搜索

抽屉原理课件

发布时间: 2023.06.21

抽屉原理课件精华。

今天笔者为大家准备了一篇有关“抽屉原理课件”的报道,希望本文能够为您提供一些帮助。在每位老师的教学过程中,教案课件都是必不可少的工具,因此老师们需要投入时间去编写。在编写教案时,必须要考虑到学生们的实际需求和情况。

抽屉原理课件 篇1

教学内容:

六年级数学下册70页、71页例1、例2.

教学目标:

1、理解“抽屉原理”的一般形式。

2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

教学重点:

经历“抽屉原理”探究过程,初步了解“抽屉原理”。

教学难点:

理解“抽屉原理”的一般规律。

教学准备:

相应数量的杯子、铅笔、课件。

教学过程:

一、情景引入

让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。

二、探究新知

1、探究3根铅笔放到2个杯子里的问题。

师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?

摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

2、教学例1

(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?

(2)、学生汇报放结果,结合学具操作解释。教师作相应记录。

(4,0,0)(3,1,0)(2,2,0)(2,1,1)

(学生通过操作观察、比较不难发现有与上个问题同样结论。)

(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

师:“总有”是什么意思?“至少”呢?让学生理解它们的含义。

师:怎样放才能总有一个杯子里铅笔数最少?引导学生理解需要“平均放”。

教师出示课件演示让学生进一步理解“平均放”。

3、探究n+1根铅笔放进n个杯子问题

师:那我们再往下想,6根铅笔放在5个杯子里,你感觉会有什么结论?

让学生思考发现不管怎么放,总有一个杯子里至少有2根铅笔。

师:7根铅笔放进6个杯子,你们又有什么发现?

……

学生回答完之后,师提出:是不是只要铅笔数比杯子数多1,总有一个杯子里至少放进2根铅笔?让学生进行小组合作讨论汇报。

学生汇报后引导学生用实验验证想法。

师:把10根小棒放在9个杯子里呢,总有一个杯子里至少有几根小棒?(2根)

师:把100根小棒放在99个杯子里,会有什么结论呢?(2根)

4、总结规律

师:刚才我们研究的都是铅笔数比杯子数多1,而余数也正巧是1的,如果余下铅笔数比杯子多2、多3、多4的呢,结论又会怎样?

(1)探究把5根铅笔放在3个杯子里,不管怎么放,总有一个杯子里至少有几根铅笔?为什么?

a、先同桌摆一摆,再说一说。

b、你怎么分的?

学生汇报后,教师演示:将5根笔平均分到3个杯子里里,余下的两根怎么办?是把余下的两根无论放到哪个杯子里都行吗?怎样保证至少?

引导学生知道再把两根铅笔平均分,分别放入两个杯子里。

(2)探究把15根铅笔放在4个杯子里的结论。

(3)、引导学生总结得出结论:商加1是总有一个杯子至少个数。

(4)教学例2

课件出示:

1、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

2、把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

3、把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

学生汇报

小结:不管怎么放,总有一个抽屉里至少有“商加1”本书了。

师:这就是有趣的“抽屉原理”,又称“鸽笼原理”,最先同19世纪的德国数学家狄里克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些今人惊异的结果。

三、解决问题

1、7枝笔入进5个笔筒里,不管怎么放,总有一个笔筒中至少有2枝笔。为什么?

2、8只鸽子飞回3鸽笼,不管飞,总有一个鸽笼里至少有3只鸽子。为什么?

师:最后,我们再来玩个游戏,你们都玩过扑克牌吗?一共有几张牌(54),抽出大王和小王还剩几张(52)有几种花色(四种),下面老师请一位同学任愿的抽出5张,不用看,老师就知道,不管怎么抽,至少有2张是同花色的。老师说的对吗?为什么?

