等差数列课件11篇。
教案课件是教师工作的重要组成部分。编写教案和课件是提高教学实践水平的必要技能,为此,我们需要静下心来认真编写。在编写教案课件时,我们应该着重从哪些方面入手呢?相关信息已经为您整理好了:“等差数列课件”。为防遗忘,建议您收藏本页!
等差数列课件(篇1)
教学目的:
1.明确等差数列的定义,掌握等差数列的通项公式。
2.会解决知道中的三个,求另外一个的问题。
教学重点:等差数列的概念,等差数列的通项公式。
教学难点:等差数列的性质
教学过程:
一、复习引入:(课件第一页)
二、讲解新课:
1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。
(课件第二页)
⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;
⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。
2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页)
三、例题讲解
例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
例2 在等差数列 中,已知 , ,求 , ,
例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。
小结:①这就是第二通项公式的变形,②几何特征,直线的斜率
例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)
例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)
分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。
注:①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,… ②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q. ③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。
例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数.
四、练习:
1.(1)求等差数列3,7,11,……的第4项与第10项.
(2)求等差数列10,8,6,……的第20项.
(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.
(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由.
2.在等差数列{ }中,
(1)已知 =10, =19,求 与d;
五、课后作业:
习题3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.
等差数列课件(篇2)
各位领导、各位专家:
你们好!我说课的课题是《等差数列》。我将从以下五个方面来分析本课题:
一、教材分析
1、教材的地位和作用:
《等差数列》是北师大版新课标教材《数学》必修5第一章第二节的内容,是学生在学习了数列的有关概念和学习了给出数列的两种方法——通项公式和递推公式的基础上,对数列知识的进一步深入和拓展。同时等差数列也为今后学习等比数列提供了学习对比的依据。另一方面,等差数列作为一种特殊的函数与函数思想密不可分,有着广泛的实际应用。
2、教学目标:
a、在知识上,要求学生理解并掌握等差数列的概念,了解等差数列通项公式的推导及思想,初步引入“数学建模”的思想方法并能简单运用。
b、在能力上,注重培养学生观察、分析、归纳、推理的能力;在领会了函数与数列关系的前提下,把研究函数的方法迁移到研究数列上来,培养学生的知识、方法迁移能力,提高学生分析和解决问题的能力。
c、在情感上,通过对等差数列的研究,让学生体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。
3、教学重、难点:
重点:
①等差数列的概念。
②等差数列通项公式的推导过程及应用。
难点:
①等差数列的通项公式的推导。
②用数学思想解决实际问题。
二、学情分析
对于高二的学生,知识经验已经比较丰富,他们的智力发展已经到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。
三、教法、学法分析
教法:本节课我采用启发式、讨论式以及讲练结合的教学方法,通过提问题激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析并解决问题。
学法:在引导学生分析问题时,留出学生思考的余地,让学生去联想、探索,鼓励学生大胆质疑,围绕等差数列这个中心各抒己见,把需要解决的问题弄清楚。
四、教学过程
我把本节课的教学过程分为六个环节:
(一)创设情境,提出问题
问题情境(通过多媒体给出现实生活中的四个特殊的数列)
1、我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,10,15,20,①
2、2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目共设置了7个级别,其中较轻的4个级别体重组成数列(单位:Kg):48,53,58,63②
3、水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5,最低降至5那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15、5,13,10、5,8,5、5③
4、按照我国现行储蓄制度(单利),某人按活期存入10000元钱,5年内各年末的本利和(单位:元)组成了数列:10072,10144,10216,10288,10360④
教师活动:引导学生观察以上数列,提出问题:
问题1、请说出这四个数列的后面一项是多少?
问题2、说出这四个数列有什么共同特点?
(二)新课探究
学生活动:对于问题1,学生容易给出答案。而问题2对学生来说较为抽象,不易回答准确。
教师活动:为引导学生得出等差数列的概念,我对学生的表述进行归类,引导学生得出关键词“从第2项起”、“每一项与前一项的差”、“同一个常数”告诉他们把满足这些条件的数列叫做等差数列,之后由他们集体给出等差数列的概念以及其数学表达式。
同时为了配合概念的理解,用多媒体给出三个数列,由学生进行判断:
判断下面的数列是否为等差数列,是等差数列的找出公差
1、1,2,3,4,5,6,;(√,d = 1)
2、0、9,0、7,0、5,0、3,0、1;(√,d = —0、2)
3、0,0,0,0,0,0,、;(√,d = 0)
其中第一个数列公差>0,第二个数列公差
由此强调:公差可以是正数、负数,也可以是0
在理解等差数列概念的基础上提出:
问题3、如果等差数列的首项是a1,公差是d,如何用首项和公差将an表示出来?
教师活动:为引导学生得出通项公式,我采用讨论式的教学方法。让学生自由分组讨论,在学生讨论时引导他们得出a10=a1+9d,a40=a1+39d,进而猜想an=a1+(n—1)d。
整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
此时指出:这就是不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,进而提出:
问题4、怎么样严谨的求出等差数列的通项公式?
利用等差数列概念启发学生写出n—1个等式。对照已归纳出的通项公式启发学生想出将n—1个等式相加,最后证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想”的教学要求。
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2,即an=2n—1、以此来巩固等差数列通项公式运用,同时要求画出该数列图象,由此说明等差数列是关于正整数n的一次函数,其图像是均匀排开的无穷多个孤立点。这一题用函数的思想来研究数列,使数列的性质显现得更加清楚。
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式的理解及运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a
1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1(1)求等差数列8,5,2,的第20项;第30项;第40项(2)—401是不是等差数列—5,—9,—13,的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an
例2在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d、在前面例1的基础上将例2当作练习作为对通项公式的巩固。
例3是一个实际建模问题
某出租车的计价标准为1、2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意“出租车的计价标准为1、2元/km”使学生想到在每个整公里时出租车的车费构成等差数列,引导学生将该实际问题转化为数学模型。
设置此题的目的:加强学生对“数学建模”思想的认识。
(四)反馈练习
1、小节后的练习中的第1题
目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、小节后的练习中的第2题
目的:对学生加强建模思想训练。
3、课本P38例3(备用)
已知数列{an}的通项公式anpnq,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?它与函数y=px+q两者图象间有什么关系?
目的:此题是对学生进行数列问题提高训练,学习如何用定义解决数列问题同时强化了等差数列的概念;进而让学生从数(结构特征)与形(图象)上进一步认识到等差数列的通项公式与一次函数之间的关系
(五)归纳小结
(由学生总结这节课的收获)
1、等差数列的概念及数学表达式
强调关键词:从第二项开始它的每一项与前一项之差都等于同一常数
2、等差数列的通项公式an=a1+(n—1)d会知三求一
3、用“数学建模”思想方法解决实际问题
(六)布置作业
必做题:课本P40习题2、2 A组第1、3、4题
选做题:课本P40习题2、2 B组第1题
课后实践:
将学生分成三个小组,要求他们分别找出现实生活中公差大于、小于、等于0的典型的等差数列的模型,在下节课派代表为我们讲解所选的等差数列。
目的是让学生主动参与具体的教学实践,进一步巩固知识,激发兴趣。
五、结束
本节课我根据高二学生的心理特征及认知规律,通过一系列问题贯穿教学始终,符合新课标要求的“以教师为主导,学生为主体”的思想,并最终达到预期的教学效果。
我的说课完毕,谢谢!
等差数列课件(篇3)
1、教学目标
让学生了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数以及指定的项。
2、学情分析
学生在第一节课《数列》的基础上已经初次接触“等差数列”的形式了,对于什么数列是等差数列已经明确,本节课需要学生具体明确的掌握等差数列的概念,通项公式以及基本应用。
3、重点难点
等差数列的概念以及通项公式是重点;概念和通项公式的应用时难点。
4、教学过程
4。1第一学时教学活动
活动1【讲授】等差数列
Ⅰ、问题情境
上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法。这些方法从不同的角度反映数列的特点。下面我们看这样一些例子。
课本P41页的4个例子:
①0,5,10,15,20,25,…
②48,53,58,63
③18,15.5,13,10.5,8,5.5
④10072,10144,10216,10288,10366
观察:请仔细观察一下,看看以上四个数列有什么共同特征?
共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项)
Ⅱ、认知新课
1、等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。
⑴公差d一定是由后项减前项所得,而不能用前项减后项来求;
⑵对于数列,若后一项减去前一项为d(与n无关的数或字母),n≥2,n∈N,则此数列是等差数列,d为公差。
思考:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?
2、等差数列的通项公式:“两个”
等差数列定义是由一数列相邻两项之间关系而得……
由此归纳等差数列的通项公式。
故:已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
[范例探究]
例1 ⑴求等差数列8,5,2…的第20项
⑵ —401是不是等差数列—5,—9,—13…的项?如果是,是第几项?
例2已知数列{}的通项公式,其中、是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
分析:由等差数列的定义,要判定是不是等差数列,只要看(n≥2)是不是一个与n无关的常数。
注:①若p=0,则{}是公差为0的等差数列,即为常数列q,q,q,…
②若p≠0,则{}是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q。
③数列{}为等差数列的充要条件是其通项等于pn+q(p、q是常数),称其为第3通项公式。
④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。
Ⅲ、课堂练习
课本P45练习1、2、3、4
[补充练习]
1、(1)求等差数列3,7,11,……的第4项与第10项。
(2)求等差数列10,8,6,……的第20项。
(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。
(4)-20是不是等差数列0,-3,-7,……的项?如果是,是第几项?如果不是,说明理由。
答案:
(1)分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所求项。
评述:关键是求出通项公式。
(2)评述:要注意解题步骤的规范性与准确性。
(3)分析:要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n值,使得等于这一数。
(4)解略
Ⅳ、课时小结
通过本节学习,首先要理解与掌握等差数列的定义及数学表达式;其次,要会推导等差数列的通项公式;并掌握其基本应用。
等差数列课件(篇4)
等差数列教材(教案) 课 题:等差数列 教 材:(苏教版数学第二册)§子1.2 等差数列 课 型:新授课 教学目标: 1、知识目标:(1)明确等差数列的定义,掌握等差数列的通项公式 (2)会解决知道an,a1,d,n中的三个,求另外一个的问题 2、能力目标:培养学生具有良好的观察能力、归纳能力、应用能力和创新解题能力 3、情感目标:培养学生具有良好的协作精神和探索精神 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学方法:发现法、观察法、讨论法、讲解法及其组合 教 具:多媒体 内容分析:前面学习了数列的定义及表示数列的几种方法――列举法、通项公式、递推公式等,这些方法从不同的角度反映了数列的.特点,具备这些知识后,为本节课探索等差数列的定义、通项公式等创造了条件。 教学过程: 一、创设情境 教师活动 学生活动 设计意图 1、小明昨天背记了1个英文单词,从今天开始,他背记的单词量逐日增加,依次为:6,11,16,21,……请同学们仔细观察一下,以上数列有什么特点? 学生独立思考后口答 问题是数学的心脏,数学来源于生活 2、提出问题:多少天后他背记的单词量达到301? 表明自己观点 让学生大胆猜想,引发思考,引出新课 二、探索活动 教师活动 学生活动 设计意图 1、交流与发现:(1)等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差都等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。注意 ①公差d一定是由后项减前项所得,而不能用前项减后项来求 ②对于数列{an},若an-an-1=d(与n无关的数或字母),n≥2,n∈N+,则此数列是等差数列,d为公差。 (2)等差数列的通项公式:an=a1+(n-1)d 学生与同桌交流后回答 探索、研究等差数列的定义及通项公式 2、例题讲解 (1)求等差数列8,5,2……的第20项 (2)-401是不是等差数列-5,-9,-13……的项?如果是,是第几项? 解:(1)由a1=8,d=5-8=2-5=-3 N=20,得a20=8+(20-1)×(-3)=-49 (2)由a1=-5,d=-9-(-5)=-4 得数列通项公式为:an=-5-4(n-1) 由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之得n=100,既-401是这个数列的第100项。 在等差数列{an}中,已知a5=10,a12=31,求a1,d,a20,an 解法一:∵a5=10,a12=31,则 a1+4d=10 a1=-2 a1+11d=31 d=3 ∴an=a1+(n-1)d=3n-5 a20=a1+19d=55 解法二:a12=a5+7d 31=10+7d d=3 ∴a20=a12+8d=55 小结:第二通项公式an=am+(n-m)d 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。 解:设{an}表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知:a1=33,a12=10,n=12 ∴a12=a1+(12-1)d,即110=33+11d 解得:d=7 因此,a2=33+7=40,a3=40+7=47,a4=54,a5=61, a6=68,a7=75,a8=82,a9=89,a10=96,a11=103, 答;梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm。 先让学生发表观点,后喊两名中等生板书 学生小组讨论后发表观点并积极上黑板板书 发挥学生优势,画出图形,讨论先求什么 会用通项公式,学会用方程思想解题 做好“条件”转化:学会列方程组解决 培养学生一题多解的能力 学会应用,培养数学建模能力与应用能力 三、巩固练习教师活动 学生活动 设计意图 练习: 1、(1)求等差数列3,7,11,……的第4项与第10项。 (2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。 2、在等差数列{an}中,(1)已知a4=10,a7=9,求a1与d; (2)已知a3=9,a9=3,求a12。 a1+3d=10 a1+6d=19 点拨:(1)由题意得: (2)解法一:由题意可得: a1+2d=9 a1=11 a1+8d=3 d=-1 ∴该数列的通项公式为:an=11+(n-1)×(-1)=12-n, ∴a12=0 解法二:由已知得:a9=a3+6d, 即:3=9+6d, ∴d=-1 又∵a12=a9+3d, ∴a12=3+3×(-1)=0 喊4名中等学生板书 喊2名中等学生板书: 令7n-5=100,解得:n=15, ∴100是这个数列的第15项 喊2名中等学生板书 喊2名中等学生板书,注意对照 会用通项公式 会判断一数是否为某一数列的其中一项,注意解题步骤的规范性与准确性 会由an,a1,d,n中的三个,求另外一个,培养发散性思维,培养一题多解能力与创新解题能力 四、反思总结 教师活动 学生活动 设计意图 通过本节课的学习,你有什么体会和收获?本课涉及哪些数学知识、思想、方法? 培养学生总结、归纳能力 及时总结,授之以渔 教学反思: 本节课的教学体现了“自主探索与合作交流”的教学理念,学生在探索中获得了数学的“思想、方法、能力、素质”。 一、情境创设,自然有效。 实践证明,通过问题发现问题,符合职业中学学生的认知特点,自然有效。 二、自主探索,惊喜不断。 本课从多层面开展课堂活动,既有民主和谐的师生互动式活动,更有学生的独立思考、演练、小组讨论、观察,发现,总结交流等学习活动,学生在探索过程中学得灵活、踏实、轻松、愉快,体验学习数学的成功和快乐。 三、夯实基础,提高效益。 本课以课本例题、练习为原型,创造性地使用教材,层层推进,激发学生学习潜能,培养学生具有良好的思维特性,渗透基本的数学思想和方法,培养学生数学建模能力,培养学生创新解题能力和应用能力,极大的提高了数学课堂教学效益。 四、新的思考。 1、要注意an=am+(n-m)d和an=pn-q(p、q是常数)的理解与应用; 2、在等差数列通项公式的应用中,应突出它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么两项可以决定一个等差数列。
等差数列课件(篇5)
一、等差数列
1、定义
注:“从第二项起”及
“同一常数”用红色粉笔标注
二、等差数列的通项公式
(一)例题与练习
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二)新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件; f
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1—an=d (n≥1) ;h4z+0"6vG
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1。 9 ,8,7,6,5,4,……;√ d=—1
2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01
3。 0,0,0,0,0,0,……。; √ d=0
4。 1,2,3,2,3,4,……;×
5。 1,0,1,0,1,……×
其中第一个数列公差0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,
则据其定义可得:
a2 — a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:
an=a1+(n—1)d
此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an+1 – an=d
将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)当n=1时,(1)也成立,所以对一切n∈N﹡,上面的公式都成立因此它就是等差数列{an}的通项公式。在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n—1个等式。对照已归纳出的通项公式启发学生想出将n—1个等式相加。证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n—1)×2 , 即an=2n—1 以此来巩固等差数列通项公式运用同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。(三)应用举例这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。在前面例1的基础上将例2当作练习作为对通项公式的巩固例3 是一个实际建模问题建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型——————等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)设置此题的目的:1。加强同学们对应用题的综合分析能力,2。通过数学实际问题引出等差数列问题,激发了学生的兴趣;3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法(四)反馈练习1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。目的:对学生加强建模思想训练。3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。(五)归纳小结 (由学生总结这节课的收获)1。等差数列的概念及数学表达式.强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2。等差数列的通项公式 an= a1+(n—1) d会知三求一3.用“数学建模”思想方法解决实际问题(六)布置作业必做题:课本P114 习题3。2第2,6 题选做题:已知等差数列{an}的首项a1= —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)五、板书设计在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
等差数列课件(篇6)
[教学目标]
1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
[教学重难点]
1.教学重点:等差数列的概念的理解,通项公式的推导及应用。
2.教学难点:
(1)对等差数列中“等差”两字的把握;
(2)等差数列通项公式的推导。
[教学过程]
一.课题引入
创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)
二、新课探究
(一)等差数列的定义
1、等差数列的定义
如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。
(1)定义中的关健词有哪些?
