搜索

反比例函数教案

发布时间: 2023.09.26

反比例函数教案集锦。

跟随工作总结之家小编思考“反比例函数教案”也许能给您带来新的启发。教案课件是我们老师工作的一部分,相信老师对写教案课件也并不陌生。写好教案课件,可以确保重要内容不被遗忘。不需要到处寻找您可以在这篇文章中找到您所需的信息!

反比例函数教案(篇1)

反比例函数,是数学中经常遇到的一种函数形式。它的形式为y=k/x(k≠0),其中k是常数,x不等于0。它的定义域是除了0以外的所有实数,值域是因数范围之外的所有实数。在反比例函数的图像中,我们可以看到一条非常特殊的曲线,通常被称为反比例函数的双曲线。

反比例函数的图像有很多特别之处。首先,一张反比例函数的图像从x轴的正半轴和负半轴都可以看到,但它在坐标轴的原点处有一个一个垂直的渐进线。这就是说,反比例函数的值接近于0的时候,曲线并不是在接近坐标轴,而是接近于渐进线。同时,反比例函数的图像在x轴的正半轴和负半轴关于y轴对称。这就是说,如果我们将反比例函数的图像顺时针旋转180度,那么它会和自己重合。

反比例函数的性质也十分独特。首先,反比例函数是有定义的。在其定义范围内,函数的值是唯一的。同时,反比例函数的导数也是有定义的,它的导函数是y'=-k/x²。这表示,反比例函数的斜率是负的,并且逐渐变小,即函数向右下方倾斜。

反比例函数还有一个重要的性质,就是曲线距离渐近线的距离会无限逼近于0。这个性质非常重要,因为它告诉我们反比例函数在趋近于渐近线的时候会变得非常敏感。这往往会导致反比例函数在一些分析和计算中出现非常大的误差。

总之,反比例函数是一种非常重要的数学函数形式。它的图像非常特殊,具有许多独特的特征和性质。在许多科学和工程领域,反比例函数都被广泛地应用。因此,深入了解反比例函数的性质和图像,在提升数学理解和应用能力方面有着非常大的价值。

反比例函数教案(篇2)

1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.

2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.

1.回顾、梳理本章的知识:

如同已经学过的有关方程、函数的内容一样,本章内容分为3块:

(1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;

(2)数学研究:反比例函数的图象与性质;

(3)用数学解决问题:反比例函数的'应用.

2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:

(1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;

(2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;

(3)形数结合——函数的图象与性质的综合应用

2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△xPOD的面积为________

3.设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.

例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。

(1)写出药物燃烧前、后y与x的函数关系式;

(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?

(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?

反比例函数教案(篇3)

反比例函数的图像和性质

反比例函数是一类非常重要的函数,它在数学和实际生活中都有广泛的应用。反比例函数是一种特殊的函数,它是一种比例关系的反向反映。反比例函数的图像特点是它的图像是一条双曲线。在本文中,我们将介绍反比例函数的图像和性质,以深入了解反比例函数的本质。

一、反比例函数的定义和性质

反比例函数通常被定义为:y = k/x,其中k是一个常数。这个函数的重要性在于它表示一种反比例关系。反比例关系是一种数学关系,它表示两个变量的相对变化。在反比例关系中,当一个变量变大时,另一个变量会减少,反之亦然。反比例函数是两个变量之间的比例关系反转。

反比例函数是一种特殊的函数,它有以下性质:

1. 反比例函数的定义域为除数不为零的实数。

2. 反比例函数的值域为实数。

3. 反比例函数在y轴上是不连续的。

4. 反比例函数在x轴上是渐近线。

5. 反比例函数是对称的。

二、反比例函数的图像

反比例函数的图像是一条双曲线。这个双曲线分为两个分支,分别围绕着x轴和y轴展开。这个双曲线的两个极点分别在x轴和y轴上。这个双曲线与x轴、y轴和两个渐近线相交。

反比例函数的图像具有如下几个特点:

1. 通过原点。因为当x=0时,y=0,所以反比例函数的图像一定通过原点。

2. 分为两个分支。反比例函数的图像有两个分支,分别位于x轴的正负两侧。这两个分支对称于y轴。

3. 极点。反比例函数的图像的极点位于x轴和y轴上。极点是函数的定义区间的两个端点x=0和y=0。

4. 表示反比例关系。反比例函数的图像反映了两个变量的反比例关系,即当一个变量增加,另一个变量减少。

5. 无零点。反比例函数的图像不穿过x轴,也就是说,反比例函数没有零点。

三、反比例函数的应用

反比例函数广泛应用于实际生活中的许多问题。以下是反比例函数的一些典型应用:

1. 电阻和电流的关系。电阻和电流之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解电路中电流和电阻之间的关系。

2. 压力和面积的关系。在流体动力学中,压力和面积之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解流体动力学中压力和面积之间的关系。

3. 速度和时间的关系。在运动学中,速度和时间之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解运动学中速度和时间之间的关系。

4. 人口和资源的关系。在人口学和资源经济学中,人口数量和资源数量之间通常是一个反比例关系。这个反比例关系可以用反比例函数来表示。反比例函数可以帮助我们更好地理解人口学和资源经济学中人口数量和资源数量之间的关系。

四、总结

反比例函数是一个非常重要的数学工具,它在实际生活和学术研究中都有广泛的应用。反比例函数的图像特点是它的图像是一条双曲线。反比例函数的主要性质包括定义域、值域、y轴不连续性、x轴渐近线和对称性。反比例函数在许多领域有着广泛的应用,包括电路、流体动力学、运动学和人口学和资源经济学。通过深入了解反比例函数的图像和性质,我们可以更好地理解这个重要的函数,从而更好地应用它。

反比例函数教案(篇4)

反比例函数的图像和性质

反比例函数是一种重要的数学函数,它在数学和物理学中都有广泛的应用。本篇文章将深入探讨反比例函数的图像和性质。

一、反比例函数的定义

反比例函数的数学式子为y = k/x,其中k为常数。它的定义域为x ≠ 0,值域为y ≠ 0。当x趋近于0时,y趋近于无穷大,当x趋近于无穷大时,y趋近于0。反比例函数的图像为一条直线,它的斜率为k,经过原点。

二、反比例函数的图像

反比例函数的图像是一条曲线,它的形状类似于一个倒置的双曲线。当x大于0时,y小于0;当x小于0时,y大于0。因为它的定义域为x ≠ 0,所以它在y轴上没有定义。

三、反比例函数的性质

(1)反比例函数的图像是一条直线,它的斜率为k,经过原点。

(2)反比例函数在x = 0处有一个垂直渐近线。

(3)反比例函数在x轴上没有定义。

(4)反比例函数是一个单调递减函数。

(5)反比例函数的导数为y' = -k/x^2。

(6)反比例函数的最小值为零,但它没有最大值。

(7)反比例函数在k>0时,y>0,k

四、反比例函数的应用

反比例函数在物理学、经济学和工程学等领域都有广泛的应用。在物理学中,反比例函数用来描述一些物理量之间的关系,例如电荷和距离之间的关系。在经济学中,反比例函数用来描述消费和价格之间的关系。在工程学中,反比例函数用来描述耗能和速度之间的关系。

结语

反比例函数是一种重要的数学函数,它在数学和物理学中都有广泛的应用。本篇文章介绍了反比例函数的图像和性质,同时也介绍了它的应用。反比例函数的研究对于我们深入理解数学和物理学的本质有非常重要的意义。

反比例函数教案(篇5)

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的`学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

知识与技能

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

过程与方法

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

重点:掌握从实际问题中建构反比例函数模型。

难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

反比例函数教案(篇6)

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的.实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

重点:掌握从实际问题中建构反比例函数模型。

难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

启发引导、合作探究

课件

(一)创设问题情境,引入新课

[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

反比例函数教案(篇7)

今天我说课的内容是八年级数学下册第十七章反比例函数及其图象。

一、教材分析:

本课时的内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析:

根据新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:

(一)知识目标:

1.使学生了解反比例函数的概念

2.使学生能够根据问题中的条件确定反比例函数的解析式。

3.使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。

4.会用待定系数法确定反比例函数的解析式。

(二)能力目标:

培养学生的观察能力,分析能力,独立解决问题的能力。

(三)数学思想:

1.向学生渗透数学来源于实践又反过去作用于实践的观点。

2.使学生体会事物是有规律地变化着的观点。

(四)情感态度:

通过反比例函数图象的研究,渗透反映其性质的图象的直观形象美,激发学生的兴趣,也培养了学生积极探索知识的能力。

三、教学重点,难点。

(一)教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。

(二)教学难点:画反比例函数的图象。

(三)解决方法

(1)由分组讨论,积极思考,分析问题,发现结论。

(2)训练,研究,总结

因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质

(一)探究学习1——函数图象的画法

问题3:如何画出正比例函数的图象?

通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。

问题4:那反比例函数的图象应该怎样去画呢?

在教学过程中可以引导学生仿照正比例函数图象的的画法。

设想的教学设计是:

(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;

(2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;

(3)随后老师在在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。

初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:

(1)在“列表”这一环节在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。

(2)在“连线”这一环节学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。从而引导学生画出正确的函数图象.

(3)图象与x轴或y轴相交

在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础

四、教学方法:

初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。鉴于教材和初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

五、学法指导:

本堂课立足于学生的“学”,要求学生多动手、多观察从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

最后我来具体谈一谈这一堂课的教学过程。

六、教学过程:

(一)复习引入——反函数解析式

练习1:写出下列各题的关系式:

(1)正方形的周长C和它的一边的长a之间的关系

(2)矩形的面积为10时,它的长x和宽y之间的关系

(3)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系

问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?

问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。

问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?

通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。

反比例函数教案(篇8)

反比例函数是初中数学中非常重要的一类函数之一。它的图像和性质是我们学习和掌握它的关键。本文将就反比例函数的图像和性质展开详细阐述。

一、反比例函数的定义

反比例函数是指一个函数,其函数值与其自变量的值成反比例关系。即,当自变量x的值发生变化时,函数值y的变化与x成反比例关系。函数公式可以表示为:y=k/x,其中k为比例系数,不等于零。由于k不等于零,因此x不能等于零,反比例函数的定义域就是“除了零以外的所有实数”。

二、反比例函数的图像

我们可以通过画图来了解反比例函数的图像。以y=2/x为例,首先将定义域分成三段:正数部分、负数部分和零点。然后,在每个部分内取若干个自变量的值,计算函数值,用点的方式表示在坐标系中。

我们可以观察到,反比例函数的图像是一条双曲线。从图像上可以看出,该函数有水平渐近线y=0和竖直渐近线x=0。当自变量x越来越大时,函数值y越来越小;当自变量x越来越小时,函数值y越来越大。与直线函数的图像不同,反比例函数的图像和原点不相交。

三、反比例函数的性质

1. 定义域:反比例函数的定义域是“除了零以外的所有实数”,也就是说自变量不能为零。

2. 值域:反比例函数的值域是“除了零以外的所有实数”,函数值可以取到正无穷和负无穷。

3. 对称性:反比例函数的图像关于第一和第三象限的x轴对称,关于y轴对称。

4. 渐近线:反比例函数的图像有水平渐近线y=0和竖直渐近线x=0。

5. 单调性:当自变量x在定义域内递增时,函数值y递减;当自变量x在定义域内递减时,函数值y递增。

6. 导数:反比例函数没有导数,因为其图像的切线在任意一点处不存在。

四、应用

反比例函数与实际问题紧密相关,我们可以通过它来解决一些实际问题。比如,利用反比例函数,我们可以算出两个物体间的引力大小,根据药物的化学浓度和处理时间的关系,我们也可以利用反比例函数来求出药物的降解速率。

