数学必修4教案锦集五篇。
资料一般指代可供人们参考的信息知识等。在我们的学习或者工作中,常常会用到一些资料。资料可以作为参考给我们一些学习工作灵感。既然如此,你知道我们的资料有哪些内容啊?经过收集,小编整理了数学必修4教案锦集五篇,欢迎大家借鉴与参考,希望对大家有所帮助。
数学必修4教案 篇1
一.教材分析
本节课是学生在已掌握了函数的一般性质之后系统学习的第一个函数,为今后进一步熟悉函数的性质和应用,进一步研究等比数列的性质打下坚实的基础.因此本节课的内容是至关重要的.它对知识起到了承上启下的作用。
二.学情分析
根据这几年的教学我发现学生在后面学习中一遇到指对数问题就发蒙,原因是什么呢?问题就出在学生刚刚学完函数的性质,应用又是初中比较熟悉的一次二次函数。一下子出现了一个非常陌生的函数而且需要记很多性质。学生感觉很吃力,也就没有了兴趣,当然就学不好了。
三.教学目标
1.知识与技能: (1)掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数.(2)能根据指数函数的解析式作出函数图象,并根据图象给出指数函数的性质.(3)能根据单调性解决基本的比较大小的问题.
2.过程与方法:引导学生结合指数的有关概念来理解指数函数概念,并向学生指出指数函数的形式特点,在研究指数函数的图象时,遵循由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象,然后推广到一般情况,类比地得到指数函数的图象,并通过观察图象,总结出指数函数当底分别是 , 的性质。
3.情感、态度、价值观:使学生领会数学的抽象性和严谨性,培养他们实事求是的科学态度,积极参与和勇于探索的精神.
四.教学重点与难点
教学重点:指数函数的概念、图象和性质。
教学难点:如何由图象、解析式归纳指数函数的性质。
五:教法:探究式教学法 通过学生自主探索、合作学习,让学生成为学习的主人,加深对所得结论的理解
六.教学过程:
(一)创设情景、提出问题
师:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?
生:y与x之间的关系式,可以表示为 ( )
师:有1根长 1米的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了x次后绳子剩余的长度为y米,试写出y与x之间的函数关系式。
生: ( )
(二)师生互动、探究新知
1.指数函数的定义
⑴让学生思考讨论以下问题(问题逐个给出):
① ( )和 ( )这两个解析式有什么共同特征?
②它们能否构成函数?
③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?
引导学生观察,两个函数中,底数是常数,指数是自变量。
如果可以用字母 代替其中的底数,那么上述两式就可以表示成 的形式。自变量在指数位置,所以我们把它称作指数函数。
⑵让学生讨论并给出指数函数的定义。
对于底数的分类,可将问题分解为:
①若 会有什么问题?(如 , 则在实数范围内相应的函数值不存在)
②若 会有什么问题?(对于 , 都无意义)
③若 又会怎么样?( 无论 取何值,它总是1,对它没有研究的必要.)
为了避免上述各种情况的发生,所以规定 且 .
接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如 , , 。
这样设计的目的是学生可能存在对指数函数形式上的一种误解,即只看指数位置是否为自变量。通过以上的三个小例子,学生就完成对指数函数彻底的认识,解决的问题。
2.指数函数性质
⑴提出两个问题
①目前研究函数一般可以包括哪些方面;
②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?
可以从图象和解析式列表这三个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,
⑵分组活动,合作学习
让学生分为三大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;一组借助列表利用计算器和坐标网格研究指数函数;
⑶交流、总结
教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。
教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?
(4)交换角色
请同学们交换任务,检查一下你能否发现别人没有发现的性质。
师生共同总结指数函数的图象和性质,教师可以边总结边板书。
通过这一环节,可以使学生对指数函数的性质得到自然、完善的整合,这个过程中,学生时主动的投入到学习中去,体现了教改“以学生为主,教师为辅”的思想。加深的学生对所得结论的理解,也培养了学生数形结合的思想。
(三)巩固训练、提升能力
例1:已知指数函数 的图象经过点 ,求 的值。
解:因为 的图象经过点 ,所以
即 ,解得 ,于是 。
所以 。
例2.利用指数函数的性质,比较下列各题中两个值的大小:
(1) 1.7a与1.7a+1 (2)0.8-0.1与0.8-0.2
(3) 已知(4/7)a>(4/7)b,比较a,b的大小.
练习:⑴在同一平面直角坐标系中画出 和 的大致图象,并说出这两个函数的性质;
⑵求下列函数的定义域:① ,② 。
七:小结
通过本节课的学习,你对指数函数有什么认识?你有什么收获?
八:作业:课本93页习题3-1A组第4题。
九:板书设计:
数学必修4教案 篇2
教学内容解析
本节课是苏教版教材必修2中第一章第二节的内容,属于新授概念原理课。其中直线与平面垂直的概念及判定定理的形成是教学重点。
直线与平面垂直在本节中的位置。线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例。在线面平行中,我们研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式。线面垂直是线线垂直的拓展,又是面面垂直的基础,且后续内容。例如,空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用。
通过本节课的学习研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象及推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法。因此,学习这部分知识有着非常重要的意义。
教学目标设置
(图形语言、符号语言来表示定义和判定定理。
(2)掌握线线垂直与线面垂直之间的相互转化关系,从而体会降维化归的思想。
(3)在定义及定理的探究活动中,发展学生合情推理能力与演绎推理的能力。
(图形思考问题的过程,进一步发展空间观念。
学生学情分析
1.学生已有的认知基础
学生能够感知生活中有大量的线面垂直关系,已经掌握了线线垂直与线面平行的相关知识,从而具备了研究空间位置关系的经验,也体会了立体几何中化归的数学思想方法。
2.达成目标所需要的认知基础
要达成本节课的目标,这些已有的知识和经验基础不可或缺,除此之外,还需要整体上把握本节课的研究内容、方法和途径,能运用类比、化归等数学思想,同时还需要具备较好地观察发现、空间想象、合情推理、抽象概括等能力,以及独立思考、合作交流、反思质疑等良好的数学学习习惯。
学生情况:学生大部分基础薄弱,自主学习能力差.进入高一,虽然能领悟一些基本的数学思想与方法,但还没有形成完整及严谨的数学思维习惯,对问题的探究能力也有待培养。
3.教学难点及突破策略
教学难点:
(1)运用类比及化归等数学思想方法来研究直线与平面垂直的定义,突破对“任意”的生成和理解。
(归纳、理解直线与平面垂直判定定理,突破“无限”与“有限”的转化。
突破策略:
(1)启发学生明确研究的内容与方法,从总体上认识研究的目标与手段。
(操作确认、思辨论证的过程形成线面垂直的定义和判定定理。
数学必修4教案 篇3
一、教材分析
1、《指数函数》在教材中的地位、作用和特点
《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2、教学目标、重点和难点
通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:
(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;
(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;
(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。
(4)教学重点:指数函数的图象和性质。
(5)教学难点:指数函数的图象性质与底数a的关系。
突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法设计
由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:
1、创设问题情景。按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2、强化“指数函数”概念。引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。
3、突出图象的作用。在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。
教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业
学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。
设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。
5、板书设计
考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。
五、教学评价
教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。
当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!
数学必修4教案 篇4
一、 引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。二、 新课教学1、 并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即: A∪B={x|x∈A,或x∈B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。记作:A∩B 读作:“A交B”即: A∩B={x|∈A,且x∈B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。4、 集合基本运算的一些结论:A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩AA A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A若A∩B=A,则A B,反之也成立若A∪B=B,则A B,反之也成立若x∈(A∩B),则x∈A且x∈B若x∈(A∪B),则x∈A,或x∈B三、 课堂练习(P13练习)
数学必修4教案 篇5
第3课时正弦定理
知识网络
?判断三角形状正弦定理的应用
?
?平面几何中某些问题
?
?解的个数的判定
学习要求
1.掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; 2.熟记正弦定理及其变形形式; 3.判断△ABC的形状.【课堂互动】
自学评价
1.正弦定理:在△ABC中,absinA
?
sinB
?
csinC
?2R,2R?
a?bsinA?sinB
?
a?b?csinA?sinB?sinC
R为?ABC的2.三角形的面积公式:
(1)s=_______=_______=_______(2)s=__________________(3)s=____________ 【精典范例】
【例1】在△ABC中,已知acos=
bA
cosB
=
ccosC,试判断△ABC的形状.
【解】
点评:通过正弦定理,可以实现边角互化.
用心爱心【例2听课随笔
平分线,用正弦定理证明AB=
bD.
aC
DC
【证】
【例3】根据下列条件,判断?ABC解?若有解,判断解的个数.
