的酸奶同样也可以把抽屉的空间占了。说明什么?

物体都会占空间,大家举例说一说物体占空间的现象。

〔设计意图:通过交流和想象,让学生理解物体是可以把空间给占了的,也就是说物体是要占一定的空间的。〕

师:物体都会占空间,是不是物体所占空间都一样呢?

师:物体所占的空间大小不一样,有的物体占空间大些,有的物体占空间小些,物体所占空间的大小叫做物体的体积。

教师板书:物体所占空间的大小叫做物体的体积。

〔设计意图:由空间到物体要占空间,再由物体要占空间到每一样物体所占空间多少的不一样,引出物体的体积概念,步步相扣,层层推理,较好地处理好了体积概念的抽象。以学生天天相见,日日接触的抽屉、书包为学习素材,学生学习亲切,又好奇。熟而不能再熟的身边事物也有值得讨论和学习的问题,自然这样的学习是学生最愿接受学习方式,也最易让学生理解和体会学习的内容和学习方法。〕

二、找准学生的学习起点,创设精准的问题情境,探索学习常用体积单位,深化理解物体的体积概念。

师:物体占空间多,那个物体的体积就大,物体占空间少,那个物体的体积就小。

师:拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。

师:想一想,你能用手比划着告诉你的同桌,你的书包或字典有多大吗?试一试。

学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。

师:你们知道他们的书包有多大了吗?

师:谁能用打电话的形式告诉我,他们的书包有多大?

师:想出办法来了吗?其实我们不是没有办法,请同学们打开课本第39面,看一看书,再想一想,然后大家议一议,找到方法了就告诉老师一声。

〔设计意图:其一、问题情境是引导学生有效学习的保证,从学生的知识起点创设出学生的问题情境能较好的激发学生的探究学习的动力。学生在认识了体积概念后,用直观形式来描述物体体积应该说是不成问题的,用手势比划一个物体的大小,对五年级的学生来说经验是非常丰富的,而用电话的形式来告诉老师物体的体积,对没有学习体积单位的学生来说是一个挑战。描述物体的体积需要个标准,而这个标准便是体积单位,因为学生没有这个标准,所以学生完不成用电话的形式告诉别人物体的体积,也因为需要,学生的探究欲也越强,此时让学生自主学习课本会收到较好的学习效果。其二、学生的学习目的不仅是从教师那得到解决问题的结果,他们需要的是形成学习的动力和学习的方法,指导阅读教材,学会自主学习也是课堂教学的一个重要教学目标。这一环节的设计体现了教学对学生学习的兴趣的鼓动性和对学习方法的指导性。

通过学生独立阅读教材和同伴合作交流,让学生从书中找到解决问题的方法。引出大家对立方米、立方分米、立方厘米等体积单位的认识、理解和体验。〕

师:在我们的生活中要用到体积单位,如立方厘米、立方分米、立方米,它们都是描述物体大小的体积单位。书上是怎样规定1立方厘米、1立方分米和1立方米的?找出来,并说一说。

观察1立方分米和1立方厘米的正方体模型,然后再用手势比划一下它们的大小。同一小组的同学可以互相进行学习。

学生自由活动,探索和体验1立方厘米、1立方分米、1立方米的大小。

全班交流自己探索学习的情况。

师:1立方厘米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方厘米?

师:1立方分米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方分米?

师:1立方米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方米?

师:1立方米,大家比划起来有一定的困难,我们可以一起来做。我这儿有三把米尺,我让几个同学和我一起,用这几把尺借助教室的一个墙角共同来做一个1立方米的空间。

师:1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?

师:大家不站不知道,现在我们的同学进去了,发现没有,1立方米的空间还真不小,整整一个小组11人都能挤进去,大家明白1立方米了吗?现在大家再估一估1立方米的空间可放多少物品?