此外,反比例函数还能应用到诸如工程、经济、生态等诸多领域,在每个领域中它有不同的表现。

五、总结

反比例函数在初中数学中具有重要意义。通过对反比例函数的学习,我们不仅了解它的定义、图像和性质,还能应用到生活中具体问题的解决中。我们相信,随着反比例函数的深入研究,我们还将发现更多有趣的数学规律和应用。

反比例函数教案(篇9)

一、知识与技能

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。

二、过程与方法

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的`能力。

三、情感态度与价值观

1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点

掌握从物理问题中建构反比例函数模型。

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备

多媒体课件。

教学过程

一、创设问题情境,引入新课

活动1

问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。下面的例子就是其中之一。

在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。

(1)求I与R之间的函数关系式;

(2)当电流I=0.5时,求电阻R的值。

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力。

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用。

教师应给“学困生”一点物理学知识的引导。

师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值。

生:(1)解:设I=kR ∵R=5,I=2,于是2=k5 ,所以k=10,I=10R 。

(3) 当I=0.5时,R=10I=100.5 =20(欧姆)。

师:很好!“给我一个支点,我可以把地球撬动。”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

生:这是古希腊科学家阿基米德的名言。

师:是的。公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;阻力阻力臂=动力动力臂。

下面我们就来看一例子。

二、讲授新课

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。

(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系。因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用。

师生行为:

先由学生根据“杠杆定律”解决上述问题。

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系。

反比例函数教案(篇10)

今天我说课的内容是八年级数学下册第十七章反比例函数及其图象。

一、教材分析:

本课时的内容是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴,让学生进一步理解函数的内涵,并感受到现实世界中存在各种函数。反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。

二、教学目标分析:

根据新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。

因此把教学目标确定为:

(一)知识目标:

1.使学生了解反比例函数的概念

2.使学生能够根据问题中的条件确定反比例函数的解析式。

3.使学生理解反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减少而变化的情况。

4.会用待定系数法确定反比例函数的解析式。

(二)能力目标:

培养学生的观察能力,分析能力,独立解决问题的能力。

(三)数学思想:

1.向学生渗透数学来源于实践又反过去作用于实践的观点。

2.使学生体会事物是有规律地变化着的观点。

(四)情感态度:

通过反比例函数图象的研究,渗透反映其性质的图象的直观形象美,激发学生的兴趣,也培养了学生积极探索知识的能力。

三、教学重点,难点。

(一)教学重点:反比例的概念、图象、性质,以及用待定系数法确定反比例函数的解析性。

(二)教学难点:画反比例函数的图象。

(三)解决方法

(1)由分组讨论,积极思考,分析问题,发现结论。

(2)训练,研究,总结

因为反比例函数的图象有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质

(一)探究学习1——函数图象的画法

问题3:如何画出正比例函数的图象?

通过问题3来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。

问题4:那反比例函数的图象应该怎样去画呢?

在教学过程中可以引导学生仿照正比例函数图象的的画法。

设想的教学设计是:

(1)引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数和的图象;

(2)老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;

(3)随后老师在在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支)。

初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:

(1)在“列表”这一环节在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。

(2)在“连线”这一环节学生画的点与点之间连线可能会有端点,未能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线”,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量x的值和对应的函数值y,以便在坐标平面内得到较多的“点”,画出曲线。从而引导学生画出正确的函数图象.

(3)图象与x轴或y轴相交

在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础

四、教学方法:

初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。鉴于教材和初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

五、学法指导:

本堂课立足于学生的“学”,要求学生多动手、多观察从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

最后我来具体谈一谈这一堂课的教学过程。

六、教学过程:

(一)复习引入——反函数解析式

练习1:写出下列各题的关系式:

(1)正方形的周长C和它的一边的长a之间的关系

(2)矩形的面积为10时,它的长x和宽y之间的关系

(3)王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系

问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?

问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。

问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?

通过问题2来引出反比例函数的解析式,请学生对比正比例函数的定义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。

反比例函数教案(篇11)

大家下午好!今天我说课的内容是人教版八年级数学下册第十七章反比例函数的图象和性质第一课时,下面我从教材分析、教学目标、教学重点、教法与学法分析、教学过程几个方面进行阐述。

一、教材分析

反比例函数的图象和性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。本节课是全章的核心,学习的主要内容是画反比例函数的图象,让学生结合实例,通过列表、描点、连线等手段经历画图、观察、猜想、思考、归纳等数学活动,并初步认识反比例函数的图象的特征,逐步明确反比例函数的直观形象,为学生探索反比例函数的图象的性质提供思维活动的空间。也为以后二次函数以及其他函数的学习奠定坚实的基础。

二、教学目标

结合我对这节课的理解和分析,制定教学目标如下:

1、通过学生在动手操作,学会在平面直角坐标系中用描点法画出反比例函数的图象;2、通过观察反比例函数图像,引导学生观察、分析、归纳反比例函数的性质,3、在学生自主探究反比例函数图像和性质的过程中,让学生体验到数学活动中充满了探索和创造,增强他们对数学学习的好奇心与求知欲。

三、教学重点难点

重点:用描点法作反比例函数的图像,并利用图像探究反比例函数的性质

难点:如何抓住特点准确画出反比例函数的图像。

四、教法与学法分析

现代教育理论中要求“要把学生学习知识当作认识事物的过程来进行教学”。针对八年级学生的认知结构和心理特征,我选择“引导探索法”。由浅到深,由特殊到一般地提出问题。引导学生自主探索、合作交流。让学生始终处于一种积极的思维、主动探索的学习状态。

根据新课标要求“培养可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生,并参与到学习活动中,鼓励学生采用自主探索、合作交流的研讨学习方式,培养学生“动手”、“动脑”、“动口”的习惯和能力,使学生真正成为学习的主人。

五、教学过程

(一)创设情境,引入新课

1、问题一:正比例函数的图像是什么形状的?我们是通过几个步骤画出来的呢?

2、问题二:反比例函数的图像又是什么形状呢?大家想知道么?

通过问题一帮助学生回忆用描点法画函数图象的方法,并认识到任何函数的图象都可以用描点法画,激活学生原有的知识,为探究反比例函数图象的画法奠定基础。问题二的提出,给学生一个想象空间,激发学生参与课堂学习的热情。

(二)类比联想,探究交流---反比例函数图像的画法

1、问题一:根据已经学过的正比例函数图象的画法,怎样画出反比例函数y=和y=--的图象?

先根据学生的回答和补充,得出画反比例函数图象的基本步骤:列表——描点——连线。再让学生分组尝试画两函数的图象。在教学过程中可以引导学生仿照正比例函数图象的的画法。

学生是首次接触到双曲线这种比较特殊函数图象,学生可能会在下面几个环节中出错:

(1)在“列表”这一环节

在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对值相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。

(2)在“连线”这一环节

学生画的点与点之间连线可能会有端点,未能用平滑的线条连接,或者把两个象限内的点连起来。因而在这里要特别要强调在将所选取的点连结时,应该是“平滑曲线”,还可以引导学生通过代数的方法进一步分析反比例函数的解析式y=﹙k≠0﹚,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。从而引导学生画出正确的函数图象。为后面学习函数的性质打下基础。并给出双曲线的概念。

2、问题二:比较函y=和y=--的图象有什么共同特征它们之见有什么关系?

引导学生观察、对比、小组讨论,用自己的语言描述,由感性认识上升到理性认识,提高学生抽象概括能力。

3、巩固训练:画函数y=和y=--的图象

让学生自己动手分组完成,使学生进一步了解画反比例函数图象的基本方法,也为后面观察分析归纳出反比例函数图象的性质增加感性认识。

(三)、探索比较,发现规律----函数图象性质

问题一:观察函数y=和y=--的图象

(1)找出反比例函数y=(k≠0)图象有哪些共同点?有哪些不同点?

(2)每个函数图象分别位于哪几个象限?由什么因素决定?

(3)在每一象限内y随x的变化如何变化?

引导学生通过对反比例函

数图象进行观察、分析,对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应象限内,y值随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;学生根据对图象的观察,由得到的图象特征总结反比例函数的性质。性质:(1)反比例函数y=(k为常数,k≠0)的图象是双曲线。

(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y的值随x值的增大而减小。

(3)当k

(四)、归纳总结,

问题一:本节课学习了哪些知识?

问题二:反比例函数与正比例函数在图象分布与性质上有什么异同点?

通过列表的形式,引导学生小结反比例函数的性质并与正比例函数的图象与性质纵向对比,加深认识。通过学生自由讨论、总结、概括本章所学内容,使学生进一步理解反比例函数图象及其性质,让学生体验到学习数学的快乐,在交流中与全班同学分享。

(五)布置作业

这一环节主要是让学生加深对所学知识的理解和应用,并时刻了解学生的掌握程度。

反比例函数教案(篇12)

反比例函数的图像和性质

反比例函数是一种特殊的函数,它的性质和图像都具有一定的特点。在本文中,我们将详细地介绍反比例函数的图像和性质。

一、反比例函数的定义

反比例函数是指形如y = k/x的函数,其中k为常数且k≠0,x≠0。在反比例函数中,x不等于0,该函数的定义域为R-{0},因为除数不能为0。

二、反比例函数的图像

反比例函数y = k/x 的图像是一条双曲线,该曲线的两个分支分别经过坐标轴的正半轴和负半轴。当x趋近于0时,y趋近于无穷大或负无穷大,这意味着在x正半轴和负半轴两边,曲线在x轴上有一个渐近线。渐近线的方程是y=0。

三、反比例函数的性质

反比例函数有以下几个性质:

1. 关于y轴对称

反比例函数的图像是以y轴为对称轴对称的。

2. 直线斜率为常数

反比例函数的导数为dy/dx = -k/x^2,该导数关于x轴对称。因此,在曲线上取任意一点,其所在切线的斜率都是常数。当x趋近于0时,导数趋近于无穷大,这说明在图像渐近线附近,该曲线的斜率会趋向于无穷大或负无穷大。

3. 接近坐标轴时函数值趋于无穷大或负无穷大

对于函数y=k/x,当x趋近于0时,y趋近于无穷大或负无穷大。这说明反比例函数不具有最大值或最小值,它的值域为R-{0}。

4. 垂直渐近线

在反比例函数的图像上,有两条垂直于x轴的直线,它们分别经过x轴的正半轴和负半轴,这意味着当x趋近于0时,函数的值趋近于无穷大或负无穷大。

5. 水平渐近线

反比例函数的图像上有一条水平的渐近线,该直线位于y=0.这是因为当x趋近于无穷大或负无穷大时,函数值趋近于0。在函数的图像上,这条渐近线与y轴相交于(k,0)。

四、反比例函数的应用

反比例函数在数学和科学中有着广泛的应用,如经济学、电学、化学等。其中,最常见的应用场景是比例关系和可逆性。

1. 比例关系

在比例关系中,当一个值变化时,另一个值也会相应地变化。这意味着当x值增加时,y值会减少;当x值减少时,y值会增加。比例关系在经济学中得到了广泛的应用,可帮助分析企业、行业和经济体系的生产和消费。

2. 可逆性

反比例函数的可逆性表示,对于给定的y值,存在一个唯一的x值,使得k/x = y。此外,反比例函数也可以用于评估和设计电学、化学、生物学和医学等领域中的实验和设备。

总结

本文介绍了反比例函数的定义、图像和性质。反比例函数的图像是一条双曲线,其性质包括关于y轴对称、直线斜率为常数、接近坐标轴时函数值趋于无穷大或负无穷大、垂直渐近线和水平渐近线。反比例函数广泛应用于多个领域。了解反比例函数的定义和性质,对学习更高级的数学和科学概念,以及相关领域的应用有很大的帮助。

gz85.COM精选阅读

相反数教案集合


教案课件是老师需要精心准备的东西,这就要老师好好去自己教案课件了。要写好教案课件,避免重点内容漏掉。您在寻找好文章吗看看“相反数教案”吧,我们提供这些文件供你参考和使用祝你在学术和工作中取得成功!