(1)a?5,b?4,A?120?,求B;(2)a?5,b?4,A?90?,求B;(3)a?
b?,A?45?求B;
(4)a?
b?A?45?,求B;(5)a?
4,b?3,A?60?,求B
【解】
追踪训练一 1.在△ABC中,已知b = 6,c = 10,B = 则解此三角形的结果是()A.无解B.一解C.两解D.解的个数不能确定专心
2.在△ABC中,若A?2B,则a等于()
a.2bsinAB.2bcosAC.2bsinBD.2bcosB 23.在△ABC中,若
tanAatanB
?b,则△ABC的形状是()
a.直角三角形B.等腰或直角三角形C.不能确定D.等腰三角形 【选修延伸】
【例4】如图所示,在等边三角形中,AB?a,O为三角形的中心,过O的直线交AB于M,交AC于N,求
1OM
?
1ON的最大值和最小值.
【解】
追踪训练二
1.在?ABC中,A:B:C?4:1:1,则
a:b:c?()
a.4:1:1B.2:1:1C
.:1D
.:1 2.在?ABC中,若
sinA:sinB:sinC?4:5:6,且a?b?c?15,则a?b? c?
3.已知△ABC中,a∶b∶c=1∶3∶2,则A∶B∶C等于()A.1∶2∶3B.2∶3∶1C.1∶3∶
2D.3∶1∶2
用心爱心4.如图,△ABC是简易遮阳棚,A、B是南北听课随笔
方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角为
°°°
5.已知△ABC中,sinA∶sinB∶sinC=
k∶(1-2k)∶3k(k≠0),则k的取值范围为()A.(2,+∞)B.(11
c.(?
1,0)D.(12,??)
6.在△ABC中,证明:cos2A2B1a
?
cosb
?
a
?
1b
.【师生互动】
专心
Gz85.com编辑推荐
数学必修3教案7篇
教案课件是老师工作当中的一部分,每个老师对于写教案课件都不陌生。教案是完整课堂教学的核心,怎样的教案才算好的课件?我们不辞辛劳地编辑了“数学必修3教案”因为我们关心您的需求,希望您能将这篇文章记入收藏列表中!
数学必修3教案 篇1
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
四、 引入课题
1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2
;(3)-1.5 R
2、 类比实数的大小关系,如5
布课题)
五、 新课教学
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:A?B(或B?A)
读作:A包含于(is contained in)B,或B包含(contains)A (一) 集合与集合之间的“包含”关系;
当集合A不包含于集合B时,记作
B
用Venn图表示两个集合间的“包含”关系 A?B(或B?A)
(二) 集合与集合之间的 “相等”关系;
A?B且B?A,则A?B中的元素是一样的,因此A?B
?A?B即 A?B?? B?A?
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合A?B,存在元素x?B且x?A,则称集合A是集合B的真子集(proper subset)。
记作:A B(或B A)
读作:A真包含于B(或B真包含A)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:? 规定: 空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:1A?A ○2A?B,且B?C,则A?C ○
(六) 例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x?5},并表示A、B的关系;
(七) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
1 已知集合A?{x|a?x?5},B?{x|x≥2},且满足A?B,求实数a的○
取值范围。
2 设集合A?{○四边形},B?{平行四边形},C?{矩形},
D?{正方形},试用Venn图表示它们之间的关系。
数学必修3教案 篇2
教学准备
教学目标
1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;
2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;
归纳——猜想——证明的数学研究方法;
3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点
重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;
难点:等比数列的性质的探索过程。
教学过程
教学过程:
1、问题引入:
前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?
(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n—1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)
2、新课:
1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?
师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
公式的推导:(师生共同完成)
若设等比数列的公比为q和首项为a1,则有:
方法一:(累乘法)
3)等比数列的性质:
下面我们一起来研究一下等比数列的性质
通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。
问题4:如果{an}是一个等差数列,它有哪些性质?
(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:
3、例题巩固:
例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。
答案:1458或128。
例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3 …a20 =_ 10 ____。
例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?
(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k—1,所以{cn}中的第k项是等差数列中的第2k—1项。关键是对通项公式的理解)
1、 小结:
今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习
我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。
2、作业:
P129:1,2,3
思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?
教学设计说明:
1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。
2、 教学设计过程:本节课主要从以下几个方面展开:
1)通过复习等差数列的定义,类比得出等比数列的定义;
2)等比数列的.通项公式的推导;
3)等比数列的性质;
有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧
知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。
在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。
通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。
等比性质的研究是本节课的高潮,通过类比
关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。
数学必修3教案 篇3
空间几何体
锥、台、球的结构特征
一、教学目标
1.知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(锥、台的分类。
2.过程与方法
(锥、台、球的几何结构特征。
(讨论、归纳、概括所学的知识。
3.情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(思考、交流、讨论、概括。
(投影仪
四、教学思路
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
,你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
有两个面互相平行;(每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的`几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以
类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本P8,习题1.1 A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P(2)
课本P3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本P8 练习题1.1 B组第1题
数学必修3教案 篇4
这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,映射的一般表示方法为 ,从这个符号中也能看到映射是由三部分构成的整体,这对后面认识函数是三件事构成的整体是非常有帮助的.
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢, 引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案2。1 映射教学目标(1)了解映射的概念,象与原象及一一映射的概念.(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.(3)通过映射概念的学习,逐步提高学生的探究能力.教学重点难点::映射概念的形成与认识.教学用具:实物投影仪教学方法:数学教案-映射,标签:高一数学必修3教案,高一数学必修1教案,启发讨论式教学过程():一、引入在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.二、新课在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)我们今天要研究的是一类特殊的对应,特殊在什么地方呢?提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)提问2:能用自己的语言描述一下这几个对应的共性吗?经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)(板书)一.映射1.定义:一般地,设 两个集合,如果按照某种对应法则 ,对于集合 中的任何一个元素,在集合 中都有唯一的元素和它对应,那么这样的对应(包括集合 及 到 的对应法则)叫做集合 到集合 的映射,记作 .定义给出之后,教师应及时强调映射是特殊的对应,故是三部分构成的一个整体,从映射的符号表示中也可看出这一点,它的特殊之处在于元素与元素之间的对应必须作到“任一对唯一”,同时指出具有对应关系的元素即 中元素 对应 中元素 ,则 叫 的象, 叫 的原象.(板书)2.象与原象可以用前面的例子具体说明谁是谁的象,谁是谁的原象.提问3:下面请同学根据自己对映射的理解举几个映射的例子,看对映射是否真正认识了.(开始时只要是映射即可,之后可逐步提高要求,如集合是无限集,或生活中的例子等)由学生自己评判.之后教师再给出几个(主要是补充学生举例类型的不足)(1) , , , .(2) .(3) 除以3的余数.(4) {高一1班同学}, {入学是数学考试成绩}, 对自己的考试成绩.在学生作出判断之后,引导学生发现映射的性质(教师适当提出研究方向由学生说,再由老师概括)(板书)3.对概念的认识(1) 与 是不同的,即 与 上有序的.(2)象的集合是集合B的子集.(3)集合A,B可以是数集,也可以是点集或其它集合.在刚才研究的基础上,教师再提出(2)和(4)有什么共性,能否把它描述出来,如果学生不能找出共性,教师可再给出几个例子,(用投影仪打出)如:(1)(2) {数轴上的点}, 实数与数轴上相应的点对应.(3) {中国,日本,韩国}, {北京,东京,汉城}, 相应国家的首都.引导学生在元素之间的对应关系和元素个数上找共性,由学生提出两点共性集合A中不同的元素对集合B中不同的元素;②B中所有元素都有原象.那么满足以上条件的映射又是一种特殊的映射,称之为一一映射.(板书)4.一一映射(1)定义:设A,B是两个集合, 是集合A到集合B的映射,如果在这个映射下 对于集合A中的不同元素,在集合B中又不同的象,而且B中每一个元素都有原象,那么这个映射叫做A到B上的一一映射.给出定义后,可再返回到刚才的例子,让学生比较它与映射的区别,从而进一步明确“一一”的含义.然后再安排一个例题.例1 下列各表表示集合A(元素a)到集合B(元素b)的一个映射,判断这些映射是不是A到B上的一一映射.其中只有第三个表可以表示一一映射,由此例点明一一映射的特点数学教案-映射,标签:高一数学必修3教案,高一数学必修1教案,(板书)(2)特点:两个集合间元素是一对一的关系,不同的对的也一定是不同的(元素个数相同);集合B与象集C是相等的集合.对于映射我们现在了解了它的定义及特殊的映射一一映射,除此之外对于映射还要求能求出指定元素的象与原象.(板书)5.求象与原象.例2 (1)从R到 的映射 ,则R中的—1在 中的象是_____; 中的4在R中的原象是_____.(2)在给定的映射 下,则点 在 下的象是_____, 点 在 下的原象是______.(3) 是集合A到集合B的映射, ,则A 中 元素 的象是_____,B中象0的原象是______, B中象—6的原象是______.由学生先回答第(1)小题,之后让学生自己总结一下,应用什么方法求象和原象,学生找到方法后,再在方法的指导下求解另外两题,若出现问题,教师予以点评,最后小结求象用代入法,求原象用解方程或解方程组.注意:所解的方程解的情况可能有多种如有唯一解,也可能无解,可能有无数解,这与映射的定义也是相吻合的.但如果是一一映射,则方程一定有唯一解.三、小结1.映射是特殊的对应2.一一映射是特殊的映射.3.掌握求象与原象的方法.四、作业:略五、板书设计探究活动(1) {整数}, {偶数}, ,试问 与 中的元素个数哪个多?为什么?如果我们建立一个由 到 的映射对应法则 乘以2,那么这个映射是一一映射吗?答案:两个集合中的元素一样多,它们之间可以形成一一映射.(2)设 , ,问最多可以建立多少种集合 到集合 的不同映射?若将集合 改为 呢?结论是什么?如果将集合 改为 ,结论怎样?若集合 改为 , 改为 ,结论怎样?从以上问题中,你能归纳出什么结论吗?依此结论,若集合A中含有 个元素,集合B中含有 个元素,那么最多可以建立多少种集合 到集合 的不同映射?答案:若集合A含有m个元素,集合B含有n个元素,则不同的映射 有 个.