〔设计意图:学生对一个新的概念的接受和形成需要不断地体验和强化,而操作性的体验强化可以提高学生形成新概念的效果。对像1立方厘米、1立方分米和1立方米这样的规定性知识虽然不需要学生的探究和讨论,但采用学生愿意接受的活动方式(如读一读、说一说、估一估、比划比划等)去解读知识和理解概念,体验概念是必要的。〕

三、引导学生反思整理,形成体积概念。

师:通过今天的学习你知道了哪些知识?哪些知识你觉得很重要?通过今天的学习你能解决生活中的哪些问题?你还想知道有关体积的哪些知识?在今天的学习中,你最感兴趣的学习活动是什么?

〔设计意图:引导学生进行反思性学习应该引起教师的关注,在教学过程中,除了让学生经历探索新知的过程,还应关学生对自己学习过程中的回顾和反思,这一环节缺失的课是不完整的课。反思整理让学生理清所学知识,感悟学习过程,体会学习方法,积累学习经验。同时在学习反思中,也让学生体验到学习的乐趣,增加学生的学习自信心。〕

四、启发课后观察操作,深化巩固课堂知识,培养学生自主学习意识和能力。

师:今天大家的学习很投入,也学了不少有关物体体积的知识,我也很高兴。其实学习不单是在课堂上学习,也可以在课外学。比如今天学习后,大家就可以去观察一下生活中的一些物品所占空间,想一想怎样用今天所学的体积单位来描述它,如一枝钢笔大约有20立方厘米等。

师:课后,同学们也可以做一个棱长是1分米的正方体和一个棱长是1厘米的正方体,比较一下1立方分米和1立方厘米的大小。我相信同学们的课外学习会比课堂上更认真,更投入,会有很多发现和收获。

〔设计意图:将学生的学习从课堂引到课外,由他主学习转到自主学习应该是教师教学的一种境界,是教师终身追求的目标。有效的教学需要我们在设计中去预设,在实践中去尝试。〕

体积和体积单位课件【篇2】

设计说明

体积单位的换算是在学生认识了体积单位,学习了长方体、正方体的体积计算公式后进行教学的。引导学生通过实际操作,结合实际模型理解立方厘米和立方分米之间的进率。为了更好地学习本节课的内容,本节课在教学设计上主要体现以下两个特点:

1.重视学生的自主猜测、主动探究。

在教学中,我先让学生猜想相邻体积单位间的进率,再通过验证发现常用的相邻体积单位间的进率是1000。这一过程充分体现了学生的主体作用,既掌握了知识,又培养了学生发现问题、提出问题、分析问题和解决问题的能力。

2.重视转化、推算等方法。

为了让学生明确体积单位间的进率,本节课先对旧知识进行复习,借以引导学生利用转化、类推的方法,让学生提出猜想,然后通过合作验证等活动得到结论,这样既让学生掌握了数学知识,又提高了学生解决问题的能力。

课前准备

教师准备 PPT课件、长方体纸盒

学生准备 小正方体木块

教学过程

⊙复习导入

1.提出问题。

(1)回忆:常用的长度单位有哪些?常用的相邻两个长度单位之间的进率是多少?(米、分米、厘米 10)

(2)回忆:常用的面积单位有哪些?常用的相邻两个面积单位之间的进率是多少?(平方米、平方分米、平方厘米 100)

(3)提问:我们认识的体积单位有哪些?(立方米、立方分米、立方厘米)

2.设疑引入。

你能猜出常用的相邻两个体积单位间的进率是多少吗?

设计意图:引导学生回忆和整理已有知识,并提出问题——你能猜出常用的相邻两个体积单位间的进率是多少吗,激发学生的求知欲和好奇心,为学习新知做好铺垫。

⊙自主探索,验证猜测

1.再现问题。

大胆猜测一下,常用的'相邻两个体积单位间的进率可能是多少?