相反数教案 篇1

教学目标

1.了解相反数的好处,会求有理数的相反数;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的潜力.

3.初步认识对立统一的规律。

教学推荐

一、重点、难点分析

本节的重点是了解相反数的好处,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,就应明确的是-a不必须是正数,a不必须是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,能够把“-”号一齐去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

相反数的定义相反数的性质及其判定相反数的应用

三、教法推荐

这节课教学的主要资料是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要透过相反数的几何好处理解相反数的概念。教学中推荐,直接给出相反数的几何定义,透过实例了解求一个数的相反数的方法。按着数轴DD相反数DD绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识

1.相反数的好处

(1)只有符号不同的两个数叫做互为相反数,如-与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。

(3)0的相反数是0。也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

2.相反数的表示

在一个数的前面添上“-”号就成为原数的相反数。若表示一个有理数,则的相反数表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,个性地,+0=0,-0=0。

3.相反数的特性

若互为相反数,则,反之若,则互为相反数。

4.多重符号化简

(1)相反数的好处是简化多重符号的依据。如是-1的相反数,而-1的相反数为+1,所以。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如,。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

相反数(一)

一、素质教育目标

(一)知识教学点

1.了解:互为相反数的几何好处.

2.掌握:给出一个数能求出它的相反数.

(二)潜力训练点

1.训练学生会利用数轴采用数形结合的方法解决问题.

2.培养学生自己归纳总结规律的潜力.

(三)德育渗透点

1.透过解释相反数的几何好处,进一步渗透数形结合的思想.

2.透过求一个数的相反数,使学生进一步认识对应、统一规律.

(四)美育渗透点

1.透过求一个数的相反数明白任何一个数都有它的相反数,学生会进一步领略到数的完整美.

2.透过简化一个数的符号,使学生进一步体会数学的简洁美.

二、学法引导

1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.

2.学生学法:感性认识→理性认识→练习反馈→总结.

三、重点、难点、疑点及解决办法

1.重点:求已知数的相反数.

2.难点:根据相反数的好处化简符号.

四、课时安排

1课时

五、教具学具准备

投影仪、三角板、自制胶片.

六、师生互动活动设计

学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.

相反数教案 篇2

教学目标:

1、 了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系。

2、 理解有理数的绝对值的意义,会求一个数的绝对值,会利用绝对值比较两个负数的大小。

重难点:

1、 理解有理数的绝对值和相反数的意义。

2、 会用绝对值比较两个负数的大小。

小明的'家在学校西边3千米处,小丽的家在学校东边3千米处,以学校为原点,分别在数轴表示出小明的家和小丽的家。

问:数3与-3有什么相同点于不同点?4与—4呢?

1 结合数轴揭示绝对值的概念:数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

(正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.)

典型题:

2、在数轴上记出下列各数,并分别求出它们的绝对值:

问题1:2 与3 哪个大?这两个数的绝对值哪个大?

问题2:-1 和-4哪个大? 这两个数的绝对值哪个大?

问题3:任意写出两个负数,并说出这两个负数哪个大,它们的绝对值哪个大。

问题4:两个有理数的大小与这两个数的绝对值的大小有什么关系?

1、9.5与-1.75的大小。

2、 比较-3, -0.4 , -2 的大小,并用小于号把他们连接起来.

A. -5 B. 5 C. D.

5 、-2的绝对值是( )。

A.2 B.-2 C.±2 D.

相反数教案 篇3

相反数小班教案

一、教学目标

1. 知识目标:学生掌握相反数的概念和性质,能够准确找出一个数的相反数。

2. 能力目标:培养学生的逻辑思维能力和数学计算能力。

3. 情感目标:培养学生的合作意识和团队合作精神。

二、教学重难点

1. 教学重点:让学生理解相反数的概念和性质。

2. 教学难点:引导学生从日常生活中找到相反数的实际意义。

三、教学过程

1. 创设情境,导入新课

教师通过问题导入新课:你们知道什么是相反数吗?相反数有什么特点呢?

学生回答后,教师通过旁征博引引导学生逐渐明确相反数的概念。

2. 概念解释

教师给出相反数的定义:两个数互为相反数,即一个数与另一个数的和等于零。

然后,教师通过具体的数例来解释相反数的性质:相反数的绝对值相等,符号相反。

3. 案例分析

教师通过一些生活中的例子来引导学生理解相反数的意义,并运用相反数解决问题。

例如:你家门口有两家早餐店,你在A店花了5元,那么你一共花了多少元?你在B店花了几元?两家店共花了多少元?

4. 团队合作,小组讨论

将学生分成小组,让他们合作讨论以下问题:

如果两个数互为相反数,其中一个数是a,那么另一个数是多少?

每个小组派一人回答问题并解释答案。

5. 课堂练习

教师出示一些相反数计算的例题,让学生在纸上进行计算并回答。

例如:计算下列数的相反数:(1)7 (2)-6 (3)0

6. 拓展延伸

教师出示一些挑战性问题,让学生思考和解答:

(1)能否找到一个数的三个相反数?

(2)能否找到一个数的两个相反数,这两个相反数的和是这个数的相反数?

四、教学反思

通过这节课的教学活动,学生对相反数的概念和性质有了更深入的理解。通过引导学生从生活实际中找到相反数的实际意义,培养了学生的逻辑思维能力和数学计算能力。同时,通过小组合作和课堂练习,培养了学生的合作意识和团队合作精神。

相反数教案 篇4

数学教案:相反数

教学目标

1借助数轴理解相反数的概念,会求一个数的相反数;

2培养学生观察、猜想、归纳的能力,初步形成数形结合的思想。

重点难点

重点:理解相反数的概念和求一个数的相反数

难点:相反数概念的理解

教学过程

一激情引趣,导入新课

思考:

⑴数轴上与原点距离是2的点有______个,这些点表示的数是_____;与原点的距离是5的点有______个,这些点表示的数是_______

(2)数轴上与原点的距离是0.5的点有_____个,这些点表示的数是______,数轴上与原点的距离是的点有____个,这些点表示的'数是_______

一般地,设a是一个正数,数轴上与原点的距离是a的点有___个,它们分别在原点的____,表示____和____,我们说这两点关于原点对称。

二合作交流,探究新知。

相反数的概念

观察:+3.6和-3.6,6和-6,,和-每对数,有什么相同和不同?

归纳:像+3.6和-3.6、6和-6、,和-只有符号不同的两个数,叫互为相反数。其中一个叫另一个的相反数.

考考你:

(1)-8的相反数是___,7是____的相反数。

(2)a的相反数是_____.-a的相反数是____

(3)怎样表示一个数的相反数?

在这个数的前面添上“-”,就可表示这个数的相反数。如12的相反数是____,-9的相反数是_____,如果在这个数的前面添上“+”表示____.

(4)有人说一个数的前面带有“-”号这个数必是负数,你认为对吗?如果不对,请举一个反例。

(5)互为相反数在轴上的位置有什么特点?

(6)零的相反数是____.

三应用迁移,拓展提高

1关于相反数的概念

例1判断下列说明是否正确

(1)-(-3)表示-3的相反数,(2)-2.5的相反数是2.5()

(3)2.7与-3.7是互为相反数()(4)-π是相反数。

2求一个数的相反数

例2分别写出下列各数的相反数:1.3、-6、-、-(-3)、π-1

3理解-(-a)的含义

例3填空:(1)-(-0.8)=___,(2)–(-)=____,(3)+(+4)=____,(4)–(-11)=_____

四冲刺奥赛,培养智力

例4已经:a+b=0,b+c=0,c+d=0,d+f=0,则a,b,c,d四个数中,哪些数是互为相反数?哪些数相等?

例5若数与互为相反数,求a的相反数。

变式:如果x与互为相反数,且y≠0,则x的倒数是()

A2yBC-2yD

例6有理数a等于它的倒数,有理数b等于它的相反数,则等于()

A0B1C-1D2(第9届“希望杯”初一第2试)

四课堂练习,巩固提高

1.-1.6是____的相反数,___的相反数是0.3.

2.下列几对数中互为相反数的一对为().

A.-(-8)和-(+8)B.-(-8)与-(+8)C.+(-8)与+(+8)D-(-8)与+(-8)

3.5的相反数是____;x+1的相反数是___;的相 a-b的反数是____.

4.若a=-13,则-a=_____若-a=7,则a=_____

5.若a是负数,则-a是___数;若-a是负数,则a 是______数.

6有如下三个结论:

甲:a、b、c中至少有两个互为相反数,则a+b+c=0

乙:a、b、c中至少有两个互为相反数,则

丙:a、b、c中至少有两个互为相反数,则

其中正确结论的个数是()

A0B1C2D3

五反思小结,巩固升华

1什么叫互为相反数?

2一对互为相反数有什么特点?

3怎样表示一个数的相反数?

作业:作业评价,相反数

相反数教案 篇5

相反数是小学数学中的基本概念之一,也是学习数学的重要基础,是许多数学操作的基础。本篇文章将介绍相反数的定义、性质和求法,同时附带丰富的得分点,让小学生更好地理解相反数。

一、相反数的定义

相反数是指两个数的和为零的数,即在数轴上对称的两个数。比如,2和-2、3/4和-3/4、-5和5都是相反数。

二、相反数的性质

1.相反数相加等于0:a+(-a)=0。

2.两个相反数的绝对值相等。

3.正数的相反数是负数,负数的相反数是正数。

4.任何数加上它的相反数等于0,即a+(-a)=0。

三、相反数的求法

1.取反法:将数的符号取反,绝对值不变。比如,2和-2是对称的,-2是2的相反数,2是-2的相反数。

2.加法逆元:对于数a,在数轴上找到其对称的数-a,使得a+(-a)=0。这里-a是a的加法逆元,也是a的相反数。

四、相反数的作用

1.计算:相反数往往用于加减法和乘除法的计算。

2.方向:相反数常用于表示方向的相反。

3.余数:偶数的相反数一定是奇数,奇数的相反数一定是偶数,相邻奇数和相邻偶数的相反数之和相等。

五、如何教授相反数

1.引导学生理解相反数的定义和性质。

2.利用数轴与实物展示相反数的概念,让学生感受到两个数的相反数是对称的。

3.创造趣味性和互动性的教学环境,如出题、打板游戏等,让学生发现相反数的规律。

4.运用实际问题让学生应用相反数的概念,加深对相反数的理解。

5.反复练习相反数的计算,加深记忆,使学生能够轻松运用相反数进行计算。

六、相反数的小技巧

1.边角数的相反数只有两个,即1和-1。

2.正数和负数的大小不仅取决于它们的大小,还与它们的符号有关。

3.熟记一些常用数的相反数,如2的相反数是-2,3的相反数是-3等,便于快速计算。

4.当需要计算多个相反数的和时,可以将它们分为两组,分别相加再取相反数。

总之,相反数是数学中一个基本的概念,对于小学生学习数学具有重要的意义。通过简单生动的方式,引导学生理解相反数的定义、性质和求法,加深对其概念的理解和记忆。希望本文能为小学生学习相反数提供一些帮助。

相反数教案 篇6

相反数小班教案

一、教学目标:

1. 知识与能力目标:

(1)了解相反数的概念和性质;

(2)能够通过对数字的加减操作,找到一个数的相反数;

(3)能够正确运用相反数的知识,解决一些实际问题。

2. 过程与方法目标:

(1)通过观察、发现和实际操作,使学生在合作探究中理解和掌握相反数的概念;

(2)通过交流合作,提高学生的思维能力和解决问题的能力;

(3)通过游戏的方式激发学生的学习兴趣和参与度。

3. 情感与态度目标:

(1)培养学生的合作精神和团队意识;

(2)激发学生对数学学习的兴趣和自信心。

二、教学重点:

1. 相反数的概念和性质;

2. 通过加减法找到一个数的相反数。

三、教学准备:

1. 教学用具:黑板、彩色粉笔、课件、实物数字卡片。

2. 教学资源:课件、实物数字卡片。

四、教学过程:

1. 导入新课(通过游戏引入相反数的概念,激发学生的学习兴趣)

教师说:同学们,今天我们来玩一个游戏,通过这个游戏,我们来猜一猜什么是相反数,你们准备好了吗?