四、课时总结

抽屉原理课件 篇2

今天我们在培训中心大厅听了来自××县的××老师的一节录像课《抽屉原理》。抽屉原理这节课不同于六年级其他课型,与前后知识点没有联系,比较孤立。抽屉原理也很抽像,对于师生而言,这节课比较难上。××老师是通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”的,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,并会用“抽屉原理”加以解决。

××老师上的《抽屉原理》一课虽然朴实,但是结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探究的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。

优点:

1.本节课充分放手,让学生自主思考,采用自己的方法证明:把4支笔放入3个杯子中,不管怎么放,总有一个杯子中至少放进2支笔。然后交流活动,为后面开展教学活动做了铺垫。此处注意了从最简单的数据开始摆放,有利于学生观察理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验理解最基本的“抽屉原理”:当物体个数大于抽屉个数是,一定有一个抽屉放进了2个物体。这样的教学过程,从方法和知识层面对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。

2.在教学过程中充分发挥了学生的主体性,在抽屉原理的推导过程中,至少是商+余数,还是商+1个物体放进同一个抽屉里。让学生互相争辩,在由学生验证,使学生更好的理解抽屉原理。

3.注意渗透数学和生活的联系,并在游戏中深化知识。课前教师设计了一组简单真实的生活情境:让一名学生在去掉了大小王的扑克牌中,任意抽取5张。老师猜,总有一种花色的牌有2张。学完抽屉原理后,让学生用学过的知识来解释这一现象,有效的渗透“数学来源于生活,又换源于生活”的理念。

建议:

1、3个杯子放4支笔时说的基本原理在后面不适用,教师应该强调。

2、在得出抽屉原理后应该让学生多加练习并加以说明。

3. 应该不断在活动中使学生感受到了数学魅力。

“抽屉原理”的建立是学生在观察、操作思考、推理的基础上理解和发现的,学生学的积极主动。老师上的比较扎实,是一节好课。

抽屉原理课件 篇3

一、说教材

“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课借助把4本书放进3个抽屉里的操作情境,介绍了一类较简单的“抽屉原理”。

二、说教法

本课通过直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考思考问题的意识。

三、总体设计

本节课我安排了四个教学环节:

第一环:创设情境,诱发兴趣

在这个环节中,安排了一个小游戏:任意抽取五张扑克牌,不看牌判断五张牌中同种花色的至少有2张,让学生猜猜。为什么老师可以这样判断?由此引发学生的兴趣,营造一个愉快的学习氛围,为学习新知创设良好的情境。

第二环:自主参与,探索新知

在这个环节中,教学时先放手让学生自主思考,采用实践操作的方法进行“证明”,然后再进行交流,引导他们对“列举法”、“假设法”两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题。

第三层:应用新知,解决问题

让学生借助直观和假设法最核心的思路“有余数除法”形式,使学生更好的理解抽屉原理解决问题的'一般思路。小学生不要求学生用反证法进行严格的证明,鼓励学生借助学具、实物操作、或画图的方式进行说理。

第四层:引导学生总结规律

在学生自主探索的基础上,教师进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。

抽屉原理课件 篇4

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉能够放一个,有的能够放两个,有的能够放五个,但最终我们会发现至少我们能够找到一个抽屉里面至少放两个苹果。

一般状况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。

参考资料三:

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉能够放一个,有的能够放两个,有的能够放五个,但最终我们会发现至少我们能够找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就能够代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”

抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。

原理1把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。

原理2把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

抽屉原理课件 篇5

教材内容

义务教育课程标准实验教科书第十二册第五单元第一节

教学目标

1.基础知识目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2.能力训练目标:

1)、会用“抽屉原理”解决简单的实际问题;

2)、通过操作发展学生有根据、有条理地进行思考和推理的能力,形成比较抽象的数学思维。

3.个性品质目标: 通过“抽屉原理”的灵活应用感受数学的魅力,产生主动学数学的兴趣。

教学过程

一、创设情景,导入新课

师带领学生玩“抢椅子”的游戏,规则这4位学生必须都坐下。引导学生观察游戏结果——不管怎么坐,总有一个座位上至少坐了2位同学。师:为什么?(学生回答)

师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。师:那么像这样的现象中隐藏着设么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄懂!

二、探究新知

(一)教学例1

1、出示题目:把4枝铅笔放进3个文具盒里。

师:刚才我们做游戏,不管怎么坐,总有一把椅子上至少坐了2位同学。那么,把4枝铅笔放进3个文具盒里,有多少种放法呢?会出现什么情况呢?大家可不可以大胆的猜测一下?