数学必修3教案 篇5
一. 学习目标
(1)通过实例体会分布的意义与作用; (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图,频率折线图; (3)通过实例体会频率分布直方图,频率折线图,茎叶图的各自特点,从而恰当的选择上述方法分析样本的分布,准确的作出总体估计。
二. 学习重点
三.学习难点
能通过样本的频率分布估计总体的分布。
四.学习过程 (一)复习引入
(1 )统计的核心问题是什么?
(2 )随机抽样的几种常用方法有哪些?
(3)通过抽样方法收集数据的目的是什么?
(二)自学提纲
1.我们学习了哪些统计图?不同的统计图适合描述什么样的数据?
2.如何列频率分布表?
3.如何画频率分布直方图?基本步骤是什么?
4.频率分布直方图的纵坐标是什么?
5.频率分布直方图中小长方形的面积表示什么?
6.频率分布直方图中小长方形的面积之和是多少?
(三)课前自测
1.从一堆苹果中任取了20只,并得到了它们的质量(单位:g)数据分布表如下:
分组 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 频数 1 2 3 10 1 则这堆苹果中,质量不小于120g的苹果数约占苹果总数的__________%. 2.关于频率分布直方图,下列说法正确的是( ) A.直方图的高表示该组上的个体在样本中出现的频率 B.直方图的高表示取某数的频率 C.直方图的高表示该组上的样本中出现的频率与组距的比值 D.直方图的高表示该组上的个体在样本中出现的频数与组距的比值 3.已知样本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么频率为0.2的范围是( ) A、5.5-7.5 B、7.5-9.5 C、9.5-11.5 D、11.5-13.5 (四)探究教学 典例:城市缺水问题(自学教材65页~68页)
问题1.你认为为了较为合理地确定出这个标准,需要做哪些工作? 2.如何分析数据?根据这些数据你能得出用水量其他信息吗? 知识整理: 1.频率分布的概念: 频率分布: 频数: 频率:
2.画频率分布直方图的步骤: (1).求极差: (2).决定组距与组数 组距: 组数: (3).将数据分组 (4).列频率分布表 (5).画频率分布直方图 问题: .
1.月平均用水量在2.5—3之间的频率是多少?
2.月均用水量最多的在哪个区间?
3.月均用水量小于4.5 的频率是多少?
4.小长方形的面积=?
5.小长方形的面积总和=?
6.如果希望85%以上居民不超出标准,如何制定标准?
7.直方图有那些优点和缺点?
例题讲解: 例1有一个容量为50的样本数据的分组的频数如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少? (4)数据小于21.5的百分比是多少?
3.频率分布折线图、总体密度曲线 问题1:如何得到频率分布折线图 ? 频率分布折线图的概念:
问题2:在城市缺水问题中将样本容量为100,增至1000,其频率分布直方图的情况会有什么变化?假如增至10000呢?
总体密度曲线的概念:
注:用样本分布直方图去估计相应的总体分布时,一般样本容量越大,频率分布直方图就会无限接近总体密度曲线,就越精确地反映了总体的分布规律,即越精确地反映了总体在各个范围内1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。
4. 茎叶图 茎叶图的概念: 茎叶图的特征:
小结:.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
课堂小结:
当堂检测:
1. 一个社会调查机构就某地居民的月收入调查了10000人, 并根据所得数据画了样本的频率分布直方图(如下图)。 为了分析居民的收入与年龄、学历、职业等方面的关系, 要从这10000人中再用分层抽样方法抽出100人作进一步 调查,则 [2500,3000)(元)月收入段应抽取 人。
2、为了解某校高三学生的视力情况,随机抽查了该校200名高三学生的视力情况,得到频率分布直方图(如图), 由于不慎将部分数据丢失,但知道前四组的频数成等比数 列,后6组的频数成等差数列,设最多一组学生数为a,视 力在4.6到5.0之间的频率为b,则
a+b= . 3.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则ba=______. 4.为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181
(1)列出样本的频率分布表。
(2)画出频率分布直方图。
(3)画频率分布折线图;
数学必修3教案 篇6
高中数学必修3教学反思
邵
营
必修3是高中数学比较特殊的一部分内容,既增添了新内容——算法,老内容统计和概率的内容和安排也发生了一些变化。下面就自己的教学过程谈一谈对必修3的体会与反思。
1、第一章的教学主要还是要把握好教学要求,围绕程序框图这一核心,以具体案例为载体,使学生在解决具体问题的过程中,学会基本逻辑结构和算法语句的用法,从中体会算法的思想,提高逻辑思维能力,不必要搞太难的算法设计,因为在其它章节中,算法思想也是要渗透的,学生有较多的机会接触算法问题.至于高中数学引入算法的理由,我体会还是在于算法思想所体现的很强的逻辑性对提高学生逻辑思维能力的作用,而不在于学会多少程序语言或程序设计.所以还是应该关注算法的“数学味”.
2、在第二章的教学中,感到学生虽然知道各种统计量(平均数、标准差、回归方程等)的计算方法,但理解其中蕴涵的统计思想却很难,不能自觉的形成统计观念和概率思维.因此,在统计教学中,要更多地关注在“计算”后,让学生对结果的含义作出解释.实际上,课本在这方面是有示范的.例如,在讲完“众数、中位数、平均数”后,课本有一个关于某企业职工工资待遇的“探究”栏目,还配了某市公路项目投资数据的利用方面的练习等,在教学中可让学生对这些问题开展讨论,并让他们举一些类似的问题.通过讨论,学生认识企业老总利用数据设置的陷阱在哪里,应当如何理解和使用数据特征等.