(学生猜测进率可能是1000)

2.探究验证。

师:常用的相邻两个体积单位间的进率是不是1000呢?需要我们进行验证。下面请各小组合作探究“1分米3=1000厘米3”。

(1)学生6人一组进行探究。

(要求:①各组长拿出体积为1分米3的小正方体,各位同学拿出体积为1厘米3的小正方体。②先讨论探究的方法,再共同找出答案)

(2)全班交流。

预设

①操作验证——摆:我们发现1分米3=1000厘米3。我们把10个体积为1厘米3的小正方体摆成一排,摆10排正好是一层,这一层小正方体的体积和就是100厘米3。摆这样的10层就得到一个体积为1分米3的大正方体。这个大正方体的体积就是10个100厘米3,也就是1000厘米3。

(学生汇报后,用课件展示摆的过程)

②操作验证——切:我们组的想法是把体积为1分米3的大正方体切成若干块体积为1厘米3的小正方体。我们比了比,沿着大正方体的长、宽、高各可以切成10块,10×10×10=1000(块),所以1分米3=1000厘米3。

③推理验证——算:我们小组是算出来的。把体积为1分米3的正方体的棱长用厘米作单位,棱长就是10厘米,根据正方体的体积计算公式,10×10×10=1000(厘米3),所以1分米3=1000厘米3。

④利用知识间的联系进行验证——想:1分米3=1升,1厘米3=1毫升,而1升=1000毫升,所以1分米3=1000厘米3。

(3)教师小结:大家已经验证了1分米3=1000厘米3。想一想,用同样的方法,你能推算出1米3等于多少立方分米吗?

学生独立思考,并全班交流,然后教师指名说一说推导过程。

[板书:1米3=(1000)分米3]

师:你能说一说,常用的相邻两个体积单位间的进率是多少吗?

小结:常用的相邻两个体积单位间的进率是1000。

3.归纳总结。

师:同学们通过摆、切、算等方法验证了1分米3=1000厘米3,1米3=1000分米3,共同验证了“常用的相邻两个体积单位间的进率是1000”这个猜想。

(板书:1分米3=1000厘米3,1米3=1000分米3)

你还能联想到什么?(液体的体积单位:1升=1000毫升,1L=1dm3)

体积和体积单位课件【篇3】

教学目标:

1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。

教学重点:

1、建立体积概念。

2、认识体积单位。

教学难点:

建立体积概念。

教学设计:

一、出示课题,学习目标

1、理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

2、知道计量一个物体的体积有多大,要看它包含多少个体积单位。

二、出示自学指导

认真看课本总结

1、体积的意义。

2、体积单位:

三、学生看书,自学

四、效果检测

学生概括:物体所占空间的大小叫做物体的体积。(板书)

常用的体积单位有:立方米、立方分米、立方厘米。

练一练:选择恰当的单位:

(1)、橡皮的体积用(),火车的体积用(),书包的体积用()。

(2)、练习:

①说一说:测量篮球场的大小用()单位。

测量学校旗杆的高度用()单位

测量一只木箱的体积要用()单位。

②、一个正方体的棱长是1(),表面积是(),体积是()。(你想怎样填?)

③、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。()

五、总结:

这节课我们学习了体积的意义和体积单位。你有什么收获?

板书设计:

体积和体积单位

物体所占空间的大小叫做物体的体积。

常用的体积单位有:立方米、立方分米、立方厘米。

体积和体积单位课件【篇4】

【练习目标】:

1、认知:能正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。

2、能力:进一步培养学生的分析问题解决问题的能力。

3、情感:激发学生的数学学习信心。

【教学重难点】:

能正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。

【教学过程】:

(一)、复习谈话导入。

上节课我们认识了体积单位之间的进率,谁能说一说体积单位之间的进率是怎样的?它与面积单位、长度单位有什么不同?这节课我们就继续运用这些知识来解决实际问题。

(二)、基本训练。

1、填空。

0.24立方米=(  )立方分米 3020立方厘米=( )立方分米2.03立方米=(  )立方厘米

2立方米80立方分米=()立方米5.34立方分米=()立方分米=( )立方厘米

2、判断。

①正方体的棱长是6厘米,它们表面积和体积相等。()