(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。)

2、理解“至少” 师:“至少”是什么意思?如何理解呢?(最少2枝,也可能比2枝多)

师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。

3、自主探究

(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。(2)全班交流,学生汇报。第一种方法:

(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。

教师课件演示,验证结论。(像大家刚才这样把每一种放法都列举出来,然后去一一验证,这种方法叫列举法)第二种方法:

师:还有别的思考方法,来验证我们之前的猜测吗? 假设法:(学生汇报)

师课件演示,说明:先假设每个文具盒里各放入1枝铅笔,余下1枝铅笔不管放进哪个文具盒里,一定会出现“总有一个文具盒里至少有2枝铅笔”的现象。

4、优化方法

那么把5枝铅笔放进4个文具盒里,会怎样呢? 那么把6枝铅笔放进5个文具盒里,会怎样呢? 那么把7枝铅笔放进6个文具盒里,会怎样呢? 那么把100枝铅笔放进99个文具盒里,会怎样呢?(学生解释说明,师课件演示)

师:你们为什么都用第二种方法,而不用列举法呢?

5、发现规律

师:通过刚才我们分析的这些现象,你发现了什么?(当笔的枝数比铅笔盒数多1时,不管怎么放,总有一个文具盒里至少放2枝铅笔。)

师:同学们能有这么了不起的发现,真不错!说明大家认真动脑思考了。那么老师这有一道和我们刚才这些题稍稍不同的题,看看你们能不能用这种思维来解决一下?

6、出示做一做:7只鸽子飞回5个鸽舍,至少有()只鸽子要飞进同一个鸽舍里?

(1)学生独立思考,可以自己想办法解决。

(2)全班汇报,解释说明。

(3)教师用课件演示(虽然鸽子的只数比鸽舍的数量多2,但是也是至少有2只鸽子要飞进同一个鸽舍里。)

师:同学们真是太了不起了,善于运用分析、推理的方法来证明问题,得出结论。同学们的思维在不知不觉中也提升了许多。大家敢不敢再来挑战一道更难的题目?

(二)教学例2

1、出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?

2、学生利用学具探究

3、学生汇报,教师课件演示

如果把我们的这种思维方法用式子表示出来,该怎样列式? 5÷2=2…..1(3)

4、拓展:把7本书放进2个抽屉里呢? 把9本书放进2个抽屉里呢?用式子怎么表示? 7÷2=3….1(4)9÷2=4…1(5)

师:同学们观察这些板书,你发现了什么规律吗?(商+余数)(商+1)

5、做一做:8只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么? 学生独立思考,汇报交流。板书式子:8÷3=2…2(2+1=3)

教师课件演示:至少有3只鸽子要飞进同一个鸽舍里,所以应该是商加1.(三)结论

师:同学们,真的非常厉害,刚才我们一起探究的这种现象,就成为“抽屉原理” 课件出示。

三、拓展应用

“抽屉原理”在现实生活中引用也是非常广泛的。下面,老师再带大家做一个小游戏。扑克牌游戏。

抽屉原理课件 篇6

(一)小结

鸽巢问题的解答方法是什么?

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

(二)检测

1、填空

(1)7只鸽子飞进5个鸽舍,至少有( )只鸽子要飞进同伴的鸽舍里。

(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放( )本书。

(3)四年级两个班共有73名学生,这两个班的学生至少有( )人是同一月出生的。

(4)任意给出3个不同的自然数,其中一定有2个数的和是( )数。

2、选择

(1)5个人逛商店共花了301元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于( )元。

a、60 b、61 c、62 d、59

(2)3种商品的总价是13元,每种商品的价格都是整数,至少有一种商品的价格不低于( )元。

a、3 b、4 c、5 d、无法确定

3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?

六、作业(6分)

完成课本练习十二第2、4题。

板书

抽屉原理

物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。

抽屉原理课件 篇7

一.说教学内容。

我说课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,教材70-71页的例1和例2.