3、概率的教学,离开了具体案例寸步难行,要让学生在具体案例中体验概率有关问题的情景,在案例中发现问题、解决问题,亲身体验案例情景,以激发兴趣。在实际教学中一方面要尽量创设情境,采用案例教学的基本方式展开教学,通过大量的具体案例来帮助学生理解;另一方面要设计一些活动,让学生经历统计的全过程,在学生合作学过程中,学生既要独立思考,自主探索,又要在解决实际问题中与别人合作、交流。例如:在教学《确定事件与不确定事件》中,让学生通过一系列的案例理解概念。太阳从东边升起,抛起的篮球会下降等等一定会发生的事件就是可能事件,太阳从西边升起,公鸡下蛋等一定不会发生的事件就是不可能事件。让学生在具体案例中体验概念。
2013年10月
数学必修3教案 篇7
通史概要:
当今世界经济发展有两个明显的趋势:一是世界经济区域集团化,二是世界经济全球化。世界经济区域集团化是最终实现经济全球化的重要步骤和途径,经济全球化则是区域经济集团化的最终归宿。
世界经济区域集团化是生产力高度发展的必然产物,是生产国家化、国际分工向纵深发展需要加强合作的结果,也是世界经济竞争激烈的表现。它产生的原因有:现代科技的发展、国际间经济竞争和客观上存在的分工。区域集团化的发展分为三个阶段:第一阶段为五六十年代,世界经济集团化的趋势主要出现在欧洲,如欧洲煤炭共同体的出现。第二阶段为六七十年代,区域集团化成为一种世界经济现象。欧洲区域集团化趋势进一步发展,如欧共体的建立;一些发展中国家的地区性经济集团也纷纷出现,如东盟的出现。第三阶段为80年代至今,区域集团化掀起新的浪潮,进入了较高层次的经济一体化时期,出现了欧盟、北美自由贸易区和亚太经合组织三大区域经济集团。
世界经济全球化是世界生产力发展的要求和结果,是不以人的意志为转移的历史趋势。它突出的表现在国际贸易、国际投资、国际金融和跨国公司的发展。经济全球化的过程中的问题是:在经济全球化的过程中,不可避免地把资本主义固有的矛盾扩展到全球,造成南北矛盾、贫富分化、环境问题、能源危机、全球性的经济金融危机、恐怖组织活动猖獗等等,直接影响到人类的生存与发展。
我国在当今世界经济发展趋势中,作为发展中国家,应该如何面对机遇和挑战,成了新时期经济发展人们共同关心的话题。从中国加入亚太经合组织、加入世界贸易组织,加强同东盟的联系的史实中,我们的态度是:在坚持独立自主、自力更生的前提下,拥有“双赢”的思维,抱着开放的心态,加强国际的合作与交流,参与国际竞争,抓住机遇,接受挑战,在国际的竞争和合作中,提高我国的经济发展水平,跟随世界发展的潮流。概括而言,就是辩证地看待世界经济发展趋势这一经济现象,树立正确的.发展观。
课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。
教学目标:
(1)知识与能力:分析第二次世界大战后西欧经济进入“黄金时代”的原因;简述欧洲国家从“欧共体”走向欧盟的历程,认识欧洲联盟成立对世界经济和政治格局的影响。
概述欧元产生的影响,培养多角度、多层次理解问题的能力。
(2)过程与方法:通过讨论西欧经济在二战后进入“黄金时代”的共同原因,进一步思考中国的社会主义建设应如何借鉴其合理的方法与正确的经验,学习用联系的方法看待问题,提高理论指导实践的能力;通过分组学习,搜集“欧共体”及“欧盟”成立的资料,了解整个欧洲走向联合的过程,认识当今世界经济区域集团化发展趋势。
(3)情感、态度与价值观:通过对欧洲走向联合这段历史的学习,认识当今国际社会国家间团结协作的重要性,树立国际意识;通过对欧洲走向联合的史实的归纳,得出一个别国家或地区怎样才能快速发展的一般规律;并结合我国的实际,进一步探讨一下我们可以借鉴哪些做法,从而树立为我国社会主义现代化建设而奋斗的责任感。
教学建议:
1、本课共有三个方面的内容,“西欧经济的'黄金时代'”主要讲述:二战后的20世纪50年代到60年代,西欧各国经济在恢复的基础上,进入调整增长期,被称为西欧经济的“黄金时代”;“从'欧共体到'欧洲联盟'”主要是欧洲从经济一体化到政治一体化的发展趋势;“货币王国的世界公民”主要以欧元的流通为例,进一步表明欧洲走向联合的趋势。
2、西欧经济高速发展的共同原因:第一,西欧各国进行社会改革和政策调整。进行社会改革,例如:推行福利制度,适当改善人民的生活条件,缓和社会矛盾,稳定社会秩序;进行政策调整,如:将一些私人垄断企业国有化,并建立有关国计民生的重要工业部门。这些政策的推行,促进了西欧经济的稳定持续高速发展,从而出现前所未有的繁荣。第二,马歇尔计划的实施,解决了西欧战后经济发展的启动资金,西欧重工业在短时期内完成了新的装备,并有能力购买足够的工业原料。第三,战后西欧广泛使用第三次科技革命的成果,并对产业部门进行了改造,使劳动生产率大大提高,从而有力地推动了经济的高速发展。
3、伴随着欧洲经济合作的成功,欧洲经济不断的恢复,要求在国际上发挥更重要的作用。因而要加强在政治领域的合作成为欧洲各国的一致要求。面对二战结束后以美苏为首的两极争霸的冷战格局,欧洲各国迫切要求组成一个更加强大的团体来维护自己的利益。于是在政治领域的合作很快便实施开来。
4、为进一步加强欧洲共同体之间的经济合作与交流,减少共同体内部成员国存在的贸易壁垒,用统一的货币在欧共体各国之间流通,实现经济的联合,从而进一步加强欧洲各国之间的政治合作。
课标要求:以欧洲联盟、北美自由贸易区及亚太经济合作组织为例,认识当今世界经济区域集团化发展趋势。
教学目标:
(1)知识与能力:了解东盟的发展历程,说说中国与东盟的交往情况;分析北美自由贸易区建立的原因和影响,比较北美自由贸易区与欧盟的异同;概述亚太经济合作组织建立的过程,探讨亚太国家加强合作的途径与方式。
(2)过程与方法:通过搜集中国与东盟交往的材料,了解东盟日益扩大及其影响;用列表等方式比较北美自由贸易区与欧盟的异同,学习用比较的方法认识历史问题;通过上网等途径搜集中国参加APEC会议的资料,多渠道去了解和认识APEC建立的史实及影响。
(3)情感、态度与价值观:通过对东盟、北美自由贸易区和亚太经合组织等区域经济一体化进程的学习和了解,体会当今世界国家间加强合作、竞争与发展的重要性,树立合作与竞争的意识。
重点难点:
重点:通过了解欧洲联盟、北美自由贸易区及亚太经济合作组织,认识当今世界经济区域集团化发展趋势。
教学建议:
1、在经济全球化的进程中,亚太地区的经济集团化也在不断深入发展。世界三大区域性经济集团有两个分别在该地区。这一地区成为当今世界上经济发展最活跃地区。课文分别以“东盟”、“北美自由贸易区”和“亚太经全组织”三个经济区域集团为例,介绍了当今世界经济区域集团化发展趋势。每个集团内部有着自身的规则的同时也不断与其它区域集团相联系,从而使世界经济形成了密不可分的一个整体。
2、东南亚国家联盟自1967成立以来,已经历时近三分之一世纪。东盟在维护和促进各成员国相互间的政治和经济合作,实现地区和平稳定,加快成员国经济增长,提高成员国人民生活水平等方面都取得了显著成绩。尤其是在国际政治方面,极大地增强了东盟的国际地位。东盟在由四大洲国家组成的APEC中具有举足轻重的政治地位,又是由亚欧两大洲主要国家参加的亚欧会议的倡议者和发起者,在东亚乃至亚洲政治舞台上成为使日本、中国和印度等大国瞠乎其后的主角。
3、日本经济的崛起,特别是欧洲经济一体化实施的外在压力,美国、加拿大和墨西哥3国发展各自经济的内在动力,是北美自由贸易区成立的根本原因。美、加、墨3国又是山水相连的邻邦;语言文字、价值观念、风俗习惯等又颇相似;经济互补性强;相互贸易基础良好,美、加、墨3国具有实行经济一体化的必要性,又具有实行经济一体化的可能性。美国认为要取得世界经济的主导地位,只有建立以自己为中心经济区域集团,才能在经济全球化大潮中立于不败之地。
4、二十世纪七十年代后,亚太地区,特别是东亚各国和地区的对外开放经济政策和经济迅速发展为亚太区域经济合作创造了条件。东亚地区经济的发展,国际收支条件的改善,缓解亚太地区南北之间的矛盾,为亚太经济合作创造了条件。欧共体统一市场和美加自由贸易区的建立,刺激了亚太向区域经济合作的方向发展。亚太经合组织的主要活动,为各成员提供区域经济,科技,贸易和发展等方面多边合作的机会,交流各成员在这些领域内的经验,促进本区域的共同发展.它从产生、发展及运作模式均区别于欧盟和NAFTA,有自身的特点,这些特点适应了APEC各成员国经济发展的状况和经济运行模式。
课标要求:
(1)以“布雷顿森林体系”建立为例,认识第二次世界大战后以美国为主导的资本主义世界经济体系的形成。
(2)了解世界贸易组织(WTO)的由来和发展,认识它在世界经济全球化进程中的作用。了解中国参加世界贸易组织(WTO)的史实,认识其影响和作用。
(3)了解经济全球化的发展趋势,探讨经济全球化进程中的问题。
教学目标:
(1)知识与能力:了解“布雷顿森林体系”建立的基本史实,分析其影响;简述世界贸易组织(WTO)的由来和发展,认识它在世界经济全球化进程中的作用;了解中国参加世界贸易组织(WTO)的史实,认识其影响和作用;概述经济全球化的发展趋势,探讨经济全球化进程中的问题。
(2)过程与方法:阅读课文和查找中国加入世贸组织谈判的历程等,了解“从GATT到WTO”的过程,围绕世界贸易组织建立的必要性并对中国加入WTO的利与弊等问题展开讨论;开展课堂讨论或辩论:经济全球化对本地区的影响是利大于弊还是弊大于利?如何解决经济全球化出现的问题?从多角度去分析历史问题。
(3)情感、态度与价值观:通过了解经济全球化与中国加入世界贸易组织带来的机遇与挑战,树立面向世界、积极参与国际合作与竞争、促进世界和平与发展的信念和为我国社会主义现代化建设而奋斗的责任感;通过了解经济区域集团化与世界经济全球化之间的相互关系,认识现实生活中合作
数学必修3教案5篇
每位教师上课前都会携带自己的教案课件,因此老师会精心规划每份教案课件的重点和难点。教案是教师职业发展与提升的有效方式。我们为您量身定制的“数学必修3教案”一定能够帮助您取得更好的效果,请将本网页的链接添加到您的浏览器收藏夹中!