教师教学用意:通过游戏的方式引入相反数的概念,激发学生的学习兴趣和参与度。

游戏规则:教师拿出一组实物数字卡片,例如:2、-2、4、-4等,然后将其中一个数字卡片隐藏起来,其他数字卡片分发给学生,学生依次猜出教师隐藏的数字是什么,并说出隐藏数字的相反数。猜对的学生将隐藏的数字卡片交给教师,并说出具体原因。

2. 讲授知识点:

2.1 相反数的概念

教师操作:教师说:通过游戏我们发现,一个数字的相反数就是它的相反方向和相同大小的数。例如,2 的相反数是 -2,-3 的相反数是 3,-5 的相反数是 5。我们可以总结出相反数的概念:相反数就是相互取消作用的两个数。

2.2 相反数的性质

教师操作:教师说:相反数有一些性质,我们来看一下。

性质一:0 的相反数是 0。

性质二:一个数的相反数的相反数还是它自己。

性质三:两个相反数的和等于 0。

3. 实践探究

3.1 知识讲解

教师操作:教师说:我们通过一些实际问题来看一看如何找到一个数的相反数。

(板书) 2 的相反数是 -2, -2 的相反数是 2。

教师操作:教师拿出两张数字卡片,上面分别写着 2 和 -2,放在黑板上。

教师问:同学们,你们看到这两个数字了吗?我如何找到 2 的相反数和 -2 的相反数呢?

学生答:加上一个减号,就是相反数了。

教师操作:教师说: 你们说得很对,我们可以通过对数字的加减操作,找到一个数的相反数。

3.2 学生操作

教师操作:教师发给每个学生一张数字卡片,上面写着一个数字。学生们需要找到自己数字的相反数,并且说出具体过程。

教师引导学生一起完成,并进行讲解。

教师说:同学们,你们觉得找到相反数的方法有哪些呢?

学生答:前面加一个减号;原数反方向。

教师总结:不管通过哪种方法,都可以找到一个数的相反数。

4. 拓展延伸

让学生自己创造一些实际问题,利用相反数的知识解决问题。

五、教学反思:

通过本节课的教学,学生们通过游戏的方式引入了相反数的概念,激发了学生们的学习兴趣,并通过观察发现和实际操作,使学生理解和掌握了相反数的概念和性质。通过游戏和实际操作的方式,让学生能够正确运用相反数的知识,解决一些实际问题。同时,通过引导学生自己创造问题并利用相反数的知识解决问题,培养了学生的合作精神和团队意识,激发了学生对数学学习的兴趣和自信心。整节课的教学过程紧凑有趣,引发了学生的思考和思维能力,达到了预期的教学目标。

相反数教案 篇7

相反数小班教案

一、教学目标:

1. 理解相反数的概念,能准确地用语言解释相反数的意义;

2. 能通过对数轴图形的观察,找出一个数的相反数;

3. 掌握求相反数的方法;

4. 能运用相反数的性质解决实际问题。

二、教学内容:

1. 相反数的概念;

2. 如何求一个数的相反数;

3. 相反数的性质;

4. 实际问题应用。

三、教学重点和难点:

1. 相反数的概念和求解方法;

2. 相反数的性质的理解和应用。

四、教学过程:

1. 导入新课:

教师出示两个数:4 和-4,让学生比较它们有什么相似之处和不同之处。

引导学生发现这两个数的绝对值相同,但符号不同,将它们分别称为相反数。

2. 学习新课:

(1) 学生熟悉通过数轴来表示一个数的方法。

教师在黑板或幻灯片上绘制一个数轴,刻度为-6 到 6,让学生找到数轴上 4 和-4 的位置,并指出这两个数的相反数分别是-4 和 4。

(2) 让学生通过数轴的观察,找到一个数的相反数。

教师出示几个数在数轴上的位置,要求学生找出它们的相反数,并用数轴解释。

-3 3

1 -1

-2 2

(3) 教师讲解求一个数的相反数的方法。

通过示例让学生发现求某个数的相反数就是将该数的符号改变。

如:求8 的相反数,则将8 的符号改为负号,即-8。

3. 操练新课:

(1) 让学生在练习册上完成练习题,巩固求相反数的方法。

(2) 学生之间互相出题,互相求解相反数。

若给出一个数,要求另一个同学给出它的相反数。

(3) 学生在小组内开展相反数游戏。

规则:每个小组有一名学生给出一个数,其他小组成员迅速给出该数的相反数,速度最快的小组获胜。

4. 拓展探究:

学生讨论相反数的性质,并应用这些性质解决实际问题。

(1) 两个相反数相加的结果是0。

如:-8 + 8 = 0

(2) 一个数与它的相反数相加的结果是0。

如:4 + (-4) = 0

(3) 相反数的绝对值相同。

如:|-4| = |4|

五、课堂总结:

通过本节课的学习,我们了解了相反数的概念,掌握了求相反数的方法,并能应用相反数的性质解决实际问题。

六、课后作业:

完成练习册上的练习题,并选择一个实际问题,运用相反数的性质进行解答。

例如:小明去超市买东西,他手上有50元,但是他还需要支付100元的账单。请问,他还差多少钱?

答案:小明手上有50元,需要支付100元,相当于他要付出的钱比他手上的钱多50元。根据相反数的性质,我们可以得知他需要再凑集50元才能完成支付。

相反数教案 篇8

1、先画一条数轴,在数轴上表示下列各数的点,并比较它们的大小:

―4,2.4,0,―,―3,1.

2、一天,汽车司机张师傅从车站出发,沿东西方向行驶,规定向东为正,若向东行驶3千米,记作_____;若向西行驶2千米,记作_____.

3、数轴上表示数―3的点A到原点的距离是,表示数5的点B到原点的距离是,A、B两点之间的距离是.

4、数轴上到原点的距离是2的点有个,表示的数是.

1、小明的家在学校西边3km处,小丽的家在学校东边2km处.

(1)如果把学校门前的大街看成一条数轴,把学校看成原点(向东的方向为正方向),你能把小明和小丽家的位置在数轴上表示出来吗?

(2)从数轴上看,哪家离学校较近?哪家离学校较远?

2、数轴上表示一个数的点与原点的距离,叫做这个数的.用符号“”表示.

3、如图,你能说出数轴上A、B、C、D、E、F各点所表示的数的`绝对值吗?

4、学习教材21页例题,完成“练一练”.

5、想一想:

(1)任何有理数的绝对值都是数;

(2)绝对值最小的数是.

6、例3:某厂生产闹钟,从中抽取5件检验时,比标准时间多的记为正数,比标准时间少的记为负数,请根据下表,选出最准确的闹钟.

误差不超过5秒的为合格品,否则为次品,问有几台合格?

7、练习:某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,比规定直径短的毫米数记为负数,检查记录如下:

指出第几个零件最标准?最接近标准的是哪个零件?误差最大的是哪个零件?

1、填空:(1)|-3|=______, |1|=_____, |-0.4|=______,

|0|=_____, |9|=______, |-2|=________;

(2)绝对值小于3的所有整数是________________,非正整数是____________;

(3)若|x|=6,则x=__________;

(4)在数轴上点A表示-,点B表示,则点___________离原点的距离近些.

2、计算:

(1)|―3|×|―6.2|(2)|―5|+|―2.49|

(3)―|―|(4)|―|÷||

相反数教案 篇9

化学反应的实质是旧化学键断裂和新化学键生成,从外观上看,所有的化学反应都伴随着能量的释放或吸收、发光、变色、放出气体、生成沉淀等现象的发生。能量的变化通常表现为热量的变化,但是化学反应的能量变化还可以以其他形式的能量变化体现出来,如光能、电能等。

当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为反应在此温度下的热效应,简称为反应热。通常用符号Q表示。

反应热产生的原因:由于在化学反应过程中,当反应物分子内的化学键断裂时,需要克服原子间的相互作用,这需要吸收能量;当原子重新结合成生成物分子,即新化学键形成时,又要释放能量。生成物分子形成时所释放的总能量与反应物分子化学键断裂时所吸收的总能量的差即为该反应的反应热。

对于在等压条件下进行的化学反应,如果反应中物质的能量变化全部转化为热能(同时可能伴随着反应体系体积的改变),而没有转化为电能、光能等其他形式的能,则该反应的反应热就等于反应前后物质的焓的改变,称为焓变,符号ΔΗ。

为反应产物的总焓与反应物总焓之差,称为反应焓变。如果生成物的焓大于反应物的焓,说明反应物具有的总能量小于产物具有的总能量,需要吸收外界的能量才能生成生成物,反应必须吸热才能进行。即当Η(生成物)>Η(反应物),ΔΗ>0,反应为吸热反应。

如果生成物的焓小于反应物的焓,说明反应物具有的总能量大于产物具有的总能量,需要释放一部分的能量给外界才能生成生成物,反应必须放热才能进行。即当Η(生成物)

把一个化学反应中物质的变和能量的变化同时表示出来的学方程式,叫热化学方程式。

不仅表明了化学反应中的物质化,也表明了化学反应中的焓变。

①只能写在标有反应物和生成物状态的化学方程式的右边。

若为放热反应,ΔΗ为“-”;若为吸热反应,ΔΗ为“+”。ΔΗ的单位一般为kJ·mol-1。②焓变ΔΗ与测定条件(温度、压强等)有关。因此书写热化学方程式时应注明ΔΗ的测定条件。

③热化学方程式中各物质化学式前面的化学计量数仅表示该物质的物质的量,并不表示物质的分子数或原子数。因此化学计量数可以是整数,也可以是分数。

④反应物和产物的聚集状态不同,焓变ΔΗ不同。因此,必须注明物质的聚集状态才能完整地体现出热化学方程式的意义。气体用“g”,液体用“l”,固体用“s”,溶液用“aq”。热化学方程式中不用“↑”和“↓”。若涉及同素异形体,要注明同素异形体的名称。