(2)公差d是哪两个数的差?
(二)等差数列的通项公式
探究1:等差数列的通项公式(求法一)
如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?
根据等差数列的定义可得:
因此等差数列的通项公式就是:,
探究2:等差数列的通项公式(求法二)
根据等差数列的定义可得:
将以上-1个式子相加得等差数列的通项公式就是:,
三、应用与探索
例1、(1)求等差数列8,5,2,…,的第20项。
(2)等差数列-5,-9,-13,…,的第几项是–401?
(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。
例2、在等差数列中,已知=10,=31,求首项与公差d.
解:由,得。
在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。
巩固练习
1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。
2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。
四、小结
1.等差数列的通项公式:
公差;
2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;
3.判断一个数列是否为等差数列只需看是否为常数即可;
4.利用从特殊到一般的思维去发现数学系规律或解决数学问题.
五、作业:
1、必做题:课本第40页习题2.2第1,3,5题
2、选做题:如何以最快的速度求:1+2+3+???+100=
等差数列课件(篇7)
教学目标:
(1)理解等差数列的概念,掌握等差数列的通项公式;
(2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;
(3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。
教学重、难点:等差数列的定义及等差数列的通项公式。
知识结构:一般数列定义通项公式法
递推公式法
等差数列表示法应用
图示法
性质列举法
教学过程:
(一)创设情境:
1.观察下列数列:
1,2,3,4,……;(军训时某排同学报数)①
10000,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②
2,2,2,2,……;(坐38路公交车的车费)③
问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)
规律:从第2项起,每一项与前一项的差都等于同一常数。
引出等差数列。
(二)新课讲解:
1.等差数列定义:
一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。
问题:(a)能否用数学符号语言描述等差数列的定义?
用递推公式表示为或.
(b)例1:观察下列数列是否是等差数列:
(1)1,-1,1,-1,…
(2)1,2,4,6,8,10,…
意在强调定义中“同一个常数”
(c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d
(d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影
响)
说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。
例3:求等差数列13,8,3,-2,…的第5项。第89项呢?
放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然
后引出求一般等差数列的通项公式。
2.等差数列的通项公式:已知等差数列的首项是,公差是,求.
(1)由递推公式利用用不完全归纳法得出
由等差数列的定义:,,,……
∴,,,……
所以,该等差数列的通项公式:.
(验证n=1时成立)。
这种由特殊到一般的推导方法,不能代替严格证明。要用数学归纳法证明的。
(2)累加法求等差数列的通项公式
让学生体验推导过程。(验证n=1时成立)
3.例题及练习:
应用等差数列的通项公式
追问:(1)-232是否为例3等差数列中的项?若是,是第几项?
(2)此数列中有多少项属于区间[-100,0]?
法一:求出a1,d,借助等差数列的通项公式求a20。
法二:求出d,a20=a5+15d=a12+8d
在例4基础上,启发学生猜想证明
练习:
梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。
观察图像特征。
思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?
课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。
等差数列课件(篇8)
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01
4。 1,2,3,2,3,4,……;×
5。 1,0,1,0,1,……×
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,
则据其定义可得:
进而归纳出等差数列的通项公式:
此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法――――――迭加法:
将这(n―1)个等式左右两边分别相加,就可以得到 anC a1= (n―1) d即 an= a1+(n―1) d (1)
当n=1时,(1)也成立,
因此它就是等差数列{an}的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n―1个等式。
对照已归纳出的通项公式启发学生想出将n―1个等式相加。证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n―1)×2 , 即an=2n―1 以此来巩固等差数列通项公式运用
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)―401是不是等差数列―5,―9,―13,…的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5。8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型――――――等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用展示实际楼梯图以化解难点)
设置此题的目的:
1。加强同学们对应用题的综合分析能力,
2。通过数学实际问题引出等差数列问题,激发了学生的兴趣;
3。再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
3、若数例{an} 是等差数列,若 bn = an ,(为常数)试证明:数列{bn}是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
1。等差数列的概念及数学表达式.
选做题:已知等差数列{an}的首项a1= ―24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
等差数列课件(篇9)
2。2。1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 , 通常用字母 表示。
2、等差中项:若三个数 组成等差数列,那么A叫做 与 的 ,
即 或 。
3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是 。
4、等差数列的通项公式: 。
5、判断正误:
①1,2,3,4,5是等差数列; ( )
②1,1,2,3,4,5是等差数列; ( )
③数列6,4,2,0是公差为2的等差数列; ( )
④数列 是公差为 的等差数列; ( )
⑤数列 是等差数列; ( )
⑥若 ,则 成等差数列; ( )
⑦若 ,则数列 成等差数列; ( )
⑧等差数列是相邻两项中后项与前项之差等于非零常数的'数列; ( )
⑨等差数列的公差是该数列中任何相邻两项的差。 ( )
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,的第20项。
(2) 是不是等差数列 中的项?如果是,是第几项?
(3)已知数列 的公差 则
例2、已知数列 的通项公式为 ,其中 为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为 求这5个数。
等差数列课件(篇10)
本节课将探究一类特殊的数列——等差数列.本节课安排2课时,第1课时是在生活中具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.第2课时主要是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质.让学生明白一个数列的通项公式是关于正整数n的一次型函数,使学生学会用图象与通项公式的关系解决某些问题.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在问题探索过程中,先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.其中例1是巩固定义,例2到例5是等差数列通项公式的灵活运用.
在教学过程中,应遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.
数列在整个中学数学内容中处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与函数的极限等内容作了铺垫.教材采取将代数、几何打通的混编体系的主要目的是强化数学知识的内在联系,而数列正是在将各知识沟通方面发挥了重要作用.因此本节内容是培养学生观察问题、启发学生思考问题的好素材.
1.通过实例理解等差数列的概念,通过生活中的实例抽象出等差数列模型,让学生认识到这一类数列是现实世界中大量存在的数列模型.同时经历由发现几个具体数列的等差关系,归纳出等差数列的定义的过程.
2.探索并掌握等差数列的通项公式,由等差数列的概念,通过归纳或迭加或迭代的方式探索等差数列的通项公式.通过与一次函数的图象类比,探索等差数列的通项公式的图象特征与一次函数之间的联系.
3.通过对等差数列的研究,使学生明确等 差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.
教学重点:等差数列的概念,等差数列的通项公式,等差中项及性质,会用公式解决一些简单的问题.
教学难点:概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式,并会解决一些相关的问题.
思路1.(直接导入)教师引导学生先复习上节课学过的数列的概念以及通项公式,可有意识地在黑板上(或课件中)出示几个数列,如:数列1,2,3,…,数列0,0,0,…,数列0,2,4,6,…等,然后直接引导学生阅读教材中的实例,不知不觉中就已经进入了新课.
思路2.(类比导入)教师首先引导学生复习上节课所学的数列的概念及通项公式,使学生明了我们现在要研究的就是一列数.由此我们联想:在初中我们学习了实数,研究了它的一些运算与性质,那么我们能不能也像研究实数一样,来研究它的项与项之间的关系、运算和性质呢?由此导入新课.
1回忆数列的概念,数列都有哪几种表示方法?
2阅读教科书本节内容中的①②③3个背景实例,熟悉生活中常见现象,写出由3个实例所得到的数列.
3观察数列①②③,它们有什么共同特点?
4根据数列①②③的特征,每人能再举出2个与其特征相同的数列吗?
5什么是等差数列?怎样理解等差数列?其中的关键字词是什么?
6数列①②③存在通项公式吗?如果存在,分别是什么?
7等差数列的通项公式是什么?怎样推导?
活动:教师引导学生回忆上节课所学的数列及其简单表示法——列表法、通项公式、递推公式、图象法,这些方法从不同角度反映了数列的特点.然后引导学生阅读教材中的实例模型,指导学生写出这3个模型的数列:
①22,22.5,23,23.5,24,24.5,…;
②2,9,16,23,30;
③89,83,77,71,65,59,53,47.
这是由日常生活中经常遇到的实际问题中得到的数列.观察这3个数列发现,每个数列中相邻的后项减前项都等于同一个常数.当然这里我们是拿后项减前项,其实前项减后项也是一个常数,为了后面内容的学习方便,这个 顺序不能颠倒.
至此学生会认识到,具备这个特征的数列模型在生活中有很多,如上节提到的堆放钢管的数列为100,99,98,97,…,某体育场一角的看台的座位排列:第一排15个座位,向后依次为17,19,21,23,…,等等.
以上这些数列的共同特征是:从第2项起,每一项与它前面一项的差等于同一个常数(即等差).这就是我们这节课要研究的主要内容.教师先让学生试着用自己的语言描述其特征,然后给出等差数列的定义.
等差数列的定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.
教师引导学生理解这个定义:这里公差d一定是由后项减前项所得,若前项减后项则为-d,这就是为什么前面3个模型的分析中总是说后项减前项而不说前项减后项的原因.显然3个模型数列都是等差数列,公差依次为0.5,7,-6.
教师进一步引导学生分析等差数列定义中的关键字是什么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确、深入地理解和掌握概念的重要条件,这是学好数学及其他学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力)
这里“从第二项起”和“同一个常数”是等差数列定义中的核心部分.用递推公式可以这样描述等差数列的定义:对于数列{an},若an-an-1=d(d是与n无关的常数或字母),n≥2,n∈N_,则此数列是等差数列.这是证明一个数列是等差数列的常用方法.点拨学生注意这里的“n≥2”,若n包括1,则数列是从第1项向前减,显然无从减起.若n从3开始,则会漏掉a2-a1的差,这也不符合定义,如数列1,3 ,4,5,6,显然不是等差数列,因此要从意义上深刻理解等差数列的定义.