数学必修3教案(篇1)
一、 教学目标:1.了解普查的意义.2.结合具体的实际问题情境,理解随机抽样的必要性和重要性.
二、重难点:结合具体的实际问题情境,理解随机抽样的必要性和重要性.
三、教学方法:阅读材料、思考与交流
通过我国第五次人口普查的有关数据,让学生体会到统计对政府决策的重要作用DD统计数据可以提供大量的信息,为国家的宏观决策提供有关的支持.教科书通过对人口普查的有关新闻报道,让学生体会人口普查的规模是何等的宏大与艰辛.
教科书提出了三个有代表性的问题.第一个问题主要是针对人口普查的作用,人口普查可以了解一个国家人口全面情况,比如,人口总数、男女性别比、受教育状况、增长趋势等.人口普查是对国家的政府决策实行情况的一个检验,比如,国家计划生育政策,经济发展战略,国家“普及九年义务教育”政策,人民群众的生活水平等.第二个问题是针对普查本身存在的问题提出的,以加深学生对于普查的理解.学生可能有一个误解,普查就是100%的准确,其实不然,即使是最周全的调查方案,在实际执行时都会产生一个误差.教科书通过这个问题,目的是让学生理解在人口普查中出现漏登是正常情况,调查方案的设计是尽可能让这个误差降低到最小.同时,也要让学生理解人口普查的工作,即使出现漏登现象,人口普查的数据对国家的宏观决策依然具有重要的作用.第三个问题是针对人口普查工作的艰辛而提出的,让学生体会人口普查数据得来不易,要尊重人口普查人员的劳动,对人口普查工作要大力支持.
普查是指一个国家或一个地区专门组织的一次性大规模的全面调查,目的是为了详细地了解某项重要的国情、国力.
普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.
普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.
紧接着,教科书通过例1和“思考交流”的两个问题,让学生了解普查有时候难以实现.这主要有两个方面的原因,其一,被调查对象的量大;其二,普查对被调查对象本身具有一定的破坏性.这从另一个方面说明了抽样调查的必要性.然后,教科书通过抽象概括总结出抽样调查的两个主要优点.
主要是讨论在抽样调查时,什么样的样本才具有代表性.在抽样时,如果抽样不当,那么调查的结果可能会出现与实际情况不符,甚至是错误的结果,导致对决策的误导.在抽样调查时,一定要保证随机性原则,尽可能地避免人为因素的干扰;并且要保证每个个体以一定的概率被抽取到;同时,还要注意到要尽可能地控制抽样调查中的误差.
由于检验对象的量很大,或检验对检验对象具有破坏性时,通常情况下,所以采用普查的方法有时是行不通的.通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.
抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点: (1)迅速、及时;(2)节约人力、物力和财力.
例1为了考察某地10 000名高一学生的体重情况,从中抽出了200名学生做调查.这里统计的总体、个体、样本、总体容量、样本容量各指什么?为什么我们一般要从总体中抽取一个样本,通过样本来研究总体?
解:统计的总体是指该地10 000名学生的体重;个体是指这10 000名学生中每一名学生的体重;样本指这10 000名学生中抽出的200名学生的体重;总体容量为10 000;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.
例2 为了制定某市高一、高二、高三三个年级学生校服的生产计划,有关部门准备对180名初中男生的.身高作调查,现有三种调查方案:
A.测量少年体校中180名男子篮球、排球队员的身高;
B.查阅有关外地180名男生身高的统计资料;
C.在本市的市区和郊县各任选一所完全中学,两所初级中学,在这六所学校有关年级的小班中,用抽签的方法分别选出10名男生,然后测量他们的身高.
为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?
解: 选C方案.理由:方案C采取了随机抽样的方法,随机样本比较具有代表性、普遍性,可以被用来估计总体.
例3 中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面三名同学为电视台设计的调查方案.
甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计收视率了.
乙同学:我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.
丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.
请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?
解: 综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.
(三)、课堂小结:1、普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.2、通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点: (1)迅速、及时;(2)节约人力、物力和财力.
五、教后反思:
数学必修3教案(篇2)
教学目标:
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
教学重点、难点:
1、重点:指数函数的图像和性质
2、难点:底数a的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。
教学方法:引导——发现教学法、比较法、讨论法
教学过程:
一、事例引入
T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?
S:——————
T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:
C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,——。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y=2x)
S,T:(讨论)这是球菌个数y关于分裂次数x的函数,该函数是什么样的形式(指数形式),
从函数特征分析:底数2是一个不等于1的正数,是常量,而指数x却是变量,我们称这种函数为指数函数——点题。
二、指数函数的定义
C:定义:函数y=ax(a>0且a≠1)叫做指数函数,x∈R.。
问题1:为何要规定a>0且a≠1?
S:(讨论)
C:(1)当a
就没有意义;
(2)当a=0时,ax有时会没有意义,如x=—2时,
(3)当a=1时,函数值y恒等于1,没有研究的必要。
巩固练习1:
下列函数哪一项是指数函数()
A、y=x2B、y=2x2C、y=2xD、y=—2x
数学必修3教案(篇3)
一、创设情境,激趣导入
师:前段时间老师去了黄河附近旅游,祖国山川的美景,让我留连忘返。给我留下印象最深的是黄河边上一个以摆渡为生的老人。他生活在黄河边,工作在黄河边,他那勤劳勇敢的精神,让我难以忘怀。同学们,知道什么是“摆渡”吗?(生看课件,理解“摆渡”一词。)
(做“你说我猜”的游戏,摆渡船开始状态在南岸。学生说数,教师猜测船在哪一岸?)
师:其实老师掌握了数的奇偶性的规律。(师板书:数的奇偶性。)这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!
【设计意图:通过试讲发现:学生虽然已经上5年级了,但对“摆渡”一词还是理解不透。为了解决这个问题,创设了去黄河旅游的情境,使学生在不知不觉中理解了“摆渡”一词的词义,也为继续学习扫清了障碍。从学生熟悉的生活情境中提出数学问题,在学生理解“摆渡”一词后,教师引导学生做“你说我猜”的游戏,学生由此产生疑问。这大大地激发了他们的学习兴趣,为后面的学习探究奠定了坚实的基础。】
二、观察思考,发现规律
(同桌研讨:用什么方法可以知道船在哪岸呢?)
【设计意图:根据学生的年龄特征以及学生的需要,应着重引导学生掌握学习方法,会运用恰当的方法解决数学问题。】
学生汇报:1.数数的方法。随着学生的回答,师适时演示课件。2.列表方法。师演示列表方法,生完成手中的表。
让学生观察“画示意图”、“列表”两种解题方法,引导他们从中发现规律。
学生总结:船摆渡奇数次,船在北岸。船摆渡偶数次,船在南岸。
师:老师就是用这个规律,很快判断出小船在哪侧岸边。现在你们也想试一试吗?(教师说数,学生猜船在哪侧的岸边。)
师:你们猜得可真快,如果有人说小船开始状态在南岸,摆渡100次,小船在北岸,这种说法对吗?为什么?(指生说理由。)
师:通过解决这些问题,观察板书,你有什么发现?