②体积单位比面积单位大,面积单位比长度单位大。()

③正方体和长方体的体积都可以用底面积乘高来进行计算。()

④表面积相等的两个长方体,它们的体积一定相等。()

⑤长方体的体积就是长方体的容积。()

(三)、选择。

⑴正方体的棱长扩大2倍,则体积扩大()倍。

①2    ②4    ③6   ④8 ⑵一根长方体木料,长1.5米,宽和厚都是2分米,把它锯成4段,表积最少增加()平方分米。

①8    ②16    ③24   ④32⑶一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍。

①2     ②4    ③6   ④8 ⑷表面积相等的长方体和正方体的体积相比,()。

①正方体体积大

②长方体体积大

③相等

⑸将一个正方体钢坯锻造成长方体,正方体和长方体()。

①体积相等,表面积不相等

②体积和表面积都不相等

③表面积相等,体积不相等

(四)、综合训练。

1、一个长方体文具盒长20厘米,宽10厘米,高3厘米,它占多大的空间?

2、一块长方体的钢板长2.2米,宽1.5米,厚0.01米。它的体积是多少立方米?合多少立方分米?

3、80根方木,堆成一个长2米、宽2米、高1.5米的长方体。平均每根方木的体积是多少立方米?合多少立方分米?

4、我校少年宫要建造一个游泳池,长40米,宽25米,平均深度1.5米。

⑴这个游泳池占地多少平方米?

⑵共要挖多少立方米土?

⑶如果要在游泳池的四壁和底面抹上水泥,抹水泥的面积有多大?

⑷如果在游泳池的池口设计不锈钢管扶栏,请你算一算扶栏至少要多长?

【课堂小结】:

通过这节课的学习你有什么新的收获?

体积和体积单位课件【篇5】

教学内容:

教材第P50—51页“体积单位的换算”

教学目标:

1.结合实际活动,认识体积,容积单位之间的进率,会进行体积,容积单位之间的换算。

2.在观察、操作的过程中,发展空间观念。

教学重难点:

1.结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间换算。

2.在观察、操作的过程中,发展空间观念。

教学过程:

一、创设情境激趣揭题

1.展示问题:

①常用的长度单位有那些?相邻两个单位间的进率是多少?

②常用的面积单位有那些?相邻两个单位间的进率是多少?顺式导入新课。

2.板书课题。

二、扶放结合探究新知

1.探究立方分米和立方厘米之间的进率。师出示一个棱长1分米和1厘米的正方体、提出问题。

2.探究立方分米和立方厘米之间的进率。

3.出示例题:“体积单位的改写”

4.学生交流后,引导学生小结。

三、反馈矫正落实双基

1.出示教材P51第一题

2.教材第51页“练一练”的第2题。

3.教材第51页“练一练”的第3题。

四、小结评价布置预习

1.引导学生进行全课小结。

2.布置课外预习:教材P54-55:有趣的测量。

体积和体积单位课件【篇6】

请下载附件:1、《《体积和体积单位教学设计》教学设计》(共4页,本地下载在线阅读New!)

教学内容:

义务教育课程标准实验教科书《数学》五年级下册第38-40页体积和体积单位。

教学目标:

1、使学生感悟体积的空间观念,建立体积概念,掌握常用的体积单位的意义;学会用体积单位来描述物体的大小;能合理估计物体的体积的大小。

2、通过学生的观察思考、交流探究等学习活动,让学生在经历物体体积概念的形成过程,体验和感悟空间观念。

3、让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识,建立学生的学习自信心。

请下载附件:1、《《体积和体积单位教学设计》教学设计》(共4页,本地下载在线阅读New!)