⑤热化学方程式是表示反应已完成的量。

由于ΔΗ与反应完成的物质的量有关,所以方程式中化学式前面的化学计量数必须与ΔΗ相对应,如果化学计量数加倍,则ΔΗ也要加倍。当反应向逆向进行时,其焓变与正反应的焓变数值相等,符号相反。

将两种反应物加入仪器内并使之迅速混合,测量反应前后溶液温度的变化值,即可根据溶液的热容C,利用下式计算出反应释放或吸收的热量Q。

式中:C表示体系的热容;T1、T2分别表示反应前和反应后体系的温度。

(2)实验注意事项:

①作为量热器的仪器装置,其保温隔热的效果一定要好。

②盐酸和NaOH溶液浓度的配制须准确,且NaOH溶液的浓度须大于盐酸的浓度。为了使测得的中和热更准确,所用盐酸和NaOH的浓度宜小不宜大,如果浓度偏大,则溶液中阴阳离子间相互牵制作用就大,电离度就会减少,这样酸碱中和时产生的热量势必要用去一部分来补偿未电离分子的离解热,造成较大的误差。

③宜用有0.1分度值的温度计,且测量时尽可能读准,并估读到小数点后第二位。温度计的水银球部分要完全浸没在溶液中,而且要稳定一段时间后再读数,以提高所测温度的

以上溶液中所发生的反应均为H++OH-=H2O。由于三次实验中所用溶液的体积相同,溶液中H+和OH-的浓度也是相同的,因此三个反应的反应热也是相同的。

(1)定义:在稀溶液中,酸与碱发生中和反应生成1molH2O(l)时所释放的热量为中和热。中和热是反应热的一种形式。

(2)注意:中和热不包括离子在水溶液中的生成热、物质的溶解热、电解质电离的吸收热等。中和反应的实质是H+与OH-化合生成H2O,若反应过程中有其他物质生成,这部分反应热也不在中和热内。

(1)概念:25℃,101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量,叫做该物质的燃烧热,单位为kJ·mol-1。如果是1g物质完全燃烧的反应热,就叫做该物质的热值。

①燃烧热是反应热的一种,并且燃烧反应一定是放热反应,其ΔΗ为“-”或ΔΗ

②25℃,101kPa时,可燃物完全燃烧时,必须生成稳定的化合物。如果该物质在燃烧时能生成多种燃烧产物,则应该生成不能再燃烧的物质。如C完全燃烧应生成CO2(g),而生成CO(g)属于不完全燃烧,所以C的燃烧热应该是生成CO2时的热效应。

燃烧热是以员1mol物质完全燃烧所放出的'热量来定义的,因此在书写表示燃烧热的热化学方程式时,应以燃烧1mol物质为标准,来配平其余物质的化学计量数,故在其热化学方程

了解化学反应完成时产生热量的多少,以便更好地控制反应条件,充分利用能源。

能提供能量的自然资源,叫做能源。能量之间的相互转化关系如下:

从自然界直接取得的自然能源叫一次能源,如原煤、原油、流过水坝的水等;一次能源经过加工转换后获得的能源称为二次能源,如各种石油制品、煤气、蒸气、电力、氢能、沼气等。

②常规能源与新能源在一定历史时期和科学技术水平下,已被人们广泛利用的能源称为常规能源,如煤、石油、天然气、水能等。人类采用先进的方法刚开始加以利用的古老能源以及利用先进技术新发展的能源都是新能源,如核聚变能、风能、太阳能、海洋能等。

③可再生能源与非再生能源可连续再生、永远利用的一次能源称为可再生能源,如水力、风能等;经过亿万年形成的、短期内无法恢复的能源,称为非再生能源,如石油、煤、天然气等。

注意:足够的空气不是越多越好,而是通入量要适当,否则过量的空气会带走部分热量,造成浪费。扩大燃料与空气的接触面,工业上常采用固体燃料粉碎或液体燃料以雾状喷出的方法,从而提高燃料燃烧的效率。

目前主要能源是化石燃料,它们蕴藏有限且不能再生,终将枯竭,且从开采、运输、加工到终端的利用效率都很低。我们目前使用的最多的燃料,仍是化石燃料,它们都是古代动植物遗体埋在地下经过长时间复杂变化形成的,除含有C、H等元素外,还有少量S、N等元素,它们燃烧产生SO2、氮的氧化物,对环境造成污染,形成酸雨。此外,煤的不充分燃烧,还产生CO,既造成浪费,也造成污染。

(2)含义:一定量的可燃物完全燃烧放出的热量,等于可燃物的物质的量乘以该物质的燃烧热。

(3)应用:“热量值与热化学方程式中各物质的化学计量数(应相对应)成正比”进行有关计算。

(4)应用:“总过程的反应热值等于各分过程反应热之和”进行有关计算。

化学反应的焓变只与反应体系的始态(各反应物)和终态(各生成物)有关,而与反应的途径无关。如果一个反应可以分几步进行,则各分步反应的反应焓变之和与该反应一步完成时的焓变是相同的,这就是盖斯定律。

①反应热效应只与始态、终态有关,与过程无关。

有些反应很慢,有些反应不容易直接发生,有些反应的产品不纯(有副反应发生),给测定反应热造成了困难。应用盖斯定律,可以间接地把它们的反应热计算出来。

①热化学方程式与数学上的方程式相似,可以移项(同时改变正、负号);各项的系数(包括ΔΗ的数值)可以同时扩大或缩小相同的倍数。

②根据盖斯定律,可以将两个或两个以上的热化学方程式(包括其ΔΗ)相加或相减,从而得到一个新的热化学方程式。

③可燃物完全燃烧产生的热量=可燃物的物质的量×燃烧热。

注:计算反应热的关键是设计合理的反应过程,正确进行已知方程式和反应热的加减合并。

列出方程或方程组计算求解。

②有关热化学方程式及有关单位书写正确。

③计算准确。

(3)进行反应热计算的注意事项:

①反应热数值与各物质的化学计量数成正比,因此热化学方程式中各物质的化学计量数改变时,其反应热数值需同时做相同倍数的改变。

②热化学方程式中的反应热,是指反应按所给形式完全进行时的反应热。

③正、逆反应的反应热数值相等,符号相反。

④用某种物质的燃烧热计算反应放出的总热量时,注意该物质一定要满足完全燃烧且生成稳定的氧化物这一条件。

相反数教案 篇10

学校:___________姓名:___________班级:___________

A.﹣2018 B.2018 C.﹣ D.

A.﹣2 B.2 C. D.

A.﹣2 与2 B.2与2 C.3与 D.3与3

4.如图,数轴上有A,B,C,D四个点,其中表示﹣2的相反数的点是( )

A.a+b=0 B.a+b=1 C.|a|+|b|=0 D.|a|+b=0

A.|﹣2|=2 B.﹣2=﹣|﹣2| C.﹣(﹣2)=|﹣2| D.﹣|2|=|﹣2|

9.有理数a,b在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a﹣b>0;③a+b>0;④ + >0;⑤﹣a>﹣b,其中正确的个数有( )

11.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个有理数中,绝对值最小的一个是( )

12.给出下列判断:

①若|m|>0,则m>0;

②若m>n,则|m|>|n|;

③若|m|>|n|,则m>n;

④任意数m,则|m是正数;

⑤在数轴上,离原点越远,该点对应的数的绝对值越大,

13.已知:有理数a、b、c,满足abc

16.若a+2的相反数是﹣5,则a= .

17.若a、b互为相反数,则6(a+b)﹣7= .

18. 的相反数是4,0的相反数是 ,﹣(﹣4)的相反数是 .

19.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是 .

21.若|x|=5,则x= .

22.若有理数a,b,c在数轴上的位置如图所示,则|a﹣c|﹣|b+c|可化简为 .

23.若|a+3|=0,则a= .

24.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n= .

25.如图所示,a、b是有理数,则式子|a|+|b|+|a+b|+|b﹣a|化简的结果为 .

26.在数轴上表示下列各数:0,﹣2.5,﹣3,+5, ,4.5及它们的相反数.

27.计算:

(1)|﹣7|﹣|+4|; (2)|﹣7|+|﹣|.

28.若a﹣5和﹣7互为相反数,求a的值.

29.已知|a﹣3|+|b﹣4|=0,求 的值.

30.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:

(1)求|4﹣(﹣2)|= ;

(2)若|x﹣2|=5,则x= ;

(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.

1.A.2.B.3.A.4.D.5.A.6.A.7.D.8.D.9.C.10.B.

11.C.12.B.13.B.14.A.15.A.

16.3.

17.﹣7.

18.4,0,﹣4.

19.1或5.

20.2018.

21.±5.

﹣2.5的相反数是2.5,

﹣3的相反数是3,

+5的相反数是﹣5,

1 的相反数是﹣1 ,

4.5的相反数是﹣4.5.

∴a=3,b=4,

(2)∵|x﹣2|=5,

∴x﹣2=±5,

∴x=7或﹣3;

(3)由题意可知:|1﹣x|+|x+2|表示数x到1和﹣2的距离之和,

∴﹣2≤x≤1,

∴x=﹣2或﹣1或0或1.

故答案为(1)6;(2)7或﹣3;

相反数教案 篇11

相反数课件

相反数是数学中一个基本的概念,也是我们在日常生活中常常会遇到的问题。相反数的定义非常简单,即对于任意一个数,它的相反数就是与它绝对值相等但符号相反的数。比如,5和-5就是相反数,3和-3也是相反数。

相反数的提出是为了便于计算和解决一些数学问题。人们可以通过对加减法的运用,来计算相反数的正负变化。在实际运用过程中,相反数有很多作用:比如在求解方程时,可以通过相反数的运用来简化计算;在实际中,相反数也常用于身高、温度等的负数表示。

同时,相反数还有一些特殊的性质:首先相反数相加等于0,即a+(-a)=0;其次,在相反数的基础上进行加减乘除运算,都有一定的规律,可以通过运算来求解。比如,两个相反数相乘得到的结果总是负数。

在学习相反数的相关知识时,我们应该注重实际应用,通过举例来深入理解。比如在日常生活中,如果我们想要在两个数字之间求相反数,只需要改变它们的符号即可;再比如,当我们需要将一个负数加上一个正数时,可以将这两个数看成相反数,然后进行减法运算。

在实际学习中,我们可以通过课件、教材以及教师的讲解来进行学习。课件应该以生动直观的形式来呈现相反数的概念和作用,同时也应该有一些具体的例子来帮助学生更好地理解。在教师的讲解中,可以通过生动的语言和实例来引导学生深入理解,并在课后练习中巩固知识点。

总之,相反数是一个基础而重要的数学概念,它的学习与实际生活息息相关。在学习过程中我们应该注重实际应用,通过例子来深入理解,同时也要积极利用各种学习资源来提高自己的数学水平。

相反数教案 篇12

相反数小班教案:引导学生理解数轴上的相反数概念

一、教学目标:

1. 知识与技能:

a. 理解相反数的概念;

b. 能够在数轴上找到一个数的相反数;

c. 能够比较两个相反数的大小关系;

d. 能够进行相反数的加减运算。

2. 过程与方法:

a. 合作探究法;

b. 数轴游戏;

c. 问题解决法。

3. 情感态度与价值观:

a. 培养学生的数学思维能力;

b. 培养学生的团队合作意识;

c. 培养学生的问题解决能力;

d. 提升学生对数学学习的兴趣。

二、教学过程:

1. 导入(10分钟)

a. 老师给出一个数,要求学生说出这个数的相反数,并将这两个数标在数轴上,引导学生理解相反数的概念。

b. 在数轴上出示两个相反数,让学生比较它们的大小关系。

2. 深化认识(20分钟)

a. 学生分成小组,每组5人,在课前准备好的数轴游戏中,学生轮流出题、回答问题,找到数轴上一些数的相反数,并比较大小关系。

b. 鼓励学生设计问题,如“数轴上有一个数的相反数是-4,这个数是多少?”,引发学生思考和探索。

3. 拓展运用(30分钟)

a. 学生进行课堂练习:根据给定的数轴和计算题,找出相反数,并进行加减运算。

b. 将学生分成小组,互相出题,进行竞赛,巩固相反数的概念和运算能力。

4. 总结归纳(10分钟)

a. 老师引导学生总结相反数的概念和特点,以及相反数的加减运算规则。

b. 学生积极参与讨论,进行知识的巩固和概念的理解。

5. 课后延伸(自主学习)

a. 学生根据教材或相关的练习册,自主进行相反数的练习,加深对概念和运算的理解。

b. 学生可以与同伴组成讨论小组,共同解决遇到的问题。

三、教具准备:

1. 数轴或小黑板;

2. 游戏卡片;

3. 练习册或教材。

四、板书设计:

1. 相反数的概念;

2. 数轴上的相反数;

3. 相反数的比较;

4. 相反数的加减运算。

五、教学反思:

通过本节课的设计与实施,学生在合作探究和问题解决中深入理解了相反数的概念和性质,并能运用数轴进行相反数的比较和计算。通过小组竞赛等活动,激发了学生的学习兴趣和参与度。在今后的教学中,可以进一步加强对相反数的练习,提高学生的运算能力,并引导学生将相反数的概念与实际生活中的问题联系起来,培养学生将数学知识应用于解决实际问题的能力。

比赛邀请函集锦


资料包含着人类在社会实践,科学实验和研究过程中所汇集的经验。在学习工作中,我们有可能会使用到资料。有了资料的协助我们的工作会变得更加顺利!那么,你知道资料的主要内容是什么吗?有请阅读小编为你编辑的比赛邀请函集锦,供有需要的朋友参考借鉴,希望可以帮助到你。

比赛邀请函 篇1

各演讲机构和组织:

为了进一步推动中国梦的实现,展示当代大学生的演讲风采,提升高邑县的知名度、美誉度,世界华人演讲家大同盟、中国演讲协会、高邑县委、河北经贸大学决定联合举办20xx年“中国·高邑·千秋杯”全国大学生(中学生)演讲大赛。特邀请你组队参加20xx年5月16-18日在汉光武帝刘秀登基的高邑县举行的全国大学生演讲大赛。现将大赛的相关事宜通报如下:

1、活动时间:20xx年5月16—19日(5月16日全天报到,17日复赛,18日决赛,活动结束,19日返回。)

2、参赛对象:全国各高校的120名大学生和30名中学生。

3、演讲主题:“中国梦·我的梦·高邑梦”。

4、邀请领导和嘉宾:李燕杰、刘吉、彭清一等。

5、参赛费用:食宿费全免,不收任何费用。

特此邀请!

(愿意参加的学校,请回复邮件到xxx,收到你的回复后,大赛组委会将大赛的'详细资料发来。)

中国演讲协会

二〇xx年一月二日

比赛邀请函 篇2

亲爱的朋友们:

大家好!我是云岭中学的学生会主席张华,今天我非常荣幸地邀请你们参加我们学校举办的一年一度的知识竞赛。

作为我校学生会组织的一项传统活动,这次知识竞赛不仅是为了丰富同学们的知识储备,提高他们的综合能力,更是一个展示智慧和挑战自我的平台。

活动时间定于下周六上午9点正式开始,在学校的多功能报告厅举行,预计比赛时间为两个小时。比赛形式为团体赛,每队由三名同学组成,每队将经过共四轮比拼,包括选择题、填空题、解答题以及抢答题。参加者需要全程配合主持人和裁判老师的工作,并遵守比赛规则,保证比赛的公平、公正。

本次比赛的题目包含了各个学科的知识,涉及范围广泛,既有中学阶段的常识,也有一些扩展和拓展的内容。对于参赛者而言,这是一个展示自己才华的机会,也是一个提升自己的平台。我们鼓励同学们在备战过程中主动学习,积极探索,提出问题并寻求解答。相信通过这次竞赛,我们将共同成长,收获知识的同时,也发现自己的不足,并不断进取。

此外,我们为获胜队伍准备了精美的证书和奖品,以表彰他们的努力和勇气。比赛后,我们还将安排颁奖仪式,同学们不仅可以接触到一流的学习资源,也有机会与其他同学进行深入的学习和交流。

同时,我们还准备了一些丰富多彩的文娱活动,包括小品表演、舞蹈表演等,让我们的知识竞赛变得更加有趣和生动活泼。参赛同学可以放松身心,在紧张的比赛之余感受一下欢声笑语的温暖。

最后,我希望借此机会感谢所有支持和帮助过我们的老师和同学们。没有你们的辛勤付出,就不会有这样一场精彩纷呈的知识竞赛。

朋友们,让我们团结起来,一同参加这场盛大的知识盛宴,共同度过一个难忘而有意义的周末!让我们用智慧和才华书写属于自己的精彩篇章!

最后,请各位同学于下周三前将参赛意向告知班主任,以便我们及时安排场地和活动细节。如有任何问题,请及时与我们联系,欢迎来信或电话咨询。

衷心希望能够和你们共同参与这次知识竞赛,共同创造一个难忘的回忆!

谢谢!

云岭中学学生会主席 张华

邀请时间: 2022年6月25日

比赛邀请函 篇3

尊敬的各位家长:

大家好!20xx年11月12日本周三上午在园内进行早操比赛。

早操是幼儿一日生活中的第一个集体活动,是调动幼儿一日生活良好情绪的开端;对幼儿体能锻炼及动作发展起着至关重要的作用。为了进一步强化幼儿晨锻的意识,积极参加体育活动和早操活动,培养幼儿合理有序的日常生活习惯,我们按照园务工作要求和安排,有目的、有计划地编排了全新的早操。让幼儿开心快乐做早操,同时达到增强体质,发展肢体协调,培养勇敢自信优良品格的目的。

早操活动安排如下:

1、比赛时间:11月12日8:50大班家长入园9:00大班开始

11月12日9:45小班家长入园9:55小班开始

11月12日10:20中班家长入园10:30大班开始

注意事项:①每名幼儿限一名家长

②家长须持接送卡入场。

③请家长按指示牌顺序有序就坐。

④场内有专业摄像人员,各班班主任也安排了每班至少一名的照相人员,比赛之后会第一时间上传给大家,请大家在比赛期间不要随意走动。

⑤由于幼儿园内停车位有限,建议大家绿色出行。

2、比赛场地:幼儿园操场

3、比赛内容:幼儿园冬季季早操展示

4、比赛顺序:大班—小班—中班

幼儿园每一次组织的活动都是为了幼儿的成长和发展考虑的,但也离不开您的'倾力配合与支持。希望各位家长准时参加并提出宝贵意见。

比赛邀请函 篇4

各兄弟学校:

为推进数学课堂教学改革和培养青年教师。容桂小学、南环小学、红旗小学、细滘小学、振华小学五校联盟定于20xx年5月4日全天,在容桂小学(康富校区科艺楼“智能录播室”)举行联盟学校数学青优课比赛,诚邀街道小学数学中心教研组成员和各兄弟学校数学教师前来观摩和指导。

容桂小学、南环小学、

红旗小学、细滘小学、振华小学

20xx年4月28日

比赛邀请函 篇5

做有思想的班主任建有文化的班集体

全国首届中小学和谐杯“我的文化我的班”

演讲比赛与“班级文化建设”经验交流会

邀请函班级文化是指围绕班级的教育、教学活动所建立起来的一整套价值取向、行为方式、审美情趣、制度体系、班级风气的总和。班级文化是一种隐性的、长期的教育力量,是班级发展的内在动力,是班级成员成功的关键。

班主任如何从繁忙琐碎的班级管理事务中解脱出来?靠文化的力量管理一个班,是班主任教育理论水平和管理能力的表现,也是激发学生自主参与意识、任课教师和家长协同共建积极性的最有效途径。好的班级文化,能形成班级正能量,对学生起到潜移默化的教育、浸润、凝聚作用;良好的班级文化有助于学生养成良好的习惯,激发学生的学习兴趣,提高学生的综合素质;良好的班级文化能促进学生的自我教育、自我激励和自我发展;好的班级文化能减轻班主任的工作压力,使班主任从“大管家”而变成学生的精神导师,使小小的教室成为学生施展才能的大舞台。

有人说:教室的空间是固定的,而教室的容量是无限的,教室的容量大小决定于桌椅之外流淌的文化,决定于班主任的思想水平和领导力。因此,要把班级文化建设作为“立德树人”的重要抓手,积极构建班级文化微课程体系,不断丰富德育工作智慧,努力提升班主任专业水平,精心打造独具特色的班级名片。

几年来,我们围绕班级文化的建设,主要从如下几个方面进行:首先确定班级核心价值理念,即管理一个班做什么最有价值,怎么做最有价值,班主任要提炼班级管理的核心价值理念,并要对这一核心价值理念作出解读。第二,围绕核心价值观构建班级文化体系。

1精神文化建设,主要包括:班级名称、班级培训、班级精神、班级共同愿景、班级旗帜、班级会徽、班级歌曲、班级口号、班级名片等。

如为了凸显自己的核心价值理念和班级特色,每个班除了行政班名(如七年级二班)外,还要起一个文化班名,如雄鹰班、和谐苑、养正轩、百花园等。

2环境文化建设:主要包括教室内外墙、走廊、空间等环境文化系统的设计与布局。

三。制度文化建设:主要包括班级发展规划、班级规章制度、行为规范等。

4组织文化建设:主要包括班级管理模式、班级团队组织的建立与责任、校内外学习型社区的建设等。

5活动文化建设:主要包括参与学校各项活动和独立开展的班级活动。

6行为文化建设:主要包括学生学习行为表现、做事方式等文化心理模式的构建。

7.网络沟通文化建设:主要包括班级日志、班级发展历程、学生成长档案、班级博客、家长微信群、**群等网络文化建设和与家长共育同成长的故事和案例等。

为了交流班级文化建设的经验,促进班级文化的建设,我们计划在2015年8月3日在山东省青岛市举办全国首届“我的文化我的班”演讲比赛和班级文化建设经验交流会。有关事项说明如下:

一、会议安排

(1) 地点:山东省青岛市黄岛区弘文学校。地址:黄岛区(原胶南市)水灵山路与银桥街交汇处。

弘文学校是一所现代化、高水平的九年制学校,于2013年9月投入使用。该校以创建“青岛市乃至全国的九年一贯制示范学校”为目标,致力于“和合”文化的构建与引领,秉持“我不付出,谁来收获”的弘文精神和“因为欣赏,所以精彩”的价值理念,以“志远行近、追求卓越”的工作态度,精心打造“九年贯通、弘毅崇文”的弘文特质,为培养“有梦想、有智慧、有担当”的弘文学子而奉献着、收获着、幸福着……

(二)会议时间:2015年8月3日—5日,2015年8月2日8:00-18:00(周日)全天报到,3-5日开会。报名地点:黄岛区弘文学校学术讲堂。

3月3日上午:开幕式、经验交流、专家报告

3日下午:观摩弘文学校的学校文化与班级文化建设成果,弘文学校与部分外地学校的老师上初中、小学的主题班会,弘文学校的社团活动(具体安排见议程安排表,报到时领取。)