教师进一步引导学生探究数列①②③的通项公式,学生根据已经学过的数列通项公式的定义,观察每一数列的项与序号之间的关系会很快写出:①an=21.5+0.5n,②an=7n-5,③an=-6n+95.
以上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性.教师点拨学生探求,对任意等差数列a1,a2,a3,…,an,…,根据等差数列的定义都有:
a2-a1=d,
a3-a2=d,
a4-a3=d,
……
所以a2=a1+d,
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d.
学生很容易猜想出等差数列的通项公式an= a1+(n-1)d后,教师适时点明:我们归纳出的公式只是一个猜想,严格的证明需要用到后面的其他知识.
教师可就此进一步点拨学生:数学猜想在数学领域中是很重要的思考方法,后面还要专门探究它.数学中有很多著名的猜想,如哥德巴赫猜想常被称为数学皇冠上的明珠,对于它的证明中国已处于世界领先地位.很多著名的数学结论都是从猜想开始的.但要注意,数学猜想仅是一种数学想象,在未得到严格的证明前不能当作正确的结论来用.这里我们归纳猜想的等差数列的通项公式an=a1+(n-1)d是经过严格证明了的,只是现在我们知识受限,无法证明,所以说我们先承认它.鼓励学生只要创新探究,独立思考,也会有自己的新奇发现.
教师根据教学实际情况,也可引导学生得出等差数列通项公式的其他推导方法.例如:
∴an-an-1=d,
an-1-an-2=d,
an-2-an-3=d,
……
a2-a1=d.
两边分别相加得an-a1=(n-1)d,
所以an=a1+(n-1)d,
……
=a1+(n-1)d.
所以an=a1+(n-1)d.
(5)如果一个数列从第2 项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.其中关键词为“从第2项起”、“等于同一个常数”.
(6)三个数列都有通项公式,它们分别是:an=21.5+0.5n,an=7n-5,an=-6n+95.
(7)可用叠加法和迭代法推导等差数列的通项公式:an=a1+(n-1)d.
活动:本例的目的是让学生熟悉公式,使学生从中体会公式与方程之间的联系.教学时要使学生认识到等差数列的通项公式其实就是一个关于an、a1、d、n(独立的量有3个)的方程,以便于学生能把方程思想和通项公式相结合,解决等差数列问题.本例中的(2)是判断一个数是否是某等差数列的项.这个问题可以看作(1)的逆问题.需要向学生说明的是,求出的项数为正整数,所给数就是已知数列中的项,否则,就不是已知数列中的项.本例可由学生自己独立解决,也可做板演之用,教师只是对有困难的学生给予恰当点拨.
(1)100是不是等差数列2,9,16,…的项,如果是,是第几项?如果不是,请说明理由;
(2)-20是不是等差数列0,-312,-7,…的项,如果是,是第几项?如果不是,请说明理由.
解:(1)由题意,知a1=2,d=9-2=7.因而通项公式为an=2+(n-1)×7=7n-5.
令7n-5=100,解得n=15,所以100是这个数列的第15项.
(2)由题意可知a1=0,d=-312,因而此数列的通项公式为an=-72n+72.
令-72n+72=-20,解得n=477.因为-72n+72=-20没有正整数解,所以-20不是这个数列的项.
例2一个等差数列首项为125,公差d>0,从第10项起每一项都比1大,求公差d的范围.
活动:教师引导学生观察题意,思考条件“从第10项起每一项都比1大”的含义,应转化为什么数学条件?是否仅是a10>1呢?d>0的条件又说明什么?教师可让学生合作探究,放手让学生讨论,不要怕学生出错.
即a10>1a9≤1?125+10-1d>1,125+9-1d≤1,
点评:本例学生很容易解得不完整,解完此题后让学生反思解题过程.本题主要训练学生灵活运用等差数列的通项公式以及对公差的深刻理解.
在数列{an}中,已知a1=1,1an+1=1an+13(n∈N_),求a50.
解:已知条件可化为1an+1-1an=13(n∈N_),
由等差数列的定义,知{1an}是首项为1a1=1,公差为d=13的等差数列,
∴1a50=1+(50-1)×13=523.
∴a50=352.
例3已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
活动:要判定{an}是不是等差数列,可以利用等差数列的定义,根据an-an-1(n>1)是不是一个与n无关的常数.
这实际上给出了判断一个数列是否是等差数列的一个方法:如果一个数列的通项公式是关于正整数的一次型函数,那么这个数列必定是等差数列.因而把等差数列通项公式与一次函数联系了起来.本例设置的“旁注”,目的是为了揭示等差数列通项公式的结构特征:对于通项公式形如an=pn+q的数列,一定是等差数列,一次项系数p就是这个等差数列的公差,首项是p+q.因此可以深化学生对等差数列的理解,同时还可以从多个角度去看待等差数列的通项公式,有利于以后更好地把握等差数列的性质.在教学时教师要根据学生解答的情况,点明这点.
解:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕
an-an-1=(pn+q)-=pn+q-(pn-p+q)=p为常数,
所以{an}是等差数列,首项a1=p+q,公差为p.
点评:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….
(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.
(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.
已知数列的通项公式an=6n-1.问这个数列是等差数列吗?若是等差数列,其首项与公差分别是多少?
解:∵an+1-an=-(6n-1)=6(常数),
∴{an}是等差数列,其首项为a1=6×1-1=5,公差为6.
点评:该训练题的目的是进一步熟悉例3的内容.需要向学生强调,若用an-an-1=d,则必须强调n≥2这一前提条件,若用an+1-an=d,则可不对n进行限制.
1.(1)求等差数列8,5,2,…的第20项;
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
2.求等差数列3,7,11,…的第4项与第10项.
答案:
1.解:(1)由a1=8,d=5-8=-3,n=20,得a20=8+(20-1)×(-3)=-49.
(2)由a1=-5,d=-9-(-5)=-4,得这个数列的通项公式为
an=-5-4(n-1)=-4n-1.
由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立.解这个关于n的方程,得n=100,即-401是这个数列的第100项.
∴该数列的通项公式为an=3+(n-1)×4,
即an=4n-1(n≥1,n∈N_).
∴a4=4×4-1=15,a10=4×10-1=39.
1.先由学生自己总结回顾这节课都学习了哪些知识?要注意的是什么?都用到了哪些数学思想方法?你在这节课里最大的收获是什么?
2.教师进一步集中强调,本节学习的重点内容是等差数列的定义及通项公式,等差数列的基本性质是“等差”.这是我们研究有关等差数列的主要出发点,是判断、证明一个数列是否为等差数列和解决其他问题的一种基本方法,要注意这里的“等差”是对任意相邻两项来说的.
本教案设计突出了重点概念的教学,突出了等差数列的定义和对通项公式的认识与应用.等差数列是特殊的数列,定义恰恰是其特殊性也是本质属性的准确反映和高度概括,准确地把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具.因为等差数列的通项公式的结构与一次函数的解析式密切相关,因此通过函数图象研究数列性质成为可能.
本教案设计突出了教法学法与新课程理念的接轨,引导综合运用观察、归纳、猜想、证明等方法研究数学,这是一种非常重要的学习方法;在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.
本教案设计突出了发散思维的训练.通过一题多解,多题一解的训练,比较优劣,换个角度观察问题,这是数学发散思维的基本素质.只有在学习过程中有意识地将知识迁移、组合、融合,激发好奇心,体验多样性,学懂学透,融会贯通,创新思维才能与日俱增.
思路1.(复习导入)上一节课我们研究了数列中的一个重要概念——等差数列的定义,让学生回忆这个定义,并举出几个等差数列的例子.接着教师引导学生探究自己所举等差数列例子中项与项之间有什么新的发现?比如,在同一个等差数列中,与某一项“距离”相等的两项的和会是什么呢?由此展开新课.
思路2.(直接导入)教师先引导学生回顾上一节所学的内容:等差数列的定义以及等差数列的通项,之后直接提出等差中项的概念让学生探究,由此而展开新课.
1请学生回忆上节课学习的等差数列的定义,如何证明一个数列是等差数列?2等差数列的通项公式是怎样得出来的?它与一次函数有什么关系?3什么是等差中项?怎样求等差中项?4根据等差中项的概念,你能探究出哪些重要结论呢?
活动:借助课件,教师引导学生先回忆等差数列的定义,一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,即an-an-1=d(n≥2,n∈N_),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d”表示).
再一起回顾通项公式,等差数列{an}有两种通项公式:an=am+(n-m)d或an=pn+q(p、q是常数).
由上面的两个公式我们还可以得到下面几种计算公差d的方法:①d=an-an-1;②d=an-a1n-1;③d=an-amn-m.
对于通项公式的探究,我们用归纳、猜想得出了通项公式,后又用叠加法及迭代法推导了通项公式.
教师指导学生阅读课本等差中项的概念,引导学生探究:如果我们在数a与数b中间插入一个数A,使三个数a,A,b成等差数列,那么数A应满足什么样的条件呢?
由定义可得A-a=b-A,即A=a+b2.
反之,若A=a+b2,则A-a=b-A,
由此可以得A=a+b2?a,A,b成等差数列.
由此我们得出等差中项的概念:如果三个数x,A,y组成等差数列,那么A叫做x和y的等差中项.如果A是x和y的等差中项,则A=x+y2.
根据我们前面的探究不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项.
如数列:1,3,5,7,9,11,13…中5是3与7的等差中项,也是1和9的等差中项.
9是7和11的等差中项,也是5和13的等差中项.
等差中项及其应用问题的解法关键在于抓住a,A,b成等差数列?2A=a+b,以促成将等差数列转化为目标量间的等量关系或直接由a,A,b间的关系证得a,A,b成等差数列.
根据等差中项的概念我们来探究这样一个问题:如上面的数列1,3,5,7,9,11,13,…中,我们知道2a5=a3+a7=a1+a9=a2+a8,那么你能发现什么规律呢?再验证一下,结果有a2+a10=a3+a9=a4+a8=a5+a7=2a6. 由此我们猜想这个规律可推广到一般,即在等差数列{an}中,若m、n、p、q∈N_且m+n=p+q,那么am+an=ap+aq,这个猜想与上节的等差数列的通项公式的猜想方法是一样的,是我们归纳出来的,没有严格证明,不能说它就一定是正确的.让学生进一步探究怎样证明它的正确性呢?只要运用通项公式加以转化即可.设首项为a1,则am+an=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)d,
ap+aq=a1+(p-1)d+a1+(q-1)d=2a1+(p+q-2)d.
因为我们有m+ n=p+q,所以上面两式的右边相等,所以am+an=ap+aq.
由此我们的一个重要结论得到了证明:在等差数列{an}的各项中,与首末两项等距离的两项的和等于首末两项的和.另外,在等差数列中,若m+n=p+q,则上面两式的右边相等,所以am+an=ap+aq.同样地,我们还有:若m+n=2p,则am+an=2ap.这也是等差中项的内容.
我们自然会想到由am+an=ap+aq能不能推出m+n=p+q呢?举个反例,这里举个常数列就可以说明结论不成立.
这说明在等差数列中,am+an=ap+aq是m+n=p+q成立的必要不充分条件.由此我们还进一步推出an+1-an=d=an+2-an+1,即2an+1=an+an+2,这也是证明等差数列的常用方法.
同时我们通过这个探究过程明白:若要说明一个猜想正确,必须经过严格的证明,若要说明一个猜想不正确,仅举一个反例即可.
(3)如果三个数x,A,y成等差数列,那么A叫做x和y的等差中项,且A=x+y2.
(4)得到两个重要结论:①在数列{an}中,若2an+1=an+an+2(n∈N_),则{an}是等差数列.
②在等差数列中,若m+n=p+q(m、n、p、q∈N_),则am+an=ap+aq.
例1在等差数列{an}中,若a1+a6=9,a4=7,求a3,a9.
活动:本例是一道基本量运算题,运用方程思想可由已知条件求出a1,d,进而求出通项公式an,则a3,a9不难求出.应要求学生掌握这种解题方法,理解数列与方程的关系.
解:由已知,得a1+a1+5d=9,a1+3d=7,解得a1=-8,d=5.
∴通项公式为an=a1+(n-1)d=-8+5(n-1)=5n-13.
∴a3=2,a9=32.
点评:本例解法是数列问题的基本运算,应要求学生熟练掌握,当然对学有余力的同学来说,教师可引导探究一些其他解法,如a1+a6=a4+a3=9.
∴a3=9-a4=9-7=2.
∴a9=a4+5d=32.
点评:这种解法巧妙,技巧性大,需对等差数列的定义及重要结论有深刻的理解.
已知数列{an}对任意的p,q∈N_满足ap+q=ap+aq,且a2=-6,那么a10等于( )
解析:依题意知,a2=a1+a1=2a1,a1=12a2=-3,an+1=an+a1=an-3,
可知数列{an}是等差数列,a10= a1+9d=-3-9×3=-30.
活动:本例是等差数列通项公式的灵活运用.正如边注所说,相当于已知直线过点(1,17),斜率为-0.6,求直线在x轴下方的点的横坐标的取值范围.可放手让学生完成本例.
等差数列{an}的公差d
C.an=-2n+12(n∈N_) D.an=-2n+10( n∈N_)
解析:由题意知a2•a4=12a2+a4=8d
所以由an=a1+(n-1)d,得an=8+(n-1)(-2)=-2n+10.