体积和体积单位课件【篇7】

教学目标:

1.使学生理解体积的概念,了解常用的体积单位,形成表象。

2.培养学生比较、观察的能力。

3.发展学生的空间观念。

重点难点:

使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的大小。

教学过程:

一、认识体积(激趣导入)。

1、“同学们,你们听过乌鸦喝水的故事吗?”(学生作答)老师播放“乌鸦喝水”的课件,提问:乌鸦是怎么喝到水的?(乌鸦把石头一粒一粒地衔到瓶子里,石头占了水的空间,所以把水挤出来了。)

2、“石头真的占了水的空间吗?”(实验验证)

拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒入第二个杯子,让学生观察,发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了水的空间,所以装不下了。

二、揭示体积

出示下面的图,问:你们知道这些物体哪个占的空间大吗?

手机影碟机电视

学生回答后,说明:物体都占有一定的空间,而且所占的空间有大有小。我们把物体所占空间的大小叫做物体的体积。(板书体积概念)

三、列出体积单位。

1、出示两个形状不同,体积相近的长方体。(单凭观察,难以比较)

2、用多媒体将它们分成大小相同的小长方体后,学生很快就确切的说出:左边的长方体体积大于右边的长方体体积。(因为左边长方体有16个小长方体,而右边的只有15个)

说明:所以要比较物体的体积大小,需要有一个统一的体积单位。我们知道长度单位是用线段表示的,面积单位是用正方形来表示的,那么体积单位应该用什么来表示呢?(用正方体来表示)。常用的体积单位有立方厘米、立方分米、立方米。(板书)

四、认识体积单位。

1、“请你猜一猜1cm3、ldm3 、1m3,是多大的正方体?”

讨论后让生看着实物共同小结:

棱长是Icm的正方体,体积是1cm3(手指尖);

棱长是ldm的正方体,体积是ldm3(粉笔盒);

棱长是l m的正方体,体积是1 m3(一台洗衣机)。

2、“要计算一个物体的体积,就要看这个物体中含有多少个体积单位。”请同学们用4个1cm3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?(4cm3)为什么?(因为它是由4个体积是1Cm3的小正方体摆成的)

五、课题练习

(略)

教学反思:

本节课,我从《乌鸦喝水》这个故事自然引入新课。借助1立方厘米、1立方分米、1立方米的直观教具,让生通过摸一摸、量一量、比一比,说一说等实践活动,亲身经历和体验体积单位。教学中,我注意把教材内容与生活实践相结合、动手操作与实验观察相结合,努力培养学生用数学的意识解决实际问题的能力和创新精神。

定积分课件


教案是老师上课之前需要备好的课件,每位老师都应该他细设计教案课件。写好教案,才能让课堂教学更完整。经过反复思考工作总结之家小编精心挑选了题目为“定积分课件”的文章,欢迎您来到我们的网站愿您有益于此!

定积分课件 篇1

定积分是高等数学中的一项重要内容,也是普通高中数学必修内容之一。在学习定积分时,我们不仅需要掌握基本的定义、性质和求解方法,还需要了解它在实际生活中的应用。以下是本文的主题范文——定积分及其应用。

一、定积分的定义和性质

定积分的定义:设函数$f(x)$在区间$[a,b]$上有定义,将区间$[a,b]$分成$n$个小区间,每个小区间长度为$\Delta x$,并在每个小区间内取一点$\xi_i$,则当$\Delta x$趋近于0,$n$趋近于无穷大时,和式$\sum_{i=1}^n f(x_i)\Delta x$的极限值称为函数$f(x)$在区间$[a,b]$上的定积分,记为$\int_a^b f(x)dx$,即

$$\int_a^b f(x)dx=\lim_{\Delta x \to 0}\sum_{i=1}^n f(\xi_i)\Delta x.$$

定积分的性质:

(1)积分的线性性质:$\int_a^b [\alpha f(x)+\beta g(x)]dx=\alpha \int_a^b f(x)dx+\beta \int_a^b g(x)dx$。

(2)积分中值定理:设$f(x)$在$[a,b]$上连续,则存在$\xi \in [a,b]$,使得$\int_a^b f(x)dx=f(\xi)(b-a)$。

(3)积分中的极值定理:设$f(x)$在$[a,b]$上连续,则存在$\eta, \zeta \in [a,b]$,使得$$\int_a^b f(x)dx=f(\eta)(b-\zeta)=f(\zeta)(\eta-a)$$。