(学生尝试总结出规律:开始状态在南岸,奇数次与开始状态相反,偶数次与开始状态相同。)
师:像这样的规律在我们生活中随处可见。下面我们来看翻杯子游戏。请看大屏幕:有一个杯子开始状态是杯口朝上,那么翻动1次杯口朝下,翻动2次杯口朝上,用你自己喜欢的方法,想一想、做一做,翻动10次后,杯口的方向朝哪个地方?19次呢?(生回答并说明理由。)
师:你还能提出其他问题吗?(生提问题并互相解决。)
【设计意图:在此环节,只让学生看演示并没有动手去翻杯子。目的在于让学生内化体会,学会运用解决问题的方法。5年级学生不应只停留在动手操作上,更多的应该是训练思维的发展。另外,在此环节设计提问题,目的为下一环节的提问作铺垫。】
师:生活中有许多这样具有奇偶性规律的事物,你能举几个例子吗?你还能提出类似的数学问题吗?
【设计意图:在有趣的互动活动中反馈所学知识,让学生明白数学是服务于生活的。学生兴趣盎然,积极参与探究活动。在数学活动中探索数的特征,体验研究方法,提高学生的推理能力。】
师:我们今天利用数的奇偶解决了身边的许多问题,老师很高兴,所以,想送给你们一些礼物。不过,这些礼物需要你们用智慧才能获得,大家有信心获得礼物吗?
(师出示两个盒子,让学生观察两个盒子里的数有什么特点。)
师:从两个盒子里各抽一张卡片,然后把它们加起来,结果是多少,礼物图中相应数字的礼物就是你的。(礼物兑奖表略。)
(在抽奖过程中学生发现:偶数加奇数都得奇数,奖品都在偶数上,所以怎么抽也抽不到奖品。)
师:是不是所有的偶数加奇数都得奇数,大家来验证一下。(小组讨论,并交流。)
(生寻找原因,总结发现:奇数+偶数=奇数。)
师:老师,现在想让每个前来抽奖的同学都能获得奖品,让你们改变规则,会怎样改?
(学生积极想办法,得出结论:偶数+偶数=偶数、奇数+奇数=偶数。)
【设计意图:通过此游戏激发学生的学习兴趣,让学生带着愉悦的心情探索新知,使枯燥的数学课注入了新鲜的活力,调动了学生兴奋的神经,数学探究将事半功倍。】
三、运用规律,拓展延伸
(课件出示:不用计算,判断算式的结果是奇数还是偶数?)
10389+20__11387+131
268+1024 38946+3405
学生判断算式的结果是奇数还是偶数?说明理由。
(课件出示:不用计算,判断算式的结果是奇数还是偶数?)
3721-20__22280-10238800-345
学生先判断结果是奇数还是偶数,再根据上面减法算式找出减法中数的奇偶性的变化规律。(小组研讨,寻找规律。)
学生汇报后,课件出示:
奇数-奇数=偶数偶数-偶数=偶数
奇数-偶数=奇数偶数-奇数=奇数
【设计意图:在已有知识的基础上,根据学生的实际情况,进行拓展。目的在于开发学生的潜能,提高和训练学生的思维能力。】
数学必修3教案(篇4)
一、目标认知 学习目标:
1.理解函数的单调性、奇偶性定义;
2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性;
4.掌握利用函数性质在解决有关综合问题方面的应用. 重点、难点:
1.对于函数单调性的理解;
2.函数性质的应用.
二、知识要点梳理 1.函数的单调性
(1)增函数、减函数的概念
一般地,设函数f(x)的定义域为A,区间
如果对于M内的任意两个自变量的值x
1、x2,当x1
如果对于M内的任意两个自变量的值x
1、x2,当x1f(x2),那么就说f(x)在区间M上是减函数.
如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间.
要点诠释:
[1]“任意”和“都”;
[2]单调区间与定义域的关系----局部性质;
[3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;
[4]不能随意合并两个单调区间.
(2)已知解析式,如何判断一个函数在所给区间上的单调性?
基本方法:观察图形或依据定义.
2.函数的奇偶性
偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数.
奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数.
要点诠释:
[1]奇偶性是整体性质;
[2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;
[3]f(-x)=f(x)的等价形式为:,
f(-x)=-f(x)的等价形式为:;
[4]由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;
[5]若f(x)既是奇函数又是偶函数,则必有f(x)=0;
[6]
, .
三、规律方法指导
1.证明函数单调性的步骤:
(1)取值.设是
定义域内一个区间上的任意两个量,且
;
(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;
(3)定号.判断差的正负或商与1的大小关系;
(4)得出结论.
2.函数单调性的判断方法:
(1)定义法;
(2)图象法;
(3)对于复合函数在区间
或者
,若
在区间上是单调函数;若
为增函数;若
上是单调函数,则
与与单调性相同(同时为增或同时为减),则单调性相反,则
为减函数. 3.常见结论:
(1)若
(2)若是增函数,则和
为减函数;若
和
是减函数,则
为增函数;
均为增(或减)函数,则在的公共定义域上为增(或减) 函数;
(3)若且为增函数,则函数为增函数,为减函数;
若
(4)若奇函数数,且有最小值 且在
为减函数,则函数为减函数,
,则
在
为增函数. 在
是增函是增函数.
上是增函数,且有最大值
在;若偶函数是减函数,则
2 经典例题透析
类型
一、函数的单调性的证明
1.证明函数上的单调性.
证明:
总结升华:
[1]证明函数单调性要求使用定义;
[2]如何比较两个量的大小?(作差)
[3]如何判断一个式子的符号?(对差适当变形)
举一反三:
【变式1】用定义证明函数
总结升华:可以用同样的方法证明此函数在
上是减函数.
上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.
类型
二、求函数的单调区间
2. 判断下列函数的单调区间;
(1)y=x2-3|x|+2; (2)
举一反三:
【变式1】求下列函数的单调区间:
(1)y=|x+1|; (2)
总结升华:
[1]数形结合利用图象判断函数单调区间;
[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.
[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.
类型
三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)
3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与
的大小.
4. 求下列函数值域:
(1); 1)x∈[5,10]; 2)x∈(-3,-2)∪(-2,1);
(2)y=x2-2x+3;
1)x∈[-1,1]; 2)x∈[-2,2].
4 举一反三:
【变式1】已知函数.
(1)判断函数f(x)的单调区间;
(2)当x∈[1,3]时,求函数f(x)的值域.
思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.域.
,第二问即是利用单调性求函数值
5. 已知二次函数f(x)=x2-(a-1)x+5在区间
上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.
类型
四、判断函数的奇偶性
6. 判断下列函数的奇偶性:
(1)
(2)
(3)f(x)=x2-4|x|+3
(4)f(x)=|x+3|-|x-3|
(5)
(6)
(7)
思路点拨:根据函数的奇偶性的定义进行判断.
举一反三:
【变式1】判断下列函数的奇偶性:
(1)
;
(2)f(x)=|x+1|-|x-1|;
(3)f(x)=x2+x+1;
(4).
思路点拨:利用函数奇偶性的定义进行判断.
举一反三:
【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.
类型
五、函数奇偶性的应用(求值,求解析式,与单调性结合)
7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).
8. f(x)是定义在R上的奇函数,且当x
6 9. 设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)
类型
六、综合问题
10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象重合, 设a>b>0,给出下列不等式,其中成立的是_________.
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)
(1)11. 求下列函数的值域:
(2)
(3)
的图象与f(x)
思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.
解:
12. 已知函数f(x)=x2-2ax+a2-1.
(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;
(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.
7 13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.
证明:
14. 判断函数上的单调性,并证明.
15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.
解:
学习成果测评 基础达标
一、选择题
1.下面说法正确的选项( )
A.函数的单调区间就是函数的定义域
B.函数的多个单调增区间的并集也是其单调增区间
C.具有奇偶性的函数的定义域定关于原点对称
D.关于原点对称的图象一定是奇函数的图象
2.在区间上为增函数的是( )
A.
C.
B.
D.
8
3.已知函数
A.
B.
4.若偶函数在
上是增函数,则下列关系式中成立的是( )
C.
D.
为偶函数,则
的值是( )
A.
B.
C. 5.如果奇函数是( )
A.增函数且最小值是
C.减函数且最大值是
6.设是定义在在区间
D.
上是增函数且最大值为,那么
在区间
上
B.增函数且最大值是
D.减函数且最小值是
上的一个函数,则函数,在上一定是( )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数.
7.下列函数中,在区间
上是增函数的是( )
A.
B.
C.
D.
8.函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上是减函数,则( )
A. f(3)+f(4)>0
B. f(-3)-f(2)
C. f(-2)+f(-5)
D. f(4)-f(-1)>0
二、填空题
1.设奇函数的定义域为
,若当的解是____________.
时,
的图象
如右图,则不等式
2.函数
3.已知
4.若函数____________.
5.函数____________.
三、解答题
的值域是____________. ,则函数的值域是____________.