例3 已知a、b、c成等差数列,那么a2(b+c),b2(c+a),c2(a+b)是否成等差数列?
活动:教师引导学生思考a、b、c成等差数列可转化为什么形式的等式?本题的关键是考察在a+c=2b的条件下,是否有以下结果:a2(b+c)+c2(a+b)=2b2(a+c).教师可让学生自己探究完成,必要时给予恰当的点拨.
∴a+c=2b.
=(a2b-2ab2)+(bc2-2b2c)+(a2c+ac2)
=0,
∴a2(b+c)+c2(a+b)=2b2(a+c).
∴a2(b+c),b2(c+a),c2(a+b)成等差数列.
点评:如果a、b、c成等差数列,常转化为a+c=2b的形式,反之,如果求证a、b、c成等差数列,常改证a+c=2b.有时还需运用一些等价变形技巧,才能获得成功.
例4在-1与7之间顺次插入三个数a、b、c,使这五个数成等差数列,求此数列.
活动:教师引导学生从不同角度加以考虑:一是利用等差数列的定义与通项;一是利用等差中项加以处理.让学生自己去探究,教师一般不要给予提示,对个别探究有困难的学生可适时地给以点拨、提示.
解:(方法一)设这些数组成的等差数列为{an},由已知,a1=-1,a5=7,
∴7=-1+(5-1)d,即d=2.
∴所求的数列为-1,1,3,5,7.
(方法二)∵-1,a,b,c,7成等差数列,
∴b是-1,7的等差中项,a是-1,b的等差中项,c是b,7的等差中项,即b=-1+72=3,a=-1+b2=1,c=b+72=5.
∴所求数列为-1,1,3,5,7.
点评:通过此题可以看出,应多角度思考,多角度观察,正像前面所提出的那样,尽量换个角度看问题,以开阔视野,培养自己求异发散的思维能力.
数列{an}中,a3=2,a7=1,且数列{1an+1}是等差数列,则a11等于( )
解析:设bn=1an+1,则b3=13,b7=12,
因为{1an+1}是等差数列,可求得公差d=124,
所以b11=b7+(11-7)d=23,即a11=1b11-1=12.
例5某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4千米(不含4千米)计费10元.如果某人乘坐该市的出租车前往14 km处的目的地,且一路畅通,等候时间为0,需要支付多少元的车费?
活动:教师引导学生从实际问题中建立数学模型.在这里也就是建立等差数列的数学模型.引导学生找出首项和公差,利用等差数列通项公式的知识解决实际问题.
解:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以,我们可以建立一个等差数列{an}来计算车费.
令a1=11.2表示4 km处的车费,公差d=1.2,那么,当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).
点评:本例中令a1=11.2,这点要引起学生注意,这样一来,前往14 km处的目的地就相当于n=11,这点极容易弄错.
1.已知等差数列{an}中,a1+a3+a5+a7=4,则a2+a4+a6等于( )
2.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( )
答案:
1.解析:由a1+a3+a5+a7=4,知4a4=4,即a4=1.
∴2a1+3d=13.
∵a1=2,∴d=3.
而a4+a5+a6=3a5=3(a1+4d)=42.
1.先由学生自己总结回顾这节课都学习了哪些知识?要注意的是什么?都用到了哪些数学思想方法?你是如何通过旧知识来获取新知识的?你在这节课里最大的收获是什么?
2.教师进一步画龙点睛,本节课我们在上节课的基础上又推出了两个很重要的结论,一个是等差数列的证明方法,一个是等差数列的性质,要注意这些重要结论的灵活运用.
本教案是根据课程标准、学生的认知特点而设计的,设计的活动主要都是学生自己完成的.特别是上节课通项公式的归纳、猜想给学生留下了很深的记忆;本节课只是继续对等差数列进行这方面的探究.
本教案除了安排教材上的两个例题外,还针对性地选择了既具有典型性又具有启发性的几道例题及变式训练.为了学生的课外进一步探究,在备课资料中摘选了部分备用例题及备用习题,目的是让学生对等差数列的有关知识作进一步拓展探究,以开阔学生的视野.
本教案的设计意图还在于,加强数列与函数的联系.这不仅有利于知识的融会贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,而且反过来可使学生对函数的认识深化一步,让学 生体会到数学是有趣的,探究是愉悦的,归纳猜想是令人振奋的,借此激发学生的数学学习兴趣.
【例1】 梯子最高一级宽33 cm,最低一级宽为110 cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.
解:设{an}表示梯子自上而下各级宽度所成的等差数列,由已知条件,可知a1=33,a12=110,n=12,所以a12=a1+(12-1)d,即得110=33+11d,解之,得d=7.
因此a2=33+7=40,a3=40+7=47,a4=54,a5=61,a6=68,a7=75,a8=82,a9=89,a10=96,a11=10 3.
答:梯子中间各级的宽度从上到下依次是40 cm,47 cm,54 cm,61 cm,68 cm,75 cm,82 cm,89 cm,96 cm,103 cm.
【例2】 已知1a,1b,1c成等差数列,求证:b+ca,c+ab,a+bc也成等差数列.
证明:因为1a,1b,1c成等差数列,所以2b=1a+1c,化简得2ac=b(a+c),所以有
b+ca+a+bc=bc+c2+a2+abac=ba+c+a2+c2ac=2ac+a2+c2ac=a+c2ac=a+c2ba+c2=2•a+cb.
因而b+ca,c+ab,a+bc也成等差数列.
【例3】 设数列{an}{bn}都是等差数列,且a1=35,b1=75,a2+b2=100,求数列{an+bn}的第37项的值.
分析:由数列{an}{bn}都是等差数列,可得{an+bn}是等差数列,故可求出数列{an+bn}的公差和通项.
解:设数列{an}{bn}的公差分别为d1,d2,则(an+1+bn+1)-(an+bn)=(an+1-an)+(bn+1-bn)=d1+d2为常数,所以可得{an+bn}是等差数列.设其公差为d,则公差d=(a2+b2)-(a1+b1)=100-(35+75)=-10.因而a37+b37=110-10×(37-1)=-250.
所以数列{an+bn}的第37项的值为-250.
点评:若一个数列未告诉我们是等差数列时,应先由定义法判定它是等差数列后,方可使用通项公式an=a1+(n-1)d.但对客观试题则可以直接运用某些重要结论,直接判定数列是否为等差数列.
1.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是( )
2.在数列{an}中3an+1=3an+2(n∈N_),且a2+a4+a7+a9=20,则a10为( )
3.在等差数列{an}中,a1+3a8+a15=120,则3a9-a11的值为( )
4.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为14的等差数列,则|m-n|等于( )
5.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10=__________.
6.已知a、b、c成等差数列,且a、b、c三数之和为15,若a2,b2+9,c2也成等差数列,求a、b、c.
7.设1a+b,1a+c,1b+c成等差数列,求证:a2,b2,c2也成等差数列.
8.成等差数列的四个数之和为2 6,第二数与第三数之积为40,求这四个数.
9.有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,以此类推,每多买一台则所买各台单价均减少20元,但每台最少不低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪一家商场购买花费较少?
∴a7+a9=2a8.
∴a8=8.
又∵a4,a8,a12成等差数列,
∴公差d=a8-a4=7.
∴a12=a8+d=8+7=15.
2.C 由已知得an+1-an=23,
∴{an}是首项为a1,公差d=23的等差数列.
a2+a4+a7+a9=4a1+18d=20,解得a1=2,
∴a10=2+23(10-1)=8.
3.D ∵a1+a15=2a8,
∴a1+3a8+a15=5a8=120.
∴a8=24.
而3a9-a11=3(a1+8d)-(a1+10d)=2a1+14d=2(a1+7d)=2a8=48.
4.C 设a1=14,a2=14+d,a3=14+2d,a4=14+3d,
而方程x2-2x+m=0中的两根之和为2,方程x2-2x+n=0中的两根之和也是2,
∴a1+a2+a3+a4=1+6d=4.
∴d=12.
∴a1=14,a4=74是一个方程的两个根,a2=34,a3=54是另一个方程的两个根.
∴716,1516为m或n.
6.解:由已知得2b=a+c,a+b+c=15,2b2+9=a2+c2,
解之,得a=8,b=5,c=2,或a=2,b=5,c=8.
7.证明:由已知得1a+b+1b+c=2•1a+c,化简得a2+c2=2b2,
∴a2,b2,c2成等差数列.
8.解:设这四个数为a-3d,a-d,a+d,a+3d,
则由题设得a-3d+a-d+a+d+a+3d=26,a-da+d=40,
解得a=132,d=32,或a=132,d=-32.
∴所求四个数为2,5,8,11或11,8,5,2.
9.解:设某单位需购买影碟机n台,在甲商场购买每台售价不低于440元时,售价依台数n成等差数列{an}.
an=780+(n-1)(-20)=800-20n,解不等式an≥440,800-20n≥440,得n≤18.
当购买台数小于18时,每台售价为800-2n元,在台数大于或等于18时,每台售价440元.
到乙商场购买,每台售价为800×75%=600(元),作差(800-20n)n-600n=20n(10-n),
当n=10时,600n=(800-20n)n;
当n>18时,440n
等差数列课件(篇11)
第一方面:教材分析
本节知识的学习既能加深对数列概念的理解,又为后面学习数列有关知识提供研究的方法,具有承上启下的重要作用。而且等差数列求和在现实中有着广泛的应用,同时本节课的学习还蕴涵着倒序相加、数形结合、方程思想等深刻的数学思想方法。
第二方面:学情分析
知识基础:学生已掌握了函数、数列等有关基础知识,并且在小学和初中已了解特殊的数列求和。
能力基础:高二学生已初步具备逻辑思维能力,能在教师的引导下解决问题,但处理抽象问题的能力还有待进一步提高。
第三方面:学习目标
依据课标,以及学生现有知识和本节教学内容,制定教学目标如下:
1.教学目标:
(1)知识与技能目标:(ⅰ) 初步掌握等差数列的前项和公式及推导方法;
(ⅱ) 当以下5个量(a1,d,n,an,Sn)中已知三个量时,能熟练运用通项公式、前n项和公式求其余两个量。
(2)过程与方法目标:通过公式的推导和公式的应用,使学生体会数形结合的思想方法,体验从特殊到一般,再从一般到特殊的思维规律。
(3)情感态度与价值观:通过经历等差数列的前项和公式的探究活动,培养学生探索精神和创新意识,提高学生解决实际问题的观念,激发学生的学习热情。
2.教学重、难点
等差数列前项和公式的推导有助于培养学生的发散思维,而且在应用公式的过程中体现了方程(组)思想,所以等差数列前项和公式的推导和简单应用是本节课的重点。但由于高二学生推理能力有待提高,所以难点在于一般等差数列前项和公式的推导方法上。
第四方面:教法学法
毕达哥拉斯说过:“在数学的天地里,重要的不是我们知道什幺,而是我们怎幺知道什幺。”
针对本节课的特点,教师采用问题探究式教学法,学生的学法以发现式学习法为主。
教学手段上通过多媒体辅助教学,可以帮助学生直观理解,提高课堂效率。
第五方面:教学过程
建构主义理论认为教师应以问题为载体,以学生活动为主线开展教学。为此,我设计如下(情境引入、公式探索、公式推导、公式应用、归纳总结和发展作业)六个环节
1.情境引入
上课伊始,先给同学们看一段视频,回顾学校建校60年的光辉历史,然后跟同学们共同欣赏照片,提出
问题1:学校为了庆祝建校60年,在校园里摆放了一些鲜花,最前面一行摆了4盆,后面每行比前一行多一盆,共八行,一共摆放了多少盆鲜花?
这样设计帮助学生了解学校历史,渗透德育教育,激发学习热情。
有的学生会选择直接相加,教师提出问题:有没有简单的方法呢?自然进入第二环节。
2.公式探索
发现公式的推导方法是本节课的难点,我先引导学生明确上述问题的本质是等差数列求和问题,引出课题并板书,提出:
问题2:如果每行的花都一样多,则花的总数易于求得,我们怎样能把这些花补成每行都一样多呢?