二、定积分的求解方法

(1)分部积分法:设$u=u(x)$,$v=v(x)$均可导,则$$\int_a^b u(x)v'(x)dx=[u(x)v(x)]_a^b-\int_a^b v(x)u'(x)dx$$。

(2)换元积分法:设$y=y(x)$,$y'(x)\not = 0$,$f(y)$在$[y(a),y(b)]$上可积,则$$\int_a^b f(y(x))y'(x)dx=\int_{y(a)}^{y(b)} f(y)dy$$。

(3)区间加减法:若函数$f(x)$在区间$[a,b]$上可积,$c\in [a,b]$,则$$\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx$$。

三、定积分的应用

定积分是一种十分重要的工具,它在各个领域中都有着广泛的应用。

(1)几何应用

定积分可用于计算曲线下的面积、旋转体的体积和表面积、定积分曲线的弧长等,多次积分甚至可以处理三维的曲面积分和体积积分。

(2)物理应用

在物理学中,使用定积分可以计算物体的质量、速度、加速度、动能、位移、功等物理量,进而解决各种力学问题。

(3)经济应用

在经济学中,定积分可以用来计算总收益、总成本和利润、平均值等数值,进而研究经济现象和解决商业问题。

(4)工程应用

在工程学中,定积分可以利用桥梁、隧道、水库、电站等工程的设计和施工过程中,计算和预测各种数据,并最终得出最优方案。

四、总结

通过对定积分的定义、性质和求解方法的讲解,以及对其在几何、物理、经济和工程等领域中的应用进行了阐述,我们可以看出定积分在各个领域中都有着广泛的应用,是一种至关重要的数学工具。因此,在学习定积分时,我们需要深入理解其性质、掌握其求解方法,并积极探索其应用领域,善于运用数学知识去解决现实问题。

定积分课件 篇2

定积分,是微积分中一个重要的概念和工具。它是用来表示在一个区间内无限微小的元素面积之和,也可以解决曲线与坐标轴所夹的面积,是对面积的积分运算。定积分可以解决许多实际问题,比如计算曲线下的面积、物体质量、重心和转动惯量等。下面是关于定积分的主题范文:

一、定积分概念及其计算方法

定积分是微积分中一个核心概念,它是通过将一个函数在某个区间内的微小区域进行分割,然后将这些微小的面积相加所得到的结果。这个概念可以用来计算一个函数在指定区间内的平均值、总面积、重心、质心等等。

计算定积分可以采用近似法和精确法两种方法。常见的近似法是梯形法、辛普森法等,精确法通常是通过积分计算公式加以计算。此外,由于定积分具有很强的几何意义,可以通过绘制图形来理解函数的积分运算,并帮助大家更好地理解这个概念。

二、定积分的应用

定积分不仅仅是微积分的一个重要概念,它还有非常广泛的应用。在物理学中,定积分可以用来计算一个物体的质量、转动惯量、能量等;在金融学中,它可以用来计算信用风险、收益率等;在计算机科学中,它可以用来对数据进行采样、平滑等;在工程学中,它可以用来进行量化分析等。可以说,定积分是一种重要的数学工具,在日常生活、科学研究和工程领域都有着广泛的应用。

三、定积分的应用实例

1.计算曲线下的面积

在日常生活中,如果需要计算某个曲线下的面积,那么就需要使用定积分来进行计算。例如,可以使用定积分来计算某个路程内的汽车油耗,这时可以根据车速和时间的变化规律绘制出一个曲线图,然后通过积分的方式计算出这段路程内的汽油消耗。

2.计算物体的质量

在物理学中,定积分可以用来计算一个物体的质量。例如,可以使用定积分来计算一根圆柱体的质量,这时可以首先确定这个圆柱体的密度分布,然后将它在三维空间分割成无数个小块,然后对每个小块采用近似法或精确法计算出它的质量,最后将这些小块的质量相加,就可以得到整个圆柱体的质量了。