二.说教学目标。

根据《数学课程标准》和教材内容,我确定本节课学习目标如下:

知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

三.说教学理念。

1、用具体的操作,将抽象变为直观。

“总有一个文具盒中至少放进2支铅笔”这句话对于学生而言,抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个文具盒中至少放进2支铅笔”这种现象,让学生理解这句话。

2、充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。

学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生手去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

3、适当把握教学要求。

我们的教学不同于社会上的辅导培优机构,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“抽屉”和“物体”。

四.教法和学法:

以学生为课堂的主体,采用创设情境,提出问题,让学生大胆猜测、动手操作、自主探究、合作交流。

五.说教学流程.

(一)、游戏激趣,初步体验。

今天在学习新课之前,老师和大家玩一个“抢凳子”游戏。(下面有2把椅子。3个同学玩抢凳子的游戏,要求每个人都要坐到凳子上,结果会怎样?)

【设计意图:在课前进行的游戏激趣,一使教师和学生进行自然的沟通交流;二激发学生的兴趣,引起探究的愿望;三为今天的探究埋下伏笔。】

(二)、操作探究,发现规律。

1、提出问题:把4支笔放进3个文具盒中,可以怎么放?

2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。

(1)先请列举所有情况的学生进行汇报,一、说明列举的不同情况,二、结合操作说明自己的结论。(教师根据学生的回答板书所有的情况)

学生汇报完后,教师再利用枚举法的示意图,指出每种情况中都有几支笔被放进了同一个文具盒。

【设计意图:抽屉原理对于学生来说,比较抽象,特别是“总有一个文具盒中至少放进2支铅笔”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的文具盒,理解“总有一个文具盒”以及“至少2支”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。】

(2)提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?

学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个文具盒里都要放1支铅笔呢?请相互之间讨论一下。

在讨论的基础上,教师小结:假如每个文具盒放入一支铅笔,剩下的一支还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具里至少有2支铅笔。只有平均分才能将铅笔尽可能的分散,保证“至少”的情况。

【设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。】

(3)初步观察规律。

教师继续提问:6支铅笔放进5个文具盒里呢?你还用一一列举所有的摆法吗?7支铅笔放进6个文具盒里呢?100支铅笔放进99个文具盒呢?你发现了什么?

【设计意图:让学生在这个连续的过程中初步感知方法的优劣,发展了学生的类推能力,形成比较抽象的数学思维。】

3、运用抽屉原理解决问题。

出示第70页做一做,让学生运用简单的抽屉原理解决问题。在说理的过程中重点关注“余下的2只鸽子”如何分配?

【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。】

4、发现规律,初步建模。

我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)

小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。

【设计意图:通过对不同具体情况的判断,初步建立“物体”“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着。】

5、用有余数的除法算式表示假设法的思维过程。

(1)教学例2,可以出示问题后,让学生说理,然后问:这个思考过程可以用算式表示出来吗?

(2)做一做:8只鸽子飞回3个鸽舍,至少有3支鸽子飞进同一个鸽舍。为什么?

【设计意图:在例1和做一做的基础上,相信学生会用平均分的方法解决“至少”的问题,将证明过程用有余数的除法算式表示,为下一步,学生发现结论与商和余数的关系做好铺垫。】

6、再次发现规律。

观察板书,你有什么发现吗?让学生通过对除法算式的观察,得出“只要物体个数比抽屉个数几倍还多,总有一个抽屉至少有商+1个这样的物体。”的结论。

【设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2个”德到“至少商+1个的结论。】

7、介绍课外知识。

介绍抽屉原理的发现者——数学家狄里克雷。

【设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。】

(三)、巩固练习。

《导学练案》自我测评第一题

(四)、归纳小结,强化思想

对于本节课的学习,你的感受如何?