此时,学生会想到如下几种拼凑形式,我们选择最易于解决原问题的第1种
教师及时引导学生小结:
对于求等差数列的前n项和在已知a1,an,n时,可选择公式(1);已知a1,d,n时可选择公式(2);
设计意图:例1是等差数列前项和两个公式的直接应用,对于不同的已知条件选择不同的公式,帮助学生完成对公式的记忆和巩固,例1的第(2)问由教师板书解题步骤,起到了示范教学的效果。
例2由学生板书,师生共同完善给予评价,变式由学生互评,教师及时引导学生进行小结:
已知等差数列如下a1,d,n,an,Sn五个量中三个可求其余两个,即等差数列“知三求二”。
设计上述题目,实现对公式的简单应用这一教学目标。
5.归纳总结
教师引导学生总结本节课的知识要点和思想方法,师生共同完善,对本节内容整体把握。
6.布置作业
我根据学情分层布置作业,基础性作业的安排是为巩固课堂内容,发展性作业可以帮助学生进一步体会等差数列前项和公式的结构,通过开放性作业,帮助学生关注课堂,拓展知识面,提高学生自主学习能力。
(课件打出(1)课本第41页练习B 1,2题
(2) 思考与讨论:自主探讨公式(2)并思考:如果一个数列的前n项和Sn=an2+bn+c(a,b,c为常数),那幺这个数列一定是等差数列吗?请同学们给予证明。
六、设计说明
1.设计特色
(1)在探求公式推导思路的过程中,渗透德育教育,培养学生良好道德情操;
(2)公式推导和应用阶段,借助问题台阶,创造性使用教材,符合认知规律,体现教学科学性。
2.是板书设计。
gz85.COM精选阅读
高等数学课件系列十一篇
笔者经过整理的 “高等数学课件”,或可启迪思想,继续浏览我们的网站获取更多实用资讯。事实上,提前准备课堂所需的教案和课件十分重要,认真规划教案和课件是每位教师每天都要去做的工作。学生的反馈能够帮助教师更好地掌握教学的重点和难点。
高等数学课件(篇1)
高等数学课件是一种重要的教学资源,能够帮助学生更好地理解和掌握数学知识,提高数学能力。在现代教育中,教育技术的发展和应用,使得教师能够使用多种形式的教学资源,包括课件等。因此,高等数学课件的编写和使用已经成为了现代高等数学教学的重要课题。
高等数学课件的编写需要考虑到学生的学习需求和教学目标。在编写课件时,应当根据课程内容、学生的知识水平、教学目标等因素进行分析和设计,以达到最好的教学效果。由于高等数学的知识层次较为复杂,因此编写高等数学课件时需要充分考虑到学生的认知模式和学习习惯,力求让学生更好地理解和掌握数学知识。
高等数学课件应具备以下几个方面的要求:
一、准确性。高等数学知识的准确性是基本要求,因为任何一个错误的公式或概念,都会对学生成长和知识的累积产生负面影响。因此在编写和使用高等数学课件时,应严格控制内容的准确性,确保学生能够掌握正确的知识和技能。
二、清晰性。高等数学是一门较为抽象的学科,对于学生来说,掌握数学知识本身就需要花费较大的认知代价。因此,在编写和使用高等数学课件时,应力求将知识的概念和原理表达得尽可能清晰和易懂,避免出现模糊或难以理解的语言和表达方式。
三、实用性。高等数学课件的编写和使用应力求贴近实际问题和应用情境,帮助学生理解知识的实际应用场景和方法,培养学生的解决实际问题的能力。
四、适用性。高等数学课件的设计应当考虑到不同年级、不同层次、不同专业学生的不同需求,尽可能做到适用性的设计,以便保持高效和灵活性。
在高等数学课件的编写和使用中,应尽可能满足学生的学习需求和教学目标,强化课程知识的建设和教学策略的完善,以提高数学教育的质量和水平。同时,高等数学课件的编写和使用应在保持教学质量和效果的同时,适应教育技术的不断创新和进步,推动教学模式和教学流程的优化和升华。
高等数学课件(篇2)
高等数学教案
定积分的应用
教学目的 第六章
定积分的应用
1、理解元素法的基本思想;
2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点:
1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等。教学难点:
1、截面面积为已知的立体体积。
2、引力。
§6 1 定积分的元素法
回忆曲边梯形的面积
设yf(x)0(x[a b]) 如果说积分
Aaf(x)dx
b是以[a b]为底的曲边梯形的面积 则积分上限函数
A(x)af(t)dt
x就是以[a x]为底的曲边梯形的面积 而微分dA(x)f(x)dx 表示点x处以dx为宽的小曲边梯形面积的近似值Af(x)dxf(x)dx称为曲边梯形的面积元素
以[a b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式 以 [a b]为积分区间的定积分
Aaf(x)dx
b
一般情况下 为求某一量U 先将此量分布在某一区间[a b]上 分布在[a x]上的量用函数U(x)表示 再求这一量的元素dU(x) 设dU(x)u(x)dx 然后以u(x)dx为被积表达式 以[a b]为积分区间求定积分即得
Uaf(x)dx
b
用这一方法求一量的值的方法称为微元法(或元素法)
三峡大学高等数学课程建设组
高等数学教案
定积分的应用
§6 2 定积分在几何上的应用
一、平面图形的面积
1.直角坐标情形
设平面图形由上下两条曲线yf上(x)与yf下(x)及左右两条直线xa与xb所围成 则面积元素为[f上(x) f下(x)]dx 于是平面图形的面积为
Sa[f上(x)f下(x)]dx
类似地由左右两条曲线x左(y)与x右(y)及上下两条直线yd与yc所围成设平面图形的面积为
Sc[右(y)左(y)]dy
例1 计算抛物线y2x、yx2所围成的图形的面积
解(1)画图
(2)确定在x轴上的投影区间: [0 1](3)确定上下曲线f上(x)x, f下(x)x2
(4)计算积分 db1
S(xx)dx[2x21x3]10033321
3例2 计算抛物线y22x与直线yx4所围成的图形的面积
解(1)画图
(2)确定在y轴上的投影区间: [2 4](3)确定左右曲线左(y)1y2, 右(y)y4
2(4)计算积分418
S2(y41y2)dy[1y24y1y3]426222y 例3 求椭圆x221所围成的图形的面积
ab 解 设整个椭圆的面积是椭圆在第一象限部分的四倍 椭圆在第一象限部分在x 轴上的投影区间为[0 a] 因为面积元素为ydx
所以 2S40ydx a椭圆的参数方程为: xa cos t yb sin t
于是
S40ydx4bsintd(acost)
2a0三峡大学高等数学课程建设组
高等数学教案
定积分的应用
4absintdt2ab02(1cos2t)dt2abab
2202
2.极坐标情形
曲边扇形及曲边扇形的面积元素
由曲线()及射线 围成的图形称为曲边扇形 曲边扇形的面积元素为 dS1[()]2d 2曲边扇形的面积为
S1[()]2d 2
例4.计算阿基米德螺线a(a >0)上相应于从0变到2 的一段弧与极轴所围成的图形的面积
224a23
解: S01(a)2d1a2[13]02332
例5.计算心形线a(1cos)(a>0)所围成的图形的面积
解: S201[a(1cos]2da20(12cos1cos2)d
22232
a2[32sin1sin2]0a
242
二、体 积
1.旋转体的体积
旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体 这直线叫做旋转轴
常见的旋转体 圆柱、圆锥、圆台、球体
旋转体都可以看作是由连续曲线yf(x)、直线xa、ab 及x轴所围成的曲边梯形绕x轴旋转一周而成的立体
设过区间[a b]内点x 且垂直于x轴的平面左侧的旋转体的体积为V(x) 当平面左右平移dx后 体积的增量近似为V[f(x)]2dx
于是体积元素为
dV [f(x)]2dx
旋转体的体积为
Va[f(x)]2dx
例
1连接坐标原点O及点P(h r)的直线、直线xh 及x 轴围成一个直角三角形 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体 计算这圆锥体的体积
解: 直角三角形斜边的直线方程为yrx
h
所求圆锥体的体积为
三峡大学高等数学课程建设组
b高等数学教案
定积分的应用
22hrr1hr2
V0(x)dx2[1x3]0h3h32y2x 例2 计算由椭圆221所成的图形绕x轴旋转而成的旋转体(旋转椭球体)的体积
ab
解: 这个旋转椭球体也可以看作是由半个椭圆 h
yba2x2
a及x轴围成的图形绕x轴旋转而成的立体 体积元素为dV y 2dx
于是所求旋转椭球体的体积为
22a2 Vb2(a2x2)dxb2[a2x1x3]aaab
a33aa
例3 计算由摆线xa(tsin t) ya(1cos t)的一拱 直线y0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积
解
所给图形绕x轴旋转而成的旋转体的体积为
Vx0y2dx0a2(1cost)2a(1cost)dt
a30(13cost3cos2tcos3t)dt
5 2a 3
所给图形绕y轴旋转而成的旋转体的体积是两个旋转体体积的差 设曲线左半边为x=x1(y)、右半边为x=x2(y) 则
22(y)dy0x1(y)dy
Vy0x22a2a22a2
2a2(tsint)2asintdt0a2(tsint)2asintdt
a30(tsint)2sintdt6 3a 3
2.平行截面面积为已知的立体的体积
设立体在x轴的投影区间为[a b] 过点x 且垂直于x轴的平面与立体相截 截面面积为A(x) 则体积元素为A(x)dx 立体的体积为
VaA(x)dx
例4 一平面经过半径为R的圆柱体的底圆中心 并与底面交成角 计算这平面截圆柱所得立体的体积
解 取这平面与圆柱体的底面的交线为x轴 底面上过圆中心、且垂直于x轴的直线为y轴 那么底圆的方程为x 2 y 2R 2 立体中过点x且垂直于x轴的截面是一个直角三角形 两个直角边分别为R2x2及R2x2tan 因而截面积为
三峡大学高等数学课程建设组
b2高等数学教案
定积分的应用
A(x)1(R2x2)tan 于是所求的立体体积为
2RR2R3tan
VR1(R2x2)tandx1tan[R2x1x3]R223
3例5 求以半径为R的圆为底、平行且等于底圆直径的线段为顶、高为h的正劈锥体的体积
解: 取底圆所在的平面为x O y平面 圆心为原点 并使x轴与正劈锥的顶平行 底圆的方程为x 2 y 2R 2 过x轴上的点x(RA(x)hyhR2x2于是所求正劈锥体的体积为VRhR2x2dx2R2h2co2sd1R2h02R三、平面曲线的弧长设A B 是曲线弧上的两个端点 在弧AB上任取分点AM0 M1 M2 Mi1 Mi Mn1 MnB 并依次连接相邻的分点得一内接折线 当分点的数目无限增加且每个小段Mi1Mi都缩向一点时 如果此折线的长|Mi1Mi|的极限存在 则称此极限为曲线弧AB的弧长 并称此曲线i1n弧AB是可求长的定理光滑曲线弧是可求长的1.直角坐标情形设曲线弧由直角坐标方程yf(x)(axb)给出 其中f(x)在区间[a b]上具有一阶连续导数 现在来计算这曲线弧的长度取横坐标x为积分变量 它的变化区间为[a b] 曲线yf(x)上相应于[a b]上任一小区间[x xdx]的一段弧的长度 可以用该曲线在点(x f(x))处的切线上相应的一小段的长度来近似代替 而切线上这相应的小段的长度为(dx)2(dy)21y2dx从而得弧长元素(即弧微分)ds1y2dx以1y2dx为被积表达式 在闭区间[a b]上作定积分 便得所求的弧长为sa1y2dx三峡大学高等数学课程建设组b高等数学教案定积分的应用在曲率一节中 我们已经知道弧微分的表达式为ds1y2dx这也就是弧长元素因此例1 计算曲线y2x2上相应于x从a到b的一段弧的长度3解 yx2 从而弧长元素 13ds1y2dx1xdx因此 所求弧长为sab2221xdx[2(1x)2]ba[(1b)(1a)]33333例2 计算悬链线ycchx上介于xb与xb之间一段弧的长度c解 yshx 从而弧长元素为cds1sh2xdxchxdxcc因此 所求弧长为bbbsbchxdx20chxdx2c[shxdx]b02cshcccc2.参数方程情形设曲线弧由参数方程x(t)、y(t)(t)给出 其中(t)、(t)在[ ]上具有连续导数dy(t)因为 dx(t)d t 所以弧长元素为 dx(t)2(t)ds12(t)dt2(t)2(t)dt(t)所求弧长为s2(t)2(t)dt例3 计算摆线xa(sin) ya(1cos)的一拱(0 2)的长度解 弧长元素为dsa2(1cos)2a2sin2da2(1cos)d2asind2所求弧长为2s02asind2a[2cos]08a222三峡大学高等数学课程建设组高等数学教案定积分的应用3.