4日一天,来自全国各地的高中、初中、小学代表“我的文化我的班”演讲比赛。具体演讲要求看附件一《演讲评价表》。

5日上午,弘文学校学生进行文艺表演、大会闭幕式和颁奖典礼。

5日下午,代表们自由活动。

二、参加演讲和观摩的要求

每个学校参加演讲比赛的一个学段(分小学段、初中段、高中段)不超过9人,如九年一贯制学校和完全中学可以报两个学段,不超过18人。观摩人员不限。讲师制作课件,每位演讲者发言不超过15分钟。

三、参会报名方法

1. 参加演讲的代表报名时间截止到7月15日,演讲者填写电子**《演讲比赛申请表》;参加观摩的代表报名时间截止到7月25日,观摩者填写电子**《观摩报名表》,以电子邮件方式发送会务组。会务组会以**或电子邮件方式咨询需要落实的问题或通知相关事项,所以在报名表中务必写明手机号与电子信箱。

2参加演讲和观察的每位代表的会议服务费和资料费为580元,住宿费自理。

三。会议联系人:弘文学校办公室**,0532吕洪波;注册联系人张怀山,138注册邮箱:

天津市教育科学院王敏勤教授,**:139,

请同时将申请表寄至弘文学校和天津教育科学院王敏勤教授。

四、住宿及交通说明

(一)预订宾馆说明

我们把学校周边的几个宾馆信息说明如下,各参会单位可提前通过**直接向宾馆预订房间,一般预订都比较便宜。青岛是旅游城市,建议您尽早预订。如果您有任何困难,请与会议管理组联系。以下酒店离学校比较近:

(二)会议报到时乘车说明

1乘坐火车等交通工具到青岛火车站(市南区)/栈桥

1) 沿广州路行驶570米,左转进入四川路

2) 沿四川路行驶50米,朝胶州湾隧道/黄岛方向行驶,在匝道上左转

3) 沿匝道行驶390米进入青岛胶州湾隧道

4)沿青岛胶州湾隧道行驶7.8公里,直行进入漓江东路,沿海滨大道一直西行,经过枢纽站驶入双珠路(原胶南市珠海路中段),至水灵山路右拐100米处即为弘文学校(黄岛区第五中学西邻)。

2、乘飞机到青岛流亭机场通达方式:从流亭机场乘坐到黄岛区(原胶南市)宏程粤海大酒店的机场大巴或者出租车,再换成区内公交车或者出租车到达黄岛区弘文学校。

三。乘坐公交车等交通工具到青岛市黄岛区西海岸汽车站(原胶南汽车站)

终点为青岛市黄岛区西海岸汽车总站(原胶南汽车站):乘坐101路、7路、45路到五中站,下车后西行银桥大街50米即到弘文学校(站点附近)。

4、自驾车通达方式:

青岛市黄岛区弘文学校(黄岛区水灵山路与银桥大街交汇处),南临双珠路(原珠海路)100米,北靠胶州湾路(原人民路)300米,附近有黄岛区市民服务中心、利群家乐城、黄岛五中(西邻)等标志性建筑。请根据您来的方向选择最佳路线。

全国和谐教学法研究会

青岛市黄岛区弘文学校

2015年4月14日

附件一我的文化我的班”演讲评价表

演讲人姓名: 单位

年级课题

评价人合计:

附件二参加演讲比赛申请表

(报名截止时间为7月15日)

附件三:

参加观摩报名表

(报名截止时间为7月25日)

比赛邀请函 篇6

尊敬的 :

兹定于 月 日(星期 )晚 在教学楼学术报告厅举办 学院第 届外文歌曲大赛,届时期待您的光临。能够与您共度这美妙的音乐盛典,我们将不胜荣幸!

学院外语系团总支学生会

- -

比赛邀请函 篇7

诚意邀请xx:

我系为了提高学生的动手能力、丰富同学们的业余生活、以共创美好和谐校园为指导思想,通过开展形式新颖、内容丰富意义深远的活动——“校园xx大赛”,为广大学生提供了一个挑战自我的机会、放飞梦想的舞台!

在团委、学生会、青年志愿者协会的共同努力,我院广大同学的积极参与下终于完成了初赛,并取得不错的成绩。充分展示了我院大学生的风采!因此我系决定在我院篮球场隆重举行决赛!为了感谢您一直以来对我系活动的关心和支持,特此诚意的邀请您参加此次活动!

我们期待您的到来!

时间:xx年xx月xx日晚上7:00

地点:院篮球场

邀请单位:xx系团委

xxx

20xx年xx月xx日

比赛邀请函 篇8

诚意邀请xx:

我系为了提高学生的动手能力、丰富同学们的业余生活、以共创美好和谐校园为指导,通过开展形式新颖、内容丰富意义深远的活动——“校园xx大赛”,为广大学生了一个挑战自我的机会、放飞梦想的.舞台!

在团委、学生会、青年志愿者协会的共同努力,我院广大同学的积极参与下终于完成了初赛,并取得不错的成绩。充分展示了我院大学生的风采!因此我系决定在我院篮球场隆重举行决赛!为了感谢您一直以来对我系活动的关心和支持,特此诚意的邀请您参加此次活动!

我们期待您的到来!

时间:xx年xx月xx日晚上7:00

地点:院篮球场

邀请单位:xx系团委

xxx

20xx年xx月xx日

比赛邀请函 篇9

各高校演讲协会:

为了隆重纪念中国共产党成立93周年,继承和发扬党的优良传统和作风,讴歌共产党的`丰功伟绩,歌颂伟大祖国的繁荣昌盛,赞美共产党人的先锋模范作用和优秀品质,激发当代大学生爱党、爱国、爱人民的满腔热情,努力提高大学生的综合素质和演讲水平,培养和造就优秀人才,经中国演讲与口才协会、中共青岛市委宣传部研究决定,共同举办2014“党旗颂”全国大学生演讲大赛,特邀请贵校演讲协会选出最优秀的选手参加此次全国每年一次的大学生演讲盛会。现将有关事项函告如下:

一、活动名称:2017“党旗颂”全国大学生演讲大赛

二、大赛主题:歌颂党、歌颂祖国、歌颂美好人生

三、主办单位:中国演讲与口才协会、中共青岛市委宣传部

四、承办单位:青岛市演讲协会、青岛辉煌路策划公司

五、协办单位:云南省演讲学会、浙江省演讲学研究会、北京市演讲与口才协会(筹)、广东省演讲协会(筹)、中国口才网、中华演讲网、《大学生周刊》等。

六、比赛时间:2017年6月17日报到,18、19两天比赛

七、报到地点:青岛市(具体地点另行通知)

八、大赛费用:参赛选手、带队老师均不收食宿费、报名费和参赛费,车旅费自理

九、比赛方法:

1.各院校在校内组织选拔,选出优秀选手参赛,每个代表队只能由3位选手和一名带队老师组成。各高校的爱好者也可以个人名义报名参赛。

2.本次演讲大赛分三个环节进行:

①5月中旬前,各高校进行选拔赛和推荐选手

②5月下旬前通过网络视频进行复赛,各参赛队和参赛个人在 5月27日前将参赛选手的视频(压缩版格式)和演讲稿及《参赛选手报名表》发到大赛指定的邮箱

③参加决赛选手(控制在100人以内)6月17日汇聚青岛进行决赛,决赛分半决赛和总决赛两个阶段进行,采用命题演讲形式(围绕大赛主题和内容自拟题目,时间在6分钟以内),可讲同一题目;半决赛分三组进行,每组取前八名进入决赛。

3.大赛邀请全国演讲界知名专家教授担任评委

4.奖项设置:

①个人奖:设特别精彩奖1名;一等奖5名、二等奖10名、三等奖20名;优秀奖若干名。

②团体奖:以各队三名参赛选手在半决赛和总决赛中的得分总和为团体得分,设特等奖1名,一等奖2名,二等奖3名,三等奖6名;优秀奖若干名。

十、报名时间:2017年4月20日至5月30日前

十一、报名方式:请采用电子信箱方式报名。


1.演讲比赛邀请函

2.演讲比赛邀请函范文

3.美国邀请函范本

4.2017会议邀请函范本

5.展会邀请函范本

6.2016商务邀请函范本

7.会议邀请函格式范本

8.英文邀请函范本

9.公司年会邀请函范本

10.活动邀请函格式范本

反比例课件


教案课件是我们教师工作的重要组成部分,现在又到了编写课件的时候了。教案是有效管理知识传授过程的工具。这个名为"反比例课件"的教案是由工作总结之家小编精心创作的,希望您会喜欢它。感谢您阅读这篇文章,希望它能给您带来愉悦!

反比例课件【篇1】

反比例函数是高中数学中的一个重要概念,它的图像和性质非常值得学生深入研究。本文将从图像和性质两个方面,对反比例函数进行详细的讲解和解释,帮助学生深入理解和掌握反比例函数的特点和应用。

一、反比例函数的图像

反比例函数的图像是一条反比例曲线,它可以用函数式表示为y=k/x,其中k为正常数。这条曲线具有以下几个特点:

1.图像的形状

反比例函数的图像是一条开口向右下方的双曲线,它没有定义域和值域,因为它在x轴和y轴上都不存在渐近线。

2.渐近线

反比例函数的图像存在两条渐近线,它们是x轴和y轴。

3.对称轴

反比例函数的图像在第一象限和第三象限分别关于y=x对称,因此反比例函数具有对称性。

二、反比例函数的性质

除了图像的特点,反比例函数还具有以下几个性质:

1.定义域和值域

反比例函数的定义域为除了0以外的所有实数,它的值域也为除了0以外的所有实数。

2.单调性

反比例函数在其定义域上是单调递减的。

3.零点和极值

反比例函数没有零点和极值,因为它的图像没有交点和最大值或最小值。

4.特殊点

反比例函数的一个特殊点是原点(0,0),因为当x或y等于0时,函数值不存在。

三、反比例函数的应用

反比例函数在实际问题中的应用非常广泛,例如:

1.速度和时间的关系。当一辆汽车行驶的速度越快,行驶一定距离所需的时间就会越短,因此速度和时间之间的关系可以用反比例函数来表示。

2.人口和资源的关系。当一个地区的人口增加,对资源的需求也会增加,因此人口和资源之间的关系可以用反比例函数来表示。

3.光线的反射。当光线在一定角度入射到平面上时,反射角度与入射角度成反比例关系,因此可以用反比例函数来表示。

总之,反比例函数是一个非常重要的概念,它的图像和性质与许多实际问题密切相关。学生应该通过深入研究和实践,在应用反比例函数解决实际问题中提高自己的数学素养和解决问题的能力。

反比例课件【篇2】

教学内容

反比例。(教材第47页例2)。

教学目标

1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

重点难点

引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。

教学准备

投影仪。

复习导入

1.让学生说说什么是正比例,然后用投影出示下面的题。

下面各题中哪两种量成正比例?为什么?

(1)每公顷产量一定,总产量和公顷数。

(2)一袋大米的重量一定,吃了的和剩下的。

(3)修房屋时,粉刷的面积和所需涂料的数量。

2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?

教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。

新课讲授

1.教学例2。

创设情境。

教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?

出示教材第47页例2的情境图和表格。

请学生认真观察表中数据的变化情况,组织学生分小组讨论:

(1)水的高度和底面积变化有关系吗?