3.计算信用风险

在金融学中,定积分可以用来计算信用风险。例如,可以使用定积分来计算某个信贷产品的违约风险,这时可以根据借款人的信用记录、历史纪录等信息,构建一个信用风险模型,然后通过积分的方式计算出这个产品的违约风险。

总之,定积分是数学中一个非常重要的概念和工具。它不仅可以帮助大家解决许多实际问题,在日常生活、科学研究和工程领域也有着广泛的应用。

定积分课件 篇3

主题:定积分的定义、性质、求解方法及其应用

一、定积分的定义

定积分是微积分中的重要概念之一,它是在一定区间上对函数值的加总,可以反映出函数在这个区间上的“平均大小”。设 f(x) 在区间 [a, b] 上连续使用小矩形面积夹逼法,可以得到定积分的定义:

其中,Δx 表示小矩形的宽度,f(x) 表示小矩形的高度,在区间 [a, b] 上进行 n 个小矩形面积的加总,即可得到该区间上函数 f(x) 的定积分。

二、定积分的性质

定积分有以下的性质:

1. 积分与区间的长度无关,仅与函数 f(x) 的取值相关。

2. 积分具有可加性,即如果函数 f(x) 可以分成若干个子区间上的函数,那么该函数的积分等于每个子区间上的积分之和。

3. 积分可以拉出常数,即 c∫a^b f(x) dx = ∫a^b cf(x) dx。

4. 积分具有线性性,即 ∫a^b (f(x) ± g(x)) dx = ∫a^b f(x) dx ± ∫a^b g(x) dx。

5. 如果 f(x) 的积分存在,那么其反函数 F(x) 也必然存在。

三、定积分的求解方法

求解定积分有以下的方法:

1. 利用定义式计算定积分,在区间上划分出适当多的小矩形,取极限即可得到定积分的值。

2. 使用牛顿-莱布尼茨公式计算定积分,即通过函数的反函数来计算定积分。

3. 利用换元法来计算定积分,将原函数变成关于新变量的函数,然后计算出新函数在新区间上的定积分,最后再回代,得到在原区间上的定积分。

4. 利用分部积分法计算定积分,将积分化为较简单的形式,从而求解出对应的值。

四、定积分的应用

定积分在物理、工程、经济等许多领域中都具有广泛的应用,以下列举几个典型的例子。

1. 计算曲线或曲面的面积,在极坐标系下的面积可以通过定积分来计算。

2. 计算物体的体积,可以将物体分割成一些微小的体积元,然后利用定积分来进行累加,从而得到物体的总体积。

3. 根据质量分布计算物体的重心,在半轴上对质量进行积分,可以得到该物体的重心位置。

4. 求解物理问题中的功与能,可以通过定积分来计算物体在运动过程中的动能、势能等值。

五、结语

定积分作为微积分中的重要概念,具有广泛的应用。定积分不仅仅是数学中的一种运算符号,更是把抽象的数学工具转化成现实的现象的桥梁。理解定积分的性质和求解方法,有助于我们更好地掌握微积分的知识,从而更好地应用到实际问题中去。

定积分课件 篇4

定积分课件

一、引言

随着时代的发展,数学作为一门基础学科,扮演着重要的角色,其中定积分更是数学领域中不可或缺的一部分。这其中,定积分不仅在纯学科领域中具有重要意义,而且在工程实践中也有着广泛的应用。为此,本篇文章将从定积分的基本概念、求解方法、应用领域和展望未来几个方面来进行讲解,以期对定积分有更为深入的理解。

二、定积分的基本概念

定积分作为对曲线所包围的面积进行计算的一种方法,是微积分中至关重要的概念。具体而言,对于一个函数f(x),我们可以通过定积分来求出它在一个区间[a,b]上的面积。