极坐标情形设曲线弧由极坐标方程()( )给出 其中r()在[ ]上具有连续导数 由直角坐标与极坐标的关系可得x()cosy()sin( ) 于是得弧长元素为dsx2()y2()d2()2()d从而所求弧长为s2()2()d例4求阿基米德螺线a(a>0)相应于 从0到2 一段的弧长解弧长元素为dsa22a2da12d于是所求弧长为2s0a12da[2142ln(2142)]作业:P284:2(2)(4),3,4,5(1),10,12,15(2),18,22,23,29,30三峡大学高等数学课程建设组高等数学教案定积分的应用§6 3 功水压力和引力一、变力沿直线所作的功例1把一个带q电量的点电荷放在r轴上坐标原点O处 它产生一个电场 这个电场对周围的电荷有作用力 由物理学知道 如果有一个单位正电荷放在这个电场中距离原点O为r的地方 那么电场对它的作用力的大小为Fkq(k是常数)r2当这个单位正电荷在电场中从ra处沿r轴移动到rb(a解: 在r轴上 当单位正电荷从r移动到r+dr时电场力对它所作的功近似为k即功元素为dWk于是所求的功为 qdrr2qdrr2bkq2Wa11drkq[1]bakq()rabr例2在底面积为S的圆柱形容器中盛有一定量的气体 在等温条件下 由于气体的膨胀把容器中的一个活塞(面积为S)从点a处推移到点b处 计算在移动过程中 气体压力所作的功解 取坐标系如图 活塞的位置可以用坐标x来表示 由物理学知道 一定量的气体在等温条件下 压强p与体积V的乘积是常数k 即pVk 或pkV在点x处 因为VxS 所以作在活塞上的力为FpSkSkxSx当活塞从x移动到xdx时 变力所作的功近似为kdx x即功元素为dWkdxx于是所求的功为bbWakdxk[lnx]baklnxa例3 一圆柱形的贮水桶高为5m 底圆半径为3m 桶内盛满了水 试问要把桶内的水全部吸出需作多少功?解 作x轴如图 取深度x 为积分变量 它的变化区间为[0 5] 相应于[0 5]上任小区间[x xdx]的一薄层水的高度为dx 水的比重为98kN/m3 因此如x的单位为m 这薄层水的重力为9832dx 这薄层水吸出桶外需作的功近似地为三峡大学高等数学课程建设组高等数学教案定积分的应用dW882xdx此即功元素 于是所求的功为225(kj)xW088.2xdx88.2[]5088.2225二、水压力从物理学知道 在水深为h处的压强为ph 这里 是水的比重 如果有一面积为A 的平板水平地放置在水深为h处 那么平板一侧所受的水压力为PpA如果这个平板铅直放置在水中 那么 由于水深不同的点处压强p不相等 所以平板所受水的压力就不能用上述方法计算例4 一个横放着的圆柱形水桶 桶内盛有半桶水 设桶的底半径为R 水的比重为 计算桶的一个端面上所受的压力解 桶的一个端面是圆片 与水接触的是下半圆 取坐标系如图在水深x处于圆片上取一窄条 其宽为dx 得压力元素为dP2xR2x2dx所求压力为P02 xRxdx(R03R2rR3[2(R2x2)2]033R22R2122x)d(R2x2)三、引力从物理学知道 质量分别为m1、m 2 相距为r的两质点间的引力的大小为FGm1m2r2其中G为引力系数 引力的方向沿着两质点连线方向如果要计算一根细棒对一个质点的引力 那么 由于细棒上各点与该质点的距离是变化的 且各点对该质点的引力的方向也是变化的 就不能用上述公式来计算例5 设有一长度为l、线密度为的均匀细直棒 在其中垂线上距棒a单位处有一质量为m的质点M 试计算该棒对质点M的引力解 取坐标系如图 使棒位于y轴上 质点M位于x轴上 棒的中点为原点O 由对称性知 引力在垂直方向上的分量为零 所以只需求引力在水平方向的分量 取y为积分变量 它的变化区间为[l, l] 在[l, l]上y点取长为dy 的一小段 其质量为dy 与M相距ra2y2 于2222是在水平方向上 引力元素为dFxGmdyamdyaGa2y2a2y2(a2y2)3/2三峡大学高等数学课程建设组高等数学教案定积分的应用引力在水平方向的分量为Fx2lG2l2Gmlamdy1223/222a(ay)4al作业:P292:3(2),6三峡大学高等数学课程建设组
高等数学课件(篇3)
高等数学是大学数学的一种,是指在基础数学的基础上,研究和探讨复杂问题的数学分支。高等数学课件的出现使得我们更加高效地学习高等数学,抓住重点和难点,了解其理论证明和实际应用。以下是关于高等数学的主题范文。
一、高等数学的基本特点及意义
高等数学是一门抽象的数学学科,是现代科学和技术不可或缺的基本工具。高等数学作为现代科学的基础,有其独特的基本特点。高等数学的基本特点主要包括:抽象性、系统性、严谨性和应用性。抽象性是指高等数学的概念和方法比较抽象,需要较强的数学思维和理论知识;系统性是指高等数学是一个完整的系统,各个概念和方法之间相互关联,构成一个庞大的数学体系;严谨性是指在高等数学中每一个结论都需要经过理论证明才能成立;应用性是指高等数学在现代科学和工程技术中有着广泛的应用,涉及到各个领域。
高等数学在现代科学和技术中的重要性不言而喻。高等数学的研究和应用,不仅能够提高科学技术的水平,还能够推动社会的进步和发展。高等数学已经成为各个领域的基础和前沿,比如:物理、化学、生物、经济、计算机等领域。因此,掌握高等数学的概念和方法、掌握高等数学的理论和应用,能够使我们更好地走向现代科学和技术的道路。
二、高等数学的应用举例
高等数学的应用范围非常广泛,涉及到各个领域的发展和进步,并为我们的生活带来了许多便利和改变。以下是几个高等数学在不同领域中的应用举例:
1、物理
高等数学在物理学中起着关键的作用,许多物理学家都是数学家出身。物理学领域中的微积分、线性代数、矩阵论等数学概念和应用,是理解和解释物理现象的基础。比如,在量子力学中,矩阵的运算是非常重要的,它描述了电子、光子、原子等微观尺度的系统。
2、计算机科学
高等数学在计算机科学中的应用也非常广泛。计算机科学领域中最基本的数学概念是离散数学,它包括图论、概率论等方面。在计算机的逻辑设计、算法分析和优化、人工智能等方面,都需要离散数学的知识。比如,图论在计算机网络和数据库管理中扮演着重要的角色。
3、金融
在金融领域中,高等数学的应用也是不可或缺的。金融学家需要理解数学概念和算法,例如蒙特卡罗模拟、风险管理和金融衍生品估值。这些数学方法使得金融工具的设计和金融风险的管理更加实用和准确。
三、高等数学课程的重点和难点
高等数学课程在许多学生眼中是一门极其难懂的学科。然而,只要我们掌握了一定的方法和技巧,高等数学也不再难以理解。以下是几个高等数学课程的重点和难点:
1、微积分
微积分是高等数学的一个主要分支,是许多其他高等数学学科的基础。微积分的内容较为丰富,需要深入理解微分和积分的概念、定理和方法。微积分的难点在于如何理解和运用微分和积分的概念、理论和性质,以及如何联想和运用到实际问题中。
2、线性代数
线性代数是高等数学中比较抽象和理论性较强的一个分支。该学科主要探讨线性方程、矩阵和向量空间等概念的理论和性质。线性代数的难点在于如何理解抽象的概念和方法,并具体地运用到实际问题中。
3、多元函数微积分
多元函数微积分是微积分的一种扩展。它涉及到多个变量的函数、偏导数、梯度、散度、旋度等概念和方法。多元函数微积分的难点在于如何理解多元函数和多元微积分的概念和方法,并具体地运用到实际问题中。
总之,高等数学作为一门抽象、系统、严谨和应用性强的学科,具有广泛的应用前景和不可替代的地位。只有掌握了高等数学的基本概念和方法,并善于运用到实际问题中,才能在未来的职业生涯和学术研究中有所作为。
高等数学课件(篇4)
高等数学课件是现代教学中常用的教材工具之一。它不仅便于学生了解教材内容,更可以帮助教师进行教学,提高授课效率。在学习过程中,数学课件对学生的帮助也非常大。因此,我们需要充分利用高等数学课件来实现最佳学习效果。
一、高等代数
高等代数是不少学生在学习过程中感觉比较难理解和掌握的一门学科,因此,教师需要使用高效的教学方法。高等数学课件的使用可以为教师提供更有效的教学手段。在示意图、动画和绘图等方面都有不小的好处,能够更直观地展示复杂的数学公式和变量。
二、微积分
微积分是数学中的一个核心分支学科,学生在学习中需要掌握各种极限和导数等基础理论,并且需要逐步理解它们的本质和应用。高等数学课件可以极大地改善这一情况。微积分的基础概念和重要性可通过示意图、统计分析等方式进行演示和解释。这种通俗易懂的教学方法,对于学生在理解微积分中的基本概念和应用方面,会起到很大的作用。
三、线性代数
线性代数是近年来广受欢迎的学科之一,因为它不仅在软件、工程和物理学等领域有广泛应用,而且在其他领域中也十分重要。通过使用高等数学课件,教师可以按照学生的不同水平和需求,进行个性化的教学。线性代数中涉及到的大量数学公式和图形,图片和示意图等方面的表现形式,都可以得到更全面和精确地呈现,有助于激发学生的学习兴趣和思维能力。
总之,高等数学课件极大地促进了课堂教学的质量和效果,能够更好地帮助学生掌握知识,以及提高学生在数学方面的能力和兴趣。当然,它也成为教师教学中不可或缺的工具。随着科技的进步和教育技术的创新,高等数学课件的应用和发展有着更为广阔的发展前景。通过合理利用高等数学课件,我们可以进一步推进现代教育,培养更多的数学人才,助力于国家的发展和繁荣。
高等数学课件(篇5)
高等数学课件是大学数学课程中的重要教学资源,它不仅丰富了教学内容,也提供了有效的学习支持。本文将围绕高等数学课件这一主题,从以下三个方面阐述其重要性和优点。
一、提高教学效率
高等数学课件充分运用了现代电子技术,使得数学教学资源更加丰富多样化。与传统的黑板板书相比,高等数学课件具有内容丰富、动画效果清晰、易于呈现等诸多优点。通过图像、动画和音频等多媒体手段,高等数学课件可以帮助学生更好地了解各种数学概念和定理,形象直观地表现出数学公式和计算过程,使得学生不仅能够迅速理解掌握知识点,而且还能够巩固知识。
二、提高学生学习兴趣
随着教学方式的不断发展,学生已经对传统的教学模式产生了厌倦情绪。而高等数学课件则是一种符合现代大学生学习需求的教学模式。高等数学课件引入了图像、动画和音频等多媒体手段,不仅能够增强学习的乐趣,而且还可以使得学习更具创新性和实践性,从而增强学生的学习兴趣和积极性。
三、提高教学质量
高等数学课件不仅丰富了教学内容,同时也提供了更加完善的教学支持。举例来说,高等数学课件不仅包含了大量优秀的图像、动画和音频,还可以结合计算机辅助教学工具,进行知识点测试和题目练习等教学环节,进而提高学生的学习效率和学习能力。此外,高等数学课件还可以通过配置计算机辅助教学工具,实现自适应学习和个性化学习定制,使得学生能够体验更为个性化、高效和优质的学习模式。
总之,高等数学课件在现代大学数学教学中发挥着至关重要的作用,不仅充分利用了现代电子技术和多媒体手段,提升了教学效率和质量,同时也增强了学生学习兴趣和积极性,“高等数学课件”的出现将使得大学数学教学更加现代、多样化和实践性。
高等数学课件(篇6)
第一章
绪论
高等教育研究大致经历了个别研究阶段、组织研究阶段和系统研究阶段。
第一节
高等教育发展简况
一、成长中的高等教育
(一)高等教育的萌芽阶段
古巴比伦的“寺庙学校”把学问分成两级,一为初级教育,传授读写知识;二为高级教育,出读写训练外,还有文法、苏美尔文字等
古埃及也有“寺庙学校”,由精通数学、天文知识的僧侣执教,以传授知识与探讨学问并重。
雅典的教育得到了很大的发展。雅典大学:通常包括修辞学校、阿卡德米学园、哲学学校“吕克昂以及斯多葛派创立的学校和伊壁鸠鲁派创立的学校。
中国殷周时期,便有“右学”、辟雍、泮宫等高等次的学问传授中心。奴隶社会想封建社会过渡的春秋战国时期,出现了世界上第一所真正的高等学府——稷下学宫。
高等教育机构性质不明确,教育职能不确定,专业教育性质模糊,学生年龄参差不齐。非正式的教学形式。
(二)高等教育的雏形阶段
主要指形成与欧洲中世纪大学教育和中国汉代的太学及唐、宋的书院教育。行会组织是中世纪大学的内部管理和学术活动组织的最重要影响力量。在中国汉代的太学为高等教育从萌芽走上雏形奠定了基础。书院教育是高等教育从萌芽走向雏形的标志。中国书院为近现代的高等教育组织形式浇铸了初始模型。
(三)高等教育的成型阶段
始于文艺复兴默契和资产阶段革命初期。
英国人文主义教育家哥勒16世纪初创办了圣保罗学校,成为新型文法学校的样板。
(四)高等教育的完善阶段
从单一走向多样。1810年柏林大学首先突出了通过研究进行教学、教学与可言统一和独立与自由统一的新型教育原则。
赠地学院。提出为教育服务社会。初级学院,研究生院在美国的诞生
二、扩张中的高等教育
(一)规模化。马丁·特罗三段论。精英、大众和普及
(二)中心化
(三)综合化。科学与人文结合
(四)国际化
(五)职业化
(六)终身化
(七)多元化 第二节 高等教育研究与高等教育学
我国汉代编撰的《礼记》、《大学》《学记》都有关大学教育的论述
一、个别研究阶段。捷克教育家夸美纽斯的《大教学论》,英国纽曼的《大学的理想》,俄国皮洛戈夫的《大学问题》,美国哈帕的《高等教育的倾向》
二、组织研究阶段。1880年法国的“高等教育研究会”。中国第一个正轨的高等教育科学研究机构——厦门大学高等教育科学研究室成立。