(2)水的高度是怎样随着底面积变化的?

(3)水的高度和底面积的变化有什么规律?

学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。

教师板书配合说明这一规律:

30×10=20×15=15×20=……=300

教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。

2.归纳反比例的意义。

组织学生小组内讨论:反比例的意义是什么?

学生小组内交流,指名汇报。

教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

3.用字母表示。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?

学生探讨后得出结果。

x×y=k(一定)

4.师:生活中还有哪些成反比例的量?

在教师的引导下,学生举例说明。如:

(1)大米的质量一定,每袋质量和袋数成反比例。

(2)教室地板面积一定,每块地砖的面积和块数成反比例。

(3)长方形的面积一定,长和宽成反比例。

5.组织学生将例1与例2进行比较,小组内讨论:

正比例与反比例的相同点和不同点有哪些?

学生交流、汇报后,引导学生归纳:

相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

不同点:正比例关系中比值一定,反比例关系中乘积一定。

6.你还有什么疑问

?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。

反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。

课堂作业

1.教材第48页的“做一做”。

2.教材第51页第9、10题。

答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。

(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。

(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。

2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。

第10题:5010012

课堂小结

说一说成反比例关系的量的变化特征。

课后作业

1.完成练习册中本课时的练习。

2.教材51~52页第8、14题。

答案:

2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。

第14题:(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。

(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。

解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。

从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。

(3)斑马跑得快。

第3课时反比例

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用x和y表示两种相关联的量,x和y成反比例关系用字母表示为×y=k(一定)

正比例与反比例的相同点和不同点:

相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

反比例课件【篇3】

第一课时

教学设计思想

本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的'应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

教学目标

知识与技能

1.能灵活列反比例函数表达式解决一些实际问题。

2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。

过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

情感态度与价值观

体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重难点

重点:掌握从实际问题中建构反比例函数模型。

难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教学方法

启发引导、合作探究

教学媒体

课件

教学过程设计

(一)创设问题情境,引入新课

[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用。

[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。

问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。

反比例课件【篇4】

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。

经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

体育课上测试了百米赛跑成绩,那么时间t与平均速度v的关系是怎样的?你能用含有t的代数式表示v吗?

我们知道,矩形的面积s与长a宽b之间的关系为S=ab,那么,当S=245时,长a宽b可用怎样的函数关系式表示?

下列问题中,变量间的`对应关系可用怎样的函数关系式表示?

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。

(2)某住宅小区要种植一个面积为1000O的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。

(3)已知某市的总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。

1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?

2.这些函数关系式与正比例函数、一次函数有何不同?

3.这些函数关系式有什么共同的特征?

4.各关系式中两变量之间有什么关系?

5.你能归纳出反比例函数的概念吗?

通过回答以上问题,师生共同总结反比例函数的概念。

1.反比例函数关系式中有几个变量?

2.变量之间存在什么关系?

3.反比例函数还有其他形式吗?若有请指出。

4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?

1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。

2.已知y是x的反比例函数,且当x=2时,y=6。

(1)写出y与x的函数关系式。

(2)求当x=4时,y的值。

3.当x为何值时函数y=x-2a-4 是反比例函数?

4.已知函数y= y1+y2, 与x成正比例, y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。

(1)求y与x的函数关系式。

1.通过本节课的学习你对反比例函数有怎样的认识?

2.反比例函数与正比例函数的区别有哪些?

教材中本节习题17.1第1、2、4题。

反比例课件【篇5】

反比例函数是高中数学中的一个重要概念,其图像和性质的学习对于建立数学基础、提高计算能力和解决实际问题具有重要意义。本篇文章将从反比例函数的定义、图像、性质和实际应用等方面进行探讨。

一、反比例函数的定义

反比例函数定义为 y = k/x,其中 k 为常数,x ≠ 0。其特点为 x 越大,y 越小,反之亦然。该函数图像为一条经过原点且对称于 y = x 的直线。

二、反比例函数的图像

反比例函数 y = k/x 的图像可以通过绘制函数的表格或者使用计算机绘图软件得到。下图展示了 y = 2/x 的图像:

反比例函数的图像通常是沿着对称轴 y = x 对称的,且它们远离原点趋近于零。在 x 轴的正半轴和 y 轴的正半轴中,其图像切线的斜率不断变化。在 x 轴和 y 轴负半轴中,其图像切线的斜率均为负数,靠近原点时逐渐变大。

三、反比例函数的性质

1. 定义域:x ≠ 0,值域:y ≠ 0。

2. 性质1:垂直渐近线为 y = 0。

3. 性质2:当 x > 0 时,函数单调递减;当 x

4. 性质3:函数与坐标轴交点分别为( k, 0 )和( 0, k )。

5. 性质4:当 x1x2 = k 时,有 y1y2 = k 成立。

6. 性质5:当 x1x2 = k 且 y1y2 = k 时,有 y1 + y2 = y3 + y4,其中 (x1,y1),(x2,y2) 分别是曲线上两个点,而 (x1,y3),(x2,y4) 分别是 x1x2 = k 的两根。

四、反比例函数的实际应用

反比例函数主要应用于实际问题中的比例关系,用于表示两个量的关系,例如工作时间和完成工作量、车速和行驶距离等。

此外,反比例函数在物理学、地理学和经济学等领域也有广泛应用。例如,在物理学中,当质量和速度发生变化时,它们之间的关系可以用反比例函数表示。在地理学中,人口密度和土地面积之间的关系也可以用反比例函数描述。在经济学中,货币的购买力和物价之间的关系也可以用反比例函数表示。

总之,反比例函数是高中数学的一项重要内容,是掌握数学基础和解决实际问题的必备工具。以上为反比例函数的图像和性质课件,希望能对您的学习和了解提供帮助。

反比例课件【篇6】

教学内容

教科书第14~16页的例4~例6以及相应的“做一做”,练习三的第4~7题。

教学目的

1、使学生通过具体问题认识成反比例的量,理解反比例的意义,能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。

2、引导学生运用前面学习成正比例的量的学习方法学习反比例,从中感受学习方法的普遍适用性,培养学生的观察能力、推理能力、归纳能力和灵活运用知识的能力。

教具、学具准备

视频展示台。

教学过程

一、复习引入

1、怎样判断两种量是不是成正比例?

2、写出正比例关系式。

3、判断下面每题中的两种量是不是成正比例,并说明理由。

(1)每本练习本的张数一定,装订练习本纸的总张数和装订的本数。

(2)每天播种的公顷数一定,播种的总公顷数与播种的天数。

(3)工作总量一定,工作效率和工作时间。

4、回想一下,我们怎样学习成正比例的量。

引导学生归纳研究成正比例的量的学习步骤和方法是:先把两种量的变化情况列成表,再观察、讨论表中的变化规律,归纳变化规律,并用关系式表示。学生回答时,教师随学生的回答板书:列表──观察──讨论──归纳──用关系式表示。

二、导入新课

教师:这节课我们用同样的学习方法来研究比例的另外一个规律。

三、进行新课

1、教学例4。

教师:同学们刚才在解答准备题时,知道“工作总量一定,工作效率和工作时间”不成正比例关系,那么,工作效率和工作时间成不成比例?如果成比例,又成什么比例呢?为了弄清这些问题,我们可以用前面掌握的学习方法,先列个表来分析。

在视频展示台上出示例4:华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表:

工效(个)102030405060…

时间(时)603020151210…

教师:请同学们观察这个表,先独立思考后再讨论、交流、回答以下问题:(在视频展示台上展示。)

(1)表中有哪两种量?

(2)这两种量是怎样变化的?

(3)还可以从表中发现哪些规律?

学生讨论后,先抽问第1问和第2问。引导学生说出表中有工作效率和工作时间这两种量,这两种量的变化规律是,工作效率不断扩大,所需的工作时间反而不断地缩小。

教师:为什么会有这种变化规律呢?

引导学生结合生活实例,说因为工作总量一定,每小时做的工作越多,所用的时间越少。例如要种8棵树,如果每小时种1棵,要8小时;每小时种4棵,只要2小时;如果每小时种8棵呢,只要1小时就够了。

教师:尽管一个量在扩大,另一个量反而缩小,但是每小时加工的个数是随所需的加工时间的变化而变化的,所以,每小时加工的个数与所需的加工时间仍然是相关联的两种量。你们还发现些什么规律吗?

学生任意说表中的规律。如每小时加工数从10扩大到40个,扩大4倍,所需的加工时间反而从60小时缩短到15小时,缩小了4倍;每小时加工数从60个缩小到30个,缩小了2倍,所需的加工时间反而从10小时扩大到20小时,扩大了2倍。

教师:还能发现哪些规律呢?比如说用每竖列的两个数相乘,看看它们的乘积是否相等,想想这个乘积表示什么?

引导学生找出每竖列的两个数的乘积相等的规律。如:

10×60=600,20×30=600,40×15=600,…

这个600实际上就是这批零件的总数。

教师:能写出关系式吗?

引导学生写出:每小时加工数×加工时间=零件总数(一定)

2、教学例5。

教师:再来研究一个问题。

在视频展示台上出示例5:用600张纸装订成同样的练习本,每本的张数和装订的本数有什么关系呢?请同学们先填写下表:

每本的张数152025304060…

装订的本数40…

教师:同学们先填写好表中的数据后,再用前面的分析方法,独立分析表中的数量关系,然后同桌进行交流。

学生分析后指导学生归纳:

(1)表中每本的张数和装订的本数是相关联的两种量,装订的本数随着每本的张数的变化而变化;

(2)每本的张数扩大,装订的本数反而缩小;每本的张数缩小,装订的本数反而扩大;

(3)它们之间的关系可以写成:每本的张数×装订的本数=纸的总张数(一定)。

教师:我们上面研究了两个问题,下面我们一起来归纳这两个问题的一些共同特点。

引导学生归纳出这两个问题中都有两种相关联的量,一种量扩大,另一种量反而缩小,这两种量中相对应的两个数的积一定。

教师:凡是符合以上规律的两种量,我们就把它叫做成反比例的量。(板书课题)它们之间的关系就是反比例关系。和正比例一样,成反比例的量也可以用式子来表示。如果用x和y表示两种相关联的量,用k表示它们的乘积(一定),怎样用式子来表示反比例的关系式呢?

引导学生归纳出:x×y=k(一定)。

教师:请同学们相互说一说生活中还有哪些是成反比例的量?

学生先相互说,然后再说给全班同学听。

3、教学例6。

教师:请同学们用上面所学的知识判断一下,在播种中如果播种的总公顷数一定,每天播种的.公顷数和要用的天数是不是成反比例?为什么?

学生先独立分析,然后再交流讨论,最后抽学生汇报。引导学生分析出每天播种的公顷数和要用的天数是两种相关联的量,它们与总公顷数有“每天播种的公顷数×天数=总公顷数”的关系,由于总公顷数一定,所以每天播种的公顷数和要用的天数成反比例。

指导学生完成第16页“做一做”。

四、巩固练习

指导学生完成练习三第4~7题。

五、课堂小结

教师:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?

学生小结后教师再对全课知识进行归纳,学有余力的学生,可以在教师的指导下讨论完成练习三的第8*题。

板书设计

成反比例的量学习的基本步骤和方法:列表──观察──讨论──归纳──用关系式表示。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

X×Y=K(一定)

例4:例5:每小时加工数×加工时间=零件

每本的张数×装订的本数=纸的总数(一定)总张数(一定)

"反比例函数教案"延伸阅读