在此基础上,我们可以推导出不定积分的概念,即求函数f(x)的原函数。

三、定积分的求解方法

1. 近似计算法

可以采用数值积分法计算,其中最常用的是梯形求和法和辛普森求和法。

2. 精确计算法

可以采用牛顿-莱布尼茨公式对定积分进行求解,即:

∫[a,b]f(x)dx=F(b)-F(a)

其中,F(x)为函数f(x)的一个原函数。

四、定积分的应用领域

1. 物理学

物理学中经常遇到面积、体积等问题,定积分能够得到精确的数值解。

2. 工程学

定积分能够在工程实践中进行求解,如控制系统设计中的样本分析。

3. 经济学

经济学中的贡献度和利润等都涉及到定积分的求解,能够对经济学理论进行定量分析。

五、展望未来

随着科技的不断发展,定积分作为微积分的核心之一,将会在更广泛的领域展现出其重要性。在未来,我们可以看到定积分将被更广泛地应用于人工智能、计算机科学等领域。同时也需要我们更加深入地学习和研究定积分的相关知识,为未来的发展做好准备。

六、结语

本文从定积分的基本概念、求解方法、应用领域和展望未来几个方面对定积分进行了简要的介绍,然而定积分作为微积分一大重要部分,其应用和研究的空间还有着许多未被挖掘的潜力。我们相信,在大家不断的努力和探索之下,定积分必将展现出更广阔的应用与发展前景,为数学的研究和应用带来更加精确的解法和方法。

定积分课件 篇5

微积分课件是指用于教学的微积分课程中所使用的电子文档或PPT等形式的教学工具。这些课件通常包含了各种图表、公式、解题思路等各种微积分知识,并能够辅助老师对学生进行知识点的解释和说明。在今天的大学教育中,微积分课程是非常重要的一部分,学生们需要通过学习微积分来掌握科学与工程学科中的各种技能。

微积分课件在提高学生的学习效率和提升老师的授课能力方面都扮演着重要的角色。当老师用微积分课件展示内容时,学生们可以更容易地理解微积分的概念与原理,同时在课程结束后还能通过复习该课件来加深对微积分知识的理解。微积分课件不仅能够帮助学生着重理解各种重要概念,还能够通过大量练习来帮助他们掌握解题的技能。

微积分课件中的内容主要包括:函数和图形、极限、导数、微分、积分、微分方程等。这些概念是微积分学科中最基本的概念,也是微积分知识的核心内容。微积分课件的展示方式通常是用PPT等形式将这些内容分类呈现,其中每个小章节内还会进一步细分各种基本概念和例题。通过这样的分类方式,学生们可以更好地理解每个具体概念和它们之间的关系,同时也能学习到如何解决复杂的微积分问题。

在微积分课件中,讲师通常通过各种动态图表的演示来更容易地展示微积分问题的分析和解决。这些幻灯片和图表能够更好地展示出各种函数、图形、曲线的关系及相互作用,使得学生们能够更直观地理解微积分的各种知识点。同时,老师还会给学生们提供一些实际的例子和思考问题,以帮助他们将微积分的知识点融入现实生活中。

此外,微积分课件也能提供给学生们一个更好的学习体验。在传统的课堂教学中,老师通常只能通过黑板或纸张来展示微积分知识点。但现在的微积分课件则可以通过全屏版式以及更大的字体来展示各种图表和公式,使得学生们能够更清晰地看到和理解各种微积分概念。通过一些视觉的表达方式,课件还能更加生动、丰富和直观地传达微积分知识点。

总之,微积分课件在现代教育技术中扮演着非常重要的角色。对于学习微积分的学生来说,通过微积分课件的学习,能够更好地掌握解题技巧和各种知识点;对于微积分老师而言,微积分课件则可作为授课工具来在课堂上展示各种微积分概念和解题方法。既能提高教学效率,也能提升学习的乐趣,微积分课件可以说是一种有效的微积分教育资源。

"容积单位课件"延伸阅读