三、系统研究阶段。1984年1月国务院学位委员会批准夏大高教所为高等教育学专业的硕士点,颧骨哦第一个高等教育学专业硕士点。1986年7月夏大高教所又被批准为全部哦第一个高等教育学专业的博士点。
第三节 认识高等教育学
二、高等教育学的发展动因
(一)高等教育事业的发展推动着高等教育学的产生和成熟
(二)高等教育的内部矛盾促使高等教育学的研究不断升华
(三)相关学科的协同效应推动着高等教育学的发展
三、国内高等教育学的学科体系
1984年潘懋元的《高等教育学》上下。全国第一套《高等教育学》被认为是该学科最早、影响较大的一本专著。
第四节
高等教育的研究方法
多学科研究法 文献研究法 案例分析法 反思批判法 体悟总结法
第二章
高等教育本质 第一节
教育与高等教育
高等教育功能:
1、高深学问选择、传递和创造
高等教育基本功能的三个明显特征: 稳定性、潜在性和表现形式多样性 第二节 国内外高等教育结构
二、我国高教育结构的历史与现状
1、层次结构。专科、本科和研究生
2、科类和专业结构
3、形式结构。全日制普通高等学校和成人高等学校。20世纪80年代的全国高等教育自学考试制度是我国高等教育的一大创举。
4、地区结构
我国高等教育结构的调整策略
1、层次结构调整:建设少数一流大学,大力发展职业教育
2、科类专业结构调整:实现科类结构与产业结构一致,大力推进学科专业综合化
3、形式结构调整:完善终身教育体系,形成多样的投资结构
4、地区结构调整:加强西部地区高等学校的发展 高等教育功能的使命
1、培养人才。萨莱诺大学、波隆那大学、巴黎大学
2、发展科学。洪堡创办的柏林大学。通过研究进行教育和教学与科研统一。
3、社会服务。林肯的莫里尔法案,求实精神注入大学办学思想和实践中。赠地学院。
威斯康星大学思想:把学生培养成有知识,能工作的公民,进行科学研究,发展新知识,新科技,传播知识给广大民众,解决社会生产,生活中的问题。
高等学校的职能体系:
1、培养人才
2、发展科学
3、社会服务
4、职能的新发展。引导社会的职能、创造新职业的职能、国际合作的职能。
培养人才是高等学校的本体职能,发展知识是高等学校的附属职能、服务社会是其附属职能。
第五章 高等学校教师与学生
第一节,高等学校学生主体性发展的阶段性
1、人的主体性 人本身的自然力,为主体所掌握并进入主体活动领域的知识和能力,对实现主体活动目的的起积极作用的情感和意志等要素有机结合而成的复杂整体,就是人的主体性。完整的主体性涵盖四个方面:道德主体性、认知主体性、审美主体性、实践主体性
2、大学生主体性发展的阶段性
1、低年级:接受性学习阶段为主阶段
2、中年级:接受性学习向发展性学习的转变期
3、、高年级:发展性学习为主阶段
第二节:高等学校教师的素质要求与角色特征
一、高等学校教师的素质要求
1、文化素质。专业知识、教育智慧
2、心理素质。情感品质、意志品质、个性品质
3、道德品质。热爱学生、为人师表、学而不厌、团结协作、4、能力结构。教学能力、科研能力、组织能力
二、高等学校教师的角色特征 教师角色即教师行为
教师角色即教师的社会地位 教师角色即对教师的期望
1、大学生增长知识和完满心灵的导师
2、大学生热爱学习和终身发展的楷模
3、人类文化和社会生产力发展的推动者
第三节 高等学校教师与学生的关系
一、高等学校教师与学生关系现状
1、以教师为主导和中心
2、师生关系比较淡漠
3、师生关系有些异化
二、教师与学生在教育过程中的不同关系理论
1、教师中心论与学生中心论
赫尔巴特为代表认为的教师中心论。强调教师在教育过程中的绝对支配地位。
卢梭、杜威等为代表的学生中心论。主张儿童身心发展规律为基础,学生在教育、教学中处于支配地位,起决定作用。并认为学生的发展是一种主动过程,教师的作用只在于引导学生的学习兴趣,以满足学生的需要,而不是直接干预学生的学习。
2、主导——主体论与双主体论
主导——主体论即教育过程中教师是主导,学生是主体,成为我国教育理论和实践中流行的一种观点。
3、教育主体的一体两面性质
教育过程是教师和学生共同参与的双边性活动。
三、创设高等学校良好师生关系
1、教育质量的前提调动“一体两面”的积极性
1、调动教师的积极性
2、调动学生的积极性
2、创设良好师生关系的途径
1、民主与平等
2、交流与理解
3、自由与宽容
第六章 高等学校教育
第一节 高等学校学科、专业、课程与教学内容
一、高等学校学科与专业
1、高等学校学科分类及特征
科学是进过或经历论证的知识,规范化的知识体系
学科是根据某科学领域里研究对象和性质的差别来分门别类进行研究和学习的知识体系。
2、高等学校的专业设置 专业,广义上是指知识的专门化领域,狭义上是指与培养人的活动相联系的一种培养人才的基本单位。或是一种教育尸体。专业是根据学科分类和社会职业分工需要分门别类进行高深专门知识教与学活动的基本单位。
1、专业设置的影响因素
相应学科对专业设置的影响
经济与社会发展需要对专业设置的影响 个人自身发展需要对专业设置的影响
2、专业设置的原则
超前性原则
灵活性原则 可行性原则 结构优化原则 宽口径原则 发展特色原则
二、高等学校课程设置的特点
1、高等学校课程能更深刻、更及时第反映出一个国家的教育信息和时代特征。
2、高等教育一直以培养高级专门人才,研究,探求高深学问为主要任务
3、高等教育是在青年人接受基础教育的基础上,在心理、身体发展趋向成熟时期所接受的更高级的专业教育。
三、高等学校的教学计划与教学大纲
1、教学计划及其修订
课程体系结构的方案,是国家为保证培养人才的规格而制定的关于学习的科目和范围的文件。教学计划规定教学科目、学科的顺序、各门科学的教学时数、学年编制与学周的安排。
修订:重点解决素质教育尤其是文化素质教育问题
重点解决课程内容和体系的整合问题
重点解决可持续发展能力的培养问题
重点解决鼓励学生个性发展问题
2、教学大纲及其编制
是一门课程的纲要结构,是以纲要的形式规定有关科学内容的指导性文件,它规定了各门学科的目的、任务、内容、范围、体系、教学进度,时间安排以及对教学方法的要求等。
教学大纲的编制原则:
1、符合教学计划,体现培养目标
2、符合该学科在整个教学计划中的地位和作用以及任务
3、高度的科学性、思想性和实践性。
4、建立科学严密的体系
5、符合学生事迹,贯彻少而精的原则
6、文字精炼,语言明确。
四、高等学校教学内容的选择与组织
1、教学内容与课程
p151 两个不同的概念,但有着密切的联系,课程:教学的内容,安排,进程,时限,也包括大纲和教材,课程也不只是教学内容,还有对内容的安排、进程和时限等。
教学内容:是学校教育过程的基本因素质之一,是教学过程中教师的教与学生的学的双边活动的中介,学校的教学内容是以教学计划,教学大纲,教材或讲义,活动安排等具体形式表现出来的知识、技能、价值观念及行为。
2、选择和组织教学内容应遵循的原则
适时原则 完整原则
发展学生个性原则 宽口径原则
调动教师积极性的原则
第二节
高等学校教学过程与教学原则
一、教育过程的概念
在教师有目的、有计划的引导下,学生主动、积极地掌握知识技能、发展智能、形成思想政治道德品质的过程,是教师的教和学生的学相结合的双边活动过程。
二、高等学校教学过程的特点
1、专业化程度逐步提高
2、学习主体性逐渐增强
3、教学与科研的紧密结合
4、教学与生产、生活联系逐步增加
二、高等学校教学过程的规律
1、教学相长规律
2、教学与科研互动规律
3、教学的发展性规律
4、、教学的教育性规律
高等学校教学过程的组织与实施 教学过程三个典型环节:
1、备课
2、课堂教学
3、考核评定
三、高等学校教学原则及其体系
1、科学态度与人本精神有机统一的原则
2、师生互动合作与自觉制约有机统一的原则
3、科学稳定性与适时更新性有机统一的原则
4、坚持广泛开发、选择与便利有效运用有机统一的原则
5、坚持直观形象感知与逻辑实质认知有机统一的原则
6、坚持专业化、定型化、常规化、开放化、变通化、灵活化有机统一的原则
7、全面教学质量管理与突出关键环节有机统一的原则
第三节
高等学校教学方法与教学手段
高等学校教学方法及其特点 高扽各学校教学方法的特殊性:
1、又注重教法转向注重学法
2、具有很强的探索性
归纳法、推理法、演绎法等逻辑抽想法
3、具有很强的专业针对性
二、高等学校教学方法的运用原则 教学有法,但无定法.6 1 教法与学法的统一 讲习知识方法与训练智能方法的统一
3、常规教学方法与现代化教学手段的统一。
三、高等学校教学方法举隅 高校常用的教学方法有:
1)课堂教学方法,包括讲授法、讨论法、实验法、练习法等
2)自习与自学指导的方法,包括读书指导法,复习法,辅导等 3)现场教学的方法,包括观察法,调查法,实习法等,4)科研训练法。
1、发现教学法。布鲁纳的教育过程
1)确立学生兴趣问题。2把问题分解成若干有联系的提问。3)提出可能的答案。4)搜集和组织有感资料。5)钻研和讨论这些资料。6)证实结论
2、问题教学法
1)提出问题,创设情境
2)教师引导下,学生独立活动
3)提出新问题
3、研讨式教学法
第一阶段
探索阶段。1)确定研讨课题
2)查阅资料
3)从已确定的课题或问题出发进行研究,调查,实验,论证。4)撰写研究报告
第二阶段
报告讨论阶段。1)设立研讨式教学的筹备小组。2)向全班宣告专题报告和分组讨论的程序。3)进行小组专题报告和讨论。4)各小组代表向研讨全体做报告。5)教师或召集人进行总结。
4、掌握学习
5、学导式教学法
6、个性化教学
四、高等学校教学手段的发展
1、建立了现代化的数字图书馆校园
2、开发了适应新教学手段的教材体系
3、构建了先进的教育网络系统
第四节
高等学校教学设计与教学评价
一、高等学校教学设计的内涵与基本程序
1、教学设计的内涵
教育实践工作者为达到一定的教学目标,对教学活动进行的系统规划、安排与决策。
2、教学设计的基本程序
1)规定教学的预期目标,分析教学任务,预测教学结果 2)确定学生起点状态,分析学生原知识结构水平3)分析学生起点状态和掌握知识的能力结构 4)思考教学方法和手段 5)如何对教学结果评价 6)分析教材
二、高等学校教学设计的模式与内容
1、模式
1)系统分析模式 2)目标模式 3)过程模式
2、内容
高等学校教学设计的内容包括:教学目标设计、教学起点设计、教学内容设计、教学时间设计、教学措施设计、教学评价设计。
三、高等学校教学评价的内涵与分类
1、教学评价的内涵
在广泛收集各种信息的基础上对教学活动进行价值判断,为教学决策提供依据,从而实现对教学活动的控制,以达到预期教学目标的过程。
2、教学评价的分类
1)按评价的对象。整体教学水平评价、专业教学质量评价、课程评价、单项评价等 2)按评价主体分。自我评价、政府评价、中介机构评价
3)按评价时间和作用分。诊断性评价、形成性评价、总结性评价 4)按评价基准分。相对评价和绝对评价
5)按评价的性质分。需要评价、可行性评价和配量性评价。
四、高等学校教学评价的作用 1)管理作用 2)导向作用 3)鉴定作用 4)激励作用 5)改进作用
第五节
教学风格及其形成途径
一、教学风格及其意义
教学风格是指教师在长期教学艺术实践中逐步形成的、富有成效的一贯的教学观念,教学技巧和教学作风的独特结合表现。是教学艺术个性化的稳定状态之标志
二、教学风格的基本特点 1)独特性 2)多样性 3)稳定性 4)发展性
三、教学风格的形成途径
1)学校领导更新教育观念,发扬教学民主,鼓励教师建立自己个人的教学风格 2)形成独特的教学风格是每位教师应有的自觉追求。
培养乐教精神
掌握教育教学规律,教学基本功提升
注意扬长避短
定向发展
把继承和发展,学习和创新结合起来
第六节 高等学校教学改革
一、高等学校教学改革的过程理论 1)自上而下的模式 2)自下而上的模式
二、高等学校教学改革的发展趋势 1)教学改革国家化趋势 2)学科综合化趋势增强 3)教学趋势个性化 4)教学管理活性化 5)倡导自主性学习
6)围绕培养创新人才展开 7)强调教学内容的更新
三、高等学校教学改革的策略
1)更新教学观念,树立人格平等意识 2)依法治教,促进教学规范化 3)优化教学内容与课程体系 4)改进教学方法与手段 5)提高教师综合素质 6)改革教学管理
第七章
高等学校科学研究
第一节
高等学校科学研究的意义和任务
一、高等学校科学研究的意义
1、内部意义 1)人才培养意义 2)教师队伍建设意义 3)学科建设意义 4)经费筹措意义
2、外部意义
1)提升国家的科技水平,繁荣学术文化 2)服务社会
3)解决国际学术难题
二、高等学校科学研究的任务 1)承担国家的重大科研课题
2)进行经济社会发展中的重大理论和政策问题研究 3)以基础研究为重点,积极开展应用研究和开发研究4)优化资源配置,直接为经济社会发展服务
5)开展教育科研研究
第二节
高等学校科学研究的类型与课题申报
一、高等学校科研研究的类型
1、从课题来源分
自主性研究和立项课题研究
2、从课题性质分
理论性研究。为了获得关于现象和可观察事实的基本原理的新知识而进行的实验性或理论性的研究活动。