(五)板书设计

只要物体数量比抽屉的数量多,

总有一个抽屉至少放进2个物体。

这就叫做抽屉原理。

只要物体个数比抽屉个数几倍还多,总(至少数=商+1)

有一个抽屉至少有商+1个这样的物体。文章

抽屉原理课件 篇8

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

把3个苹果放进2个抽屉里,必须有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它能够解决一些相当复杂甚至无从下手的问题。

原理1:把n+1个元素分成n类,不管怎样分,则必须有一类中有2个或2个以上的元素。

原理2:把m个元素任意放入n(n<m=个集合,则必须有一个集合呈至少要有k个元素。

原理3:把无穷多个元素放入有限个集合里,则必须有一个集合里内含无穷多个元素。

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关联,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

例1、教室里有5名学生正在做作业,这天只有数学、英语、语文、地理四科作业

求证:这5名学生中,至少有两个人在做同一科作业。

由抽屉原理1,必须存在一个抽屉,在这个抽屉里至少有2个苹果。

即至少有两名学生在做同一科的作业。

例2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

例3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

例4、在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果

例5、11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不一样类的书,最少借一本

若学生借两本不一样类型的书,则不一样的类型有AB、AC、AD、BC、BD、CD六种

把这10种类型看作10个“抽屉”

把11个学生看作11个“苹果”

例6、有50名户外员进行某个项目的单循环赛,如果没有平局,也没有全胜

由于没有平局,也没有全胜,则得分状况只有1、2、3。。。。。。49,只有49种可能

例7、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解:根据规定,多有同学拿球的配组方式共有以下9种:

{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}

由抽屉原理2k=〔〕+1可得,至少有6人,他们所拿的球类是完全一致的

抽屉原理课件 篇9

教学内容:

人教版《义务教育课程标准实验教科书数学》六年级下册数学广角《抽屉原理》。

教学目标:

1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教具学具:课件、扑克牌、每组都有相应数量的杯子、吸管。

展示学习目标1经历抽屉原理的探究过程,初步了解抽屉原理;

2运用抽屉原理解决简单的实际问题。

师:先进入活动(一):把4枝吸管放进3个杯子里,有多少种放法呢?会出现什么情况呢?大家摆摆看。在不同的摆法中,把每个杯子里面吸管的`枝数记录下来,当某个杯子中没放吸管时可以用0表示。

2.学生动手操作,自主探究。师巡视,了解情况。

3.汇报交流 指名演示。

总有一个杯子:一定有一个杯子,但并不一定是只有一个杯子。

6.讨论、交流:刚刚我们是把每一种放法都列举出来,知道了总有一个杯子里至少有2枝吸管。那为什么会出现这种情况呢?可不可以每个杯子里只放1枝吸管呢?和小组里的同学说说你的想法。

课件演示:如果每个杯子只放1枝吸管,最多放3枝。剩下的1枝吸管不管放进哪个杯子里,一定会出现“总有一个杯子里至少有2枝吸管”的现象。

如果把5枝吸管放进4个杯子,结果是否一样呢?怎样解释这一现象?

师:把4枝吸管放进3个杯子里,把5枝吸管放进4个杯子里,都会出现“总有一个杯子里至少有2枝吸管”的现象。那么

把6枝吸管放进5个杯子里,把7枝吸管放进6个杯子里,把100枝吸管放进99个杯子里,结果会怎样呢?

师:从上面的几个问题中,你发现了什么相同的地方?

课件出示:只要放的吸管数比杯子的数量多1,不论怎么放,总有一个杯子里至少放进2枝吸管。

10.想一想:如果要放的吸管数比杯子的数量多2,多3,多4或更多呢?这个结论还成立吗?(只要求学生能说出自己的看法,并不要求一定是正确的)

师:是不是像同学们想的那样呢?我们接着进入下面的学习。

11出示自学提示:结合刚才所学,大胆猜一猜,也可动手摆一摆,并结合书上例2进行小组合作学习, 完成表格,试着探索求“至少数”的方法。

学生小组学习,填写表格,讨论规律。

把m个物体放进n个抽屉里,用算术表示m/n=a......b,总有一个杯子里至少放a+i个物体,也就至“少数=商+1”

1、34个小朋友要进4间屋子,至少有( )个小朋友要进同一间屋子。

3、新兵训练,战士小王5枪命中了41环,战士小王总有一枪不低于( )环。

4、从街上人群中任意找来20个人,可以确定,至少有( )个人属相相同

课件二:

从扑克牌中取出两张王牌,在剩下的52张扑克牌任意抽牌。

(1)从中抽出18张牌,至少有几张是同花色?