是偶函数,则的递减区间是在R上为奇函数,且,则当,
1.判断一次函数
2.已知函数(2)在定义域上
反比例函数,二次函数的单调性.
的定义域为,且同时满足下列条件:(1)是奇函数;
单调递减;(3)
3.利用函数的单调性求函数
4.已知函数
① 当
求的取值范围.
的值域;
. 时,求函数的最大值和最小值;
在区间
上是单调函数.
② 求实数的取值范围,使
10 能力提升
一、选择题
1.下列判断正确的是( )
A.函数数
C.函数函数
2.若函数
A.
C.
3.函数
A.
C.
4.已知函数围是( )
A.
B.
是奇函数
B.函数是偶函
是非奇非偶函数
D.函数既是奇函数又是偶
在上是单调函数,则的取值范围是( )
B.
D.
的值域为( )
B.
D.
在区间上是减函数,则实数的取值范
C.
D.
5.下列四个命题:(1)函数增函数;(2)若 函数的递增区间为正确命题的个数是( )
在时是增函数,与;(4)
也是增函数,所以
且
是;(3)
轴没有交点,则
和
表示相等函数.其中
A.
B.
C.
D.
6.定义在R上的偶函数则( )
A.
C.
二、填空题
1.函数
2.已知定义在______. 上的奇函数
,满足,且在区间上为递增,
B.
D.
的单调递减区间是____________________.
,当时,,那么时,
3.若函数
4.奇函数
则
5.若函数
三、解答题
1.判断下列函数的奇偶性 在区间
在上是奇函数,则的解析式为________.
上是增函数,在区间__________.
上的最大值为8,最小值为-1,
在上是减函数,则的取值范围为__________.
(1)
(2)
2.已知函数且当时,
的定义域为,且对任意
是
,都有
上的减函数;(2)函数
,恒成立,证明:(1)函数是奇函数.
3.设函数与
的定义域是
且
,
是偶函数,
是奇函数,且
4.设为实数,函数
(1)讨论
,求和的解析式.
,的最小值.
. 的奇偶性;(2)求综合探究
1.已知函数,的奇偶性依次为( )
A.偶函数,奇函数
B.奇函数,偶函数
C.偶函数,偶函数
D.奇函数,奇函数
2.若是偶函数,其定义域为
,且在
,则
上是减函数,则
的大小关系是( )
A.>
B.
C.
D.
3.已知_____.
,那么=
4.若
在区间上是增函数,则的取值范围是________.
5.已知函数果对于
6.当
7.已知
的定义域是,且满足,(1)求
;(2)解不等式
,,如
. ,都有时,求函数的最小值.
在区间内有一最大值,求的值.
8.已知函数的值. .
的最大值不大于,又当,求 14
数学必修3教案(篇5)
教学准备
教学目标
进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。
教学重难点
教学重点:熟练运用定理。
教学难点:应用正、余弦定理进行边角关系的相互转化。
教学过程
一、复习准备:
1、写出正弦定理、余弦定理及推论等公式。
2、讨论各公式所求解的三角形类型。
二、讲授新课:
1、教学三角形的解的讨论:
①出示例1:在△ABC中,已知下列条件,解三角形。
分两组练习→讨论:解的个数情况为何会发生变化?
②用如下图示分析解的情况。(A为锐角时)
②练习:在△ABC中,已知下列条件,判断三角形的解的情况。
2、教学正弦定理与余弦定理的活用:
①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。
分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。
②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。
分析:由三角形的什么知识可以判别?→求最大角余弦,由符号进行判断
③出示例4:已知△ABC中,,试判断△ABC的形状。
分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?
3、 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。
三、巩固练习:
3、作业:教材P11 B组1、2题。
蒙氏数学4教案锦集
资料是作用于人类社会实践的一种可供参考的材料。在我们的平时工作生活中,会经常需要参考资料。有了资料才能更好地安排接下来的学习工作!只不过,你是否知道有哪些资料种类呢?以下由小编收集整理的《蒙氏数学4教案锦集》,欢迎大家借鉴与参考,希望对大家有所帮助。
蒙氏数学4教案 篇1
教学目标:
1.进一步认识图形的旋转,探索图形旋转的特征和性质。
2.通过观察、想象、分析和推理等过程,独立探究、增强空间观念。
3.让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。
教学重点:
理解、掌握旋转现象的特征和性质。
教学难点:
理解、掌握旋转现象的特征和性质。
教学过程:
一、情景导入
1.教师用课件演示:(1)钟表的转动;(2)风车的转动。
提问:观察课件的演示,你看到了什么?
学生在交流汇报时可能会说出
(1)钟表上的指针和风车都在转动;
(2)钟表上的指针和风车都是绕着一点转动;
(3)钟表上的指针沿着顺时针方向转动,风车沿着逆时针方向转动。
教师:像钟表上指针和风车都绕着一个点或一个轴转动的这种现象就是旋转。(板书课题:图形的旋转变换)
2.提问:旋转现象有几种情况?
生回答后板书。
3.师:在日常生活中你在哪些地方见到过旋转现象?学生自己举例说一说。
二、新课讲授
出示课本第83页例题1的钟面。
(1)观察,描述旋转现象。
观察:出示动画(指针从12指向1),请同学们仔细观察指针的旋转过程。
提问:谁能用一句话完整地描述一下刚才的这个旋转过程?
(教师引导学生叙述完整)
观察:出示动画(指针从1指向3)。
提问:这次指针又是如何旋转的?
观察:出示动画(指针从3指向6)。同桌互相说一说指针又是如何旋转的?
提问:如果指针从“6”继续绕点O顺时针旋转180°会指向几呢?
(2)教师:根据我们刚才描述的旋转现象,想想看,要想把一个旋转现象描述清楚,应该从哪些方面去说明?
小结:要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。
四、课堂练习
完成课本第85页练习二十一的第1~3题。
五、课堂小结
同学们,通过今天这节课的学习活动,我们知道要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。
教学板书:
旋转
顺时针旋转
逆时针旋转
相对应的点到O点的距离都相等。
蒙氏数学4教案 篇2
数学活动:大熊的储藏室
活动目标:
1、感知食物的特征,按食物的特征进行分类并做上相应的标记。
2、感受分类和标记在我们生活中的作用。
活动准备:绘本故事PPT;各种食物图片、竹筐图片、标记人手一份。
活动过程:
一、谈话导人。
1、师:天气渐渐冷了,大熊肯尼准备了大量的食物要放到储藏室里过冬。
2、请幼儿猜猜大熊会在储藏室里放些什么食物。
二、观察大熊的食物,感知食物的外部特征。
1、师提问:大熊都准备了哪些食物?(引导幼儿说一说什么样子,什么颜色…)
大熊准备的食物可真多啊!于是他准备把所有的食物都放进储藏室里,可是储藏室堆不下了,大熊决定整理一下。
2、提问:要怎么整理呢!谁来帮帮大熊把这么多的食物分分类?(有什么不同)
三、幼儿操作1,按食物特征进行分类,共同概括食物特征。
1、让我来把所有的东西都分类放吧!(幼儿操作:你要分成几份就拿几个竹筐)
2、师提问:你是怎么分的?按什么分类的?
3、你们真聪明,用了不同的方法把大熊的食物进行了分类,有按食物的大小分、有按食物的颜色分、有按食物的形状分、还有按食物的种类分。
四、幼儿操作2,把分类好的食物做出标记。
1、师:如果给分类好的食物加上标记,那大熊找起食物来就更方便了。
你有什么好办法标上大熊看得懂的标记呢?
2、说说标记:按食物大小分的,可以用大小标记来表示;按食物颜色分的,可以用颜色标记来表示,如:香蕉、小鱼干黄黄的就用黄色标记来表示…
3、出示表格,师幼共同归纳总结。
五、延伸:观看生活中的日常物品,了解分类和标记在生活中的作用。
师:运用了分类和标记的方法,用几种好办法都能把大熊的那么多食物整理好并标上相应的标记。我们生活中也有很多地方用到,一起来看看!分类有这么大的用处,以后我们也把图书、玩具理理好,让班级看起来更整洁吧!
蒙氏数学4教案 篇3
活动目标:
1、能根据图形的排列规律进行排序。
2、培养幼儿初步的观察与比较能力,提高幼儿的判断推理能力。
活动过程:
1、老师:“今天我收到了图形王国送来的礼物,你们想看吗?”(想)
“好,我么一起来看,是什么礼物?”