(2)从中抽出20张牌,至少有几张数字相同?

课件三:

六(2)班有学生39人,我们可以肯定,在这39人中,至少有 人的生日在同一个月?想一想,为什么?

课件四:

六年级四个班的学生去春游,自由活动时,有6个同学在一起,可以肯定, 。为什么?

同学们,通过本节课的学习,你有哪些收获?

课后搜集生活中有关抽屉原理的应用,试着自己编写一些利用抽屉原理解决的问题。

抽屉原理课件 篇10

把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。把它推广到一般情形有以下几种表现形式。

形式一:证明:设把n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于2(用反证法)假设结论不成立,即对每一个ai都有ai<2,则正因ai是整数,应有ai≤1,于是有:

a1+a2+…+an≤1+1+…+1=n<n+1这与题设矛盾。因此,至少有一个ai≥2,即必有一个集合中内含两个或两个以上的元素。

形式二:设把n?m+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于m+1。用反证法)假设结论不成立,即对每一个ai都有ai<m+1,则正因ai是整数,应有ai≤m,于是有:

高斯函数:对任意的实数x,[x]表示“不大于x的最大整数”。

例如:[3。5]=3,[2。9]=2,[-2。5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1

形式三:证明:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有:

a1+a2+…+ak<[n/k]+[n/k]+…+[n/k]=k?[n/k]≤k?(n/k)=n

k个[n/k]∴a1+a2+…+ak<n这与题设相矛盾。因此,必有一个集合中元素个数大于或等于[n/k]

形式四:证明:设把q1+q2+…+qn-n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。(用反证法)假设结论不成立,即对每一个ai都有ai<qi,正因ai为整数,应有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n<q1+q2+…+qn-n+1这与题设矛盾。

因此,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi

形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,因此,假设不成立,故必有一个集合内含无穷多个元素。

例题1:400人中至少有两个人的生日相同。分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不一样的`生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,因此这400人中有两人的生日相同。

解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理的表现形式1能够得知:至少有两人的生日相同。

例题2:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除。

证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类r0,r1,r2。至少有一类包含所给5个数中的至少两个。因此可能出现两种状况:1°。某一类至少包含三个数;2°。某两类各含两个数,第三类包含一个数。

若是第一种状况,就在至少包含三个数的那一类中任取三数,其和必须能被3整除;若是第二种状况,在三类中各取一个数,其和也能被3整除。。综上所述,原命题正确。

例题3:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同。

证明:按植树的多少,从50到100株能够构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里。

(用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,因此,每个抽屉最多有4人,故植树的总株数最多有:

4(50+51+…+100)=4×=15300<15301得出矛盾。因此,至少有5人植树的株数相同。

练习:1.边长为1的等边三角形内有5个点,那么这5个点中必须有距离小于0。5的两点。

2.边长为1的等边三角形内,若有n2+1个点,则至少存在2点距离小于。

3.求证:任意四个整数中,至少有两个整数的差能够被3整除。

4.某校高一某班有50名新生,试说明其中必须有二人的熟人一样多。

5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同。

“任意367个人中,必有生日相同的人。”

“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”

“从数1,2,。。。,10中任取6个数,其中至少有2个数为奇偶性不一样。”

。。。。。。

大家都会认为上方所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的资料能够用形象的语言表述为:

“把m个东西任意分放进n个空抽屉里(m>n),那么必须有一个抽屉中放进了至少2个东西。”

在上方的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,。。。,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

抽屉原理的一种更一般的表述为:

“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么必须有一个抽屉中放进了至少k+1个东西。”

利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”正因任一整数除以3时余数只有0、1、2三种可能,因此7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:

“把无限多个东西任意分放进n个空抽屉(n是自然数),那么必须有一个抽屉中放进了无限多个东西。”

抽屉原理的资料简明朴素,易于理解,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

1958年6/7月号的《美国数学月刊》上有这样一道题目:

“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”

这个问题能够用如下方法简单明了地证出:

在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。思考A点与其余各点间的5条连线AB,AC,。。。,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都贴合问题的结论。

六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要资料-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

"抽屉课件"延伸阅读