①出示一个自制头饰,让幼儿自己去发现这一饰物,从而激发他们自制头饰的兴趣。
②老师打开第一个礼物盒:“哇!是一个漂亮的头饰。”(老师戴在头上)
“好看吗?这漂亮的头饰是用什么颜色的图形做的?我们一起来看看。”
③小结:图形王国送来的头饰是用图形有规律的排队的。
2、引导幼儿根据图形排列规律接着排图形。
“我们来看看第二个盒子里的礼物是什么?哇!也是漂亮的头饰。但是它还没做完,图形国王请你们来帮忙呢!你们愿意吗?”
②小红旗:黄圆形绿三角形绿三角形黄圆形绿三角形绿三角形……
小结:原来图形王国的头饰是用图形有规律排队的,所以很漂亮。
“上面写得是什么?我来读一下。”老师读请柬,“小朋友今天图形国王邀请你们去参加一个舞会,但是你们要打扮一下自己。每个小朋友要按照图形有规律的装饰自己的头饰。戴上头饰才能进去参加舞会。”
老师出示为幼儿准备的操作材料,有头带、各种图形,请幼儿按照图形规律依样接着有规律的排序。
老师:“好,我们开始做好,做好了,请双面胶帮忙。”
4、幼儿操作活动。
5、活动评价。
①老师展示个别幼儿的作品,请幼儿说说,他是怎样做的?
②表扬做的好的幼儿。
③带领幼儿一起去参加舞会。
教学反思:这个活动《按规律排序》,目的在于训练幼儿灵活运用所学知识解决问题,整个活动以收到礼物贯穿主线。分三个环节完成,层次清晰,第一个环节通过让幼儿自己观察去发现图形排队是有规律的`。通过图形的对比引导幼儿感知图形排队的基本特征。这是对幼儿进行初步判断推理能力的训练。第二个环节让幼儿在发现规律的基础上采用启发法、提示法,引导幼儿进一步掌握并概括图形的排列特征。让幼儿感受了不同颜色,不同图形按规律排序的乐趣,也训练了幼儿的观察力,思维的敏捷性。在活动中还设置一些分难易层次不同的操作材料,以满足不同幼儿的需求。
蒙氏数学4教案 篇4
活动目标:
1、培养幼儿善于观察的好习惯,了解生活中的圆。
2、培养幼儿的发散思维能力以及创新能力。
3、引导幼儿用添画的形式对圆形进行装饰、完善。
4、培养幼儿喜欢绘画的兴趣。
教学重点、难点:
引导幼儿用圆形变成各种物品,培养幼儿的创新能力。
活动准备:
多媒体课件、泡泡水、腊笔、白纸、各种颜色的圆形、圆形玩具:皮球、铁环、陀螺、呼啦圈、小篮球架等等,
活动过程:
一、开始部分:
放音乐《饼干歌》,教师带幼儿做动作进入活动室。
二、基本部分:
1、“小朋友们累了吧,先休息一下。”小朋友和老师都坐下来。“今天老师给小朋友带来了好玩的东西,请小朋友闭上眼睛,老师把它们请出来。”出示泡泡水。
(1)教师自由的吹泡泡,吹出的泡泡可大可小,可多可少。
(2)幼儿仔细观察泡泡是什么形状。
2、师:孩子们,刚才老师吹出的泡泡漂亮吗?(漂亮)小朋友喜不喜欢它们?(喜欢)泡泡是什么形状的?引导幼儿说出圆形。今天老师给小朋友带来了一个小伙伴,小朋友想不想知道它是谁呀?(想)请小朋友闭上眼睛,出示圆形宝宝,让幼儿说一下它的名称。(圆形宝宝)
3、小朋友你想不想跟圆形宝宝交朋友呀?(想)那老师问一下圆形宝宝想不想跟小朋友成为好朋友。老师跟圆形宝宝说悄悄话。
刚才圆形宝宝告诉老师,它非常愿意跟你们交朋友,但是它有一个小条件,就是我们必须找出和它长的一个样子的东西,这样,它才和我们做好朋友。引导幼儿自由发言。(太阳、气球、等等……)对说得好的孩子给予鼓励。(好朋友握握手,好朋友亲一个……)
小朋友知道的可真多,你们都是我的好朋友。我有点累了,要去休息一会了。小朋友再见!
三、幼儿变魔术,老师指导。
(1)教师:刚才圆形宝宝和我们小朋友成了好朋友,它很高兴,但是圆形宝宝告诉老师,它还是很寂寞,因为它的家里没有和它一个样子的朋友。它想请我们小朋友帮忙,帮它变出些好朋友来。那小朋友想不想帮它的忙?(想)
师:那就请小朋友做神奇的魔术师,帮圆形宝宝变出好玩的东西呀!
让我们瞧瞧哪个小朋友的法术最厉害,变的东西最棒。(小朋友画画)(放轻音乐)
(2)展评幼儿作品。(选择几名幼儿的作品,请他自己讲述,教师总结。)
(3)小朋友们都真棒,那我们把变的作品送到圆形宝宝家里好不好?(好)
活动延伸:
在生活中去发现有那些东西是圆圆的
蒙氏数学4教案 篇5
1、初步掌握并运用事物排列规律。
2、能仔细观察物品排列规律,发展幼儿观察能力。
3、培养幼儿比较和判断的能力。
4、发展幼儿逻辑思维能力。
1、布置活动室,在室内挂有各种规律排列的物品(气球、小旗、各种图形)
2、师:“孩子们,你们看,今天我们的教师真美丽,你能发现有什么?”
(幼儿找出①按颜色排列的规律:气球是按红黄顺序排列的,小旗是按红蓝得顺序排列的……②按图形排列的规律:三角形、正方形、圆形。③找出其他按大小、高矮、长短等规律)
1、师:“我这里有三个魔术盒,看看他们有什么规律。”(一个比一个小或一个比一个大)
师:“我们打开其中一个魔术盒,看看里面会变成什么?”从第一个魔术盒里找到了一张纸条,上面写着送个孩子们一个动作:拍手拍腿各一下,拍手拍腿各两下,拍手拍腿各一下……教师和幼儿一起练习动作,幼儿说一说其中的规律。
带领幼儿观察图片一:四个盘子,盘子里装着糖果分别是2个、3个、4个、5个。请幼儿找出其中的规律:一个盘子里的糖果比另一个盘子里的糖果多一个。
带领幼儿观察图片二:四个鱼缸,鱼缸里游的金鱼分别是2条、4条、6条、8条。请幼儿找出其中的规律:一个鱼缸里游得金鱼比另一个鱼缸里游得金鱼多两条。
送给每个幼儿一盒几何图形。幼儿自由摆一摆,要求有一定的规律。排列好以后可以告诉老师和好朋友说一说自己是按什么样的规律排列的。
教师出示准备好的印章、珠子、蜡笔、粘贴图片等,要求操作中体现一定的规律特点。
蒙氏数学4教案 篇6
教具 加法板 在30�M×42�M的板上画横18格纵12格的方格,上端写1-18阿拉伯数字(1-10是红字,11-18是蓝字)。10的旁边画一条纵的红色分隔线。 定规 红色和蓝色板子各9支装在木箱中。每支木板各有规定的尺寸,故称为置之不理规。 蓝色定规……当成加数使用。有1-9共9支,数字写在木板右端。 红色定规……当成加数使用。有1-9共9支,上面标明数字与刻度。 B.提示[A]――10的基本加法练习(10的构成) 1、在加法板上方的左侧按顺序排列1-9的蓝色定规。 2、右侧同样排列红色定规。 3、将蓝色定规1放在加法板上1的上面,也取红色定规9排在板上。老师说:“1加9是10。” 4、这时指着答案10和红线,(加法板上段所印的数字代表加算的答案。) 5、其次取2的.蓝色定规和8的红色定规放在板子上,“2加8是……10”跟着指答案10和红线。 6、同样进行3加7等于10 4加6等于10 5加5等于10 6加4等于10 7加3等于10 8加2等于10 9加1等于10 一直到全部结束。 7、让小朋友注意到每个组合的结果都是10。 8、依小朋友的要求,让他继续反复这项组合成10的基本加法练习。 提示[B]――构成11-18的加法练习 1、先把蓝色定规拿走,在加法板上放2的定规,再放9红色定规。 “2加9等于11”老师指数字11说道。 2、接着加法板上放蓝色定规3和红色定规8。 “3加8等于11” 3、同样地进行4加7等于11 5加6等于11 6加5等于11 7加4等于11 8加3等于11 9加2等于11 在加法板上排列出全部的组合。 4、把红、蓝定规全部归回原位。 5、其次拿掉蓝色定规2,在板上放3的定规,及红色定规9。 “3加9等于12” 6、以下同样地全部进行答案为‘12’的加算。 7、其次进行答案为13,14,15,16,17的各组组合练习,一直到最后‘9加9等于18’为止。