实践性研究。为了获得新的知识并服务于应用目的而进行的创造性的研究活动。
二、高等学校科学按就课题申报 1)科研选题
1、基础研究选题主要以科学发展为导向,应用研究和技术开发的选题以市场需要为导向,基础性应用研究选题以市场导向和科学发展导向相结合。
2、科研选题的方法。问题法、移植法、交叉法
3、科研选题的步骤。阅读有关项目申报通知材料,阅读文献,研究项目意向的内涵与外延以及相关因素。2)项目设计
申报项目命题。灵魂、核心、主题,研究的出发点和归宿。
项目组成人员
合作单位选择
项目研究基础
项目立项依据
研究内容,方法和手段
项目意见填写
第三节
高等学校科研研究的原则与组织
1、教学与科研互促性原则
2、社会经济效益与学术水平相统一的原则
3、以应用研究、开发研究支撑基础研究的原则
4、遵循项目指南与尊重自由选题相结合的原则
5、多层次,多模式相结合的原则
第八章
高等学校服务社会
第一节
高等学校服务社会的意义
一、对办学方向的意义
二、对促进教学、科研的意义
三、对高等教育发展的意义
第二节
美国高等学校服务社会的借鉴
一、美国高等学校服务社会的两种模式
1、美国都市大学
美国都市大学也称合作大学,相互作用大学,始于20世纪中期,80年代末。其基本战略是使学校与它所在的shequ 的企业界,公众及政界的领导建立一种积极的、双向作用的伙伴关系,为实现社区经济繁荣和社会公正的共同目标努力。
2、专业发展学校
20世纪80年代中期后形成的一种新型的教师培养模式。其核心是大学与基础学校之间建构性伙伴关系的建立与获得,以及在教师pei样过程中学院气氛的淡化和实践氛围的浓厚。
二、美国高等学校服务社会对我国的启示
1、大学做出象牙塔是历史发展的必然结果
2、学术性与实用性的矛盾是服务社会过程中的首要难题
第三节
高等学校服务社会的内容与管理
一、高等学校服务社会的内容
1、教学服务。是高等学校为社会提供的直接服务中最简单的一种,厦门大学潘懋元先生将教学服务定义为:教学服务,就是通过教学活动开展社会服务,面向社会传播,推广科学文化知识和新技术,不拘一格的培养各种应用性人才。
2、科研服务。指高校发挥自身的科研优势,为解决社会生产生活中出现的一些实际问提供直接支持,如进行基础研究的应用性开发、参加国家或地区的联合科研攻关项目或直接为企业或农村提供科技咨询等。
3、通过信息和设备资源共享为社会服务。高等学校作为社会的“信息库”“思想库”,同时也是地区的资源中心,集中了一个地区最先进的智力资源、信息资源、设备资源、人才资源等。
二、高等学校服务社会的管理
1、社会(政府)对高等学校服务社会的管理 1)政策支持
2)法律保障和约束 3)资金鼓励
2、高等学校服务社会过程中的自我管理 1)强调校长的职业素质 2)统筹安排服务活动
3)加强服务人员的队伍建设 4)建立服务行为的激励机制
第九章
高等学校管理
第一节
高等学校管理体制
一、高等学校的内部决策与领导体制 体制是社会活动的组织方式,是指运用什么手段把构成社会活动的各要素组织起来,使其正常运行。
1、高等学校内部领导层的构成 1)高等学校的校长。
高等学校的校长通常也是学校对外的法人代表,负有对高等学校全面管理的职责。
高等学校校长的产生和任命方式,因国家高等教育管理体制的不同而不同。
在规模较大的高等学校中,校长作为对全校工作的全面负责者,需要配社一定的助手 国际上不少大学校长的活动,重点在于学校办学资金的筹集。2)高等学校的几种决策权利机构
董事会
理事会或校务委员会
学术委员会或学术评议会
2、高等学校的几种决策模式
1)科层制模式。学校实际决策权利倾斜于学校行政管理人员。2)学术团体模式。决策权利倾向于学校学术人员。3)双重组织模式
3、我国高等学校的内部领导体制
1)建国以来我国高等学校领导体制的演变、1950-1956年的校长负责制
1956-1961年党委领导下的校务委员会负责制
1961-1966年党委领导下以校长为首的校务委员会负责制
1971-1976年的党委“一元化”领导
1978-1985年党委领导下的校长分工负责制
1985-1989年逐步实行校长负责制的试点
1989年至今党委领导下的校长负责制
二、高等教育宏观管理体制与运行机制
1、高等教育宏观管理体制 1)政府干预为主的运作体制 2)以社会力量为主的运作体制 3)以高校自主办学为主的运作体制
2、我国高等教育宏观管理体制
1)我国高等教育宏观管理体制的历史沿革
2)我国高等教育宏观管理体制改革的重点和趋势
扩大省级部门对属地高校的统筹权
鼓励社会广泛参与办学
扩大高校办学自主权
3、高等学校组织结构与校内管理机制 1)高等学校的组织结构与系统特性
高等学校的组织结构:从功能上划分,分为决策领导结构、职能管理部门、教学科研单位和有关附属单位。
在管理层次上,有的分为校、系两级,有的则认为校、院、系三级或校、系、教研室三级。
管理权力结构上,高校采用直线—职能制的形式。2)高等学校的系统特性
组织结构的学科性和国际性。内部分工很大程度上是与一定的科学结构相关的。
组织目标的多样性和模糊性
组织成员活动的高智力性和相对独立性
(二)我国高等学校内部管理体制改革的内容
1、内部管理的中心宜放在院系一级
2、管理过程尽可能吸收教学、科研人员民主参与
3、建立适合高等学校特点的激励机制
4、加强规章制度建设,建立有效的调控机制
第二节
高等学校管理系统的要素及特性
一、高等学校管理系统的要素
(一)管理主体
(二)管理客体
(三)管理方式
(四)管理目的
(五)管理环境
二、高等学校管理的特性
(一)管理组织的松散型
(二)管理权威的双重性
(三)、管理结构的多样性
(四)管理准则、规范的矛盾性和含糊性
(五)管理主客体的相对性
三、高等学校管理的目标
第三节
高等学校管理的原则与内容
一、高等学校管理的原则体系
(一)一般管理原则
1、系统原则
2、分工协作原则
3、反馈原则
4、能级原则
5、封闭原则
6、动态原则
7、激励原则、8、弹性原则
(二)学校管理原则
1、方向性原则,2、教育性原则,3、民主性原则,4、效益性原则
(三)高等学校管理原则
1、入学机会均等与择优培养原则
2、学术自由与教育责任原则
3、学术自治与社会参与原则
二、高等学校管理的内容
(一)人力资源管理
(二)教学管理
(三)科研管理
(四)财力和物力资源管理
第十章 高等学校教育制度 第一节 高等学校的学制
高等学校的学制是指各类各层次高等学校的系统,是国家整个学校教育制度的一个组成部分。
一、学制概述
指一个国家的各级各类学校的系统,包括:有哪些种类的学校,这些学校由谁来主办和管理,学校的性质和任务是什么,实际的入学条件,修业年限以及各级各类学校的关系如何等等。
(一)学制的建立受制于社会的生产力和科学技术的发展水平
(二)学制的建立受到社会政治制度的制约
(三)学制的建立须适应学习者的年龄特征和发展水平
二、国外高等学校学制概况
(一)、美国高等学校学制
美国的高等教育已成了三级结构,第一级为两年制初级学院,毕业后可获得副学士学位;第二级为四年制综合大学和各种专业学院,毕业后可获得学士学位;第三级为研究生院和高级专业教育。研究生可在不同年限和水平上获得硕士、博士学位。
(二)日本高等学校学制
1、短期大学
2、高等专门学校
3、本科大学
(三)法国高等学校学制
1、大学技术学院和高级技术员班
2、大学。综合性大学。
3、大学校。属长学制的高等职业教育机构。
(四)、德国高等学校学制
1、职业学院和专科大学
2、大学
(五)英国高等学校学制
三、我国高等学校学制结构
高等学校学制结构一般是指高等学校的形式结构和层次结构。形式结构,有普通高等学校和成人高等学校。从层次结构上,专科、本科和研究生。
(一)全日制高等学校
1、普通高等学校(1)高等专科学校(2)大学和专门学院(3)研究生院
2、职业高等学校
(二)成人高等学校
第二节
高等学校招生和毕业生就业指导制度
一、高等学校招生制度
是高等学校教育制度的重要组成部分,它规定着不同层次、不同类别的高等学校在人才选拔中所拥有的权限,人才选拔的标准、形式和范围等。
(一)各国高等学校招生制度
1、统一的入学考试方式
2、有大学单独组织入学考试的方式
3、统一考试和单独考试的相结合的方式
4、直接从中学招生,不举行考试
(二)我国高等学校的招生制度
1、招生手段上实行高中会考和统考相结合的制度
2、实行多渠道的招生制度。收费制度是指国家本着成本分担的原则,由高等教育的受益者自己承担部分培养费用,毕业生自主择业。高等教育属于非义务教育。
3、我国高校招生制度改革的方向
扩大高校和地方招生自主权
录取时参考学生的综合素质
进一步完善高校招生收费制度,通过辅之以奖学金、贷学金、助学金和勤工俭学基金等制度,保证高校招生制度得以顺利有效地实施
二、高等学校毕业生就业指导制度 计划分配——双向选择——自主择业
(二)高校毕业生就业制度的改革方向
1、规范毕业生就业市场,创造公平竞争的用人环境
2、明确政府在毕业生就业市场中的角色定位
宏观调控者、市场引导着、人才需求规划者和信息服务与咨询者
3、发挥高校就业指导的主渠道作用。
合理设置专业、适应社会需求,强化职业技能培养
积极采取相应措施
建立全国毕业生就业信息网,加强就业信息的收集和发布,为毕业生就业创造更好的条件。
5、毕业生树立正确的就业观念,做好充分的职业准备。
第十一章
高等学校建设
第一节
高等学校教师队伍建设
一、高等学校需要合理的教师队伍结构
(一)切合实际的职称结构
(二)多样动态的专业结构
(三)充满活力的年龄结构
(四)不断优化的学历结构
(五)多元互补的学源结构
(六)凝聚人心的团粒结构
二、教师聘任制和资格制度
(一)教师聘任制。按照教授、副教授、讲师、助教的职称来聘任教师。所谓完全意义上的聘任制,就是要使教师和学校双方变人生依附关系为平等的合同管理。
(二)教师资格制度
1、教师资格制度的性质及其与教师聘任的关系问题。教师资格制度的本质是国家实行的一种法定的教师职业许可制度,是公民获得教师岗位的前提条件,教师资格知识教师聘任的必要条件,而不是充分条件,具有教师资格的人能否被安排担任教师工作还要受教师编制】教师队伍年龄、学科、学科、地区分布、职务等方面结构和个人实际水平及特长等方面职业
三、确立三大理念:改善教师队伍结构的前提 确立教师为本的办学观,坚定教师的主体地位 立海纳百川的师聘观,广延国内外名师 确立中西交融的师培观,提高队伍整体素质
第二节 高等学校学科、专业和课程建设
高等学校的学科建设和师资建设联系起来构成了高等学校建设的中心问题。学科建设抓哟是从科学和学术意义上说的,专业建设是从教学学意义上说的。课程建设包括课程结构,单门课程建设。
一、学科建设在人才培养中的意义
(一)学科建设是人才培养的基础
(二)学科建设对人才培养模式产生直接影响
(三)人才培养的质量取决于学校学科发展的水平
二、学科、专业建设方略
(一)合理规划,确立学科建设的定位和目标
(二)理顺学科体系,优化学科结构
(三)重视学术梯队建设
(四)加强与外界的交流和合作
三、高等学校课程建设的内容及其评价
(一)课程建设的内容
优化课程体系,更新课程内容
改革教学方法和教学手段
重视课程管理
(二)课程建设的评价
课程建设评价的过程(自由评、院系评、校评和整改)
课程建设评价指标。课程改革、教学条件、师资水平、教学效果、教学职责 课程建设评价的原则
课程建设评价要处理好的几个问题(硬件与软件建设的不同特性;学生参与课程建设评价问题;校际之间差距)
第三节
高等学校教学基础建设
一、高等学校文献信息资源建设
(一)传统文献信息资源建设
(二)电子文献信息资源建设
(三)共享也是一种建设
二、高等学校教学、试验装备建设、(一)合理规划是教学、试验装备建设的基础
(二)强化项目管理是教学、时间装备建设的关键
(三)建立灵活的投资机制是教学,试验装备建设的保障
(四)健全管理制度是教学、试验装备建设的保障
三、高等学校教育、实习基地建设
(一)教育、实习基地的功能
提供理论联系实际的场所
激发学生的创新思维、培养创造新能力的练兵场
学生职业道德和个性品质的养成所
沟通学校与社会的桥梁
(三)教育、实习基地的建立与管理
第四节
高等学校校园文化建设
一、校园文化的涵义及意义、是指高校校园区域中,由广大师生员工在教育、教学、管理、服务等活动中创造形成的一切物质形态、精神财富及其创造形成过程。
物质文化层
观念文化层
制度文化层、方式文化层
二、校园文化的意义
1、校园文化辐射社会精神文明
2、校园文化养成大学生素质
3、校园文化奠基教育现代化
二、校园文化的特征及功能
1、认同与超越
2、交融与批判
3、吸收与辐射
4、教育与自我教育
5、对外的独特性与对内的一致性
校园文化的功能:
1、导向目标;
2、启迪智慧;
3、塑造人格;
4、规范行为
三、校园文化建设的内容及途径
(一)共创校园精神
(二)发展智能结构
(三)培养健全人格
(四)丰富业余生活
第十二章
高等教育发展
第一节
高等教育发展的内涵
一、高等教育的全面发展
一方面是指高等教育应积极主动地适应经济与社会发展的需要,与社会其他系统协调发展;另一方面,在高等教育系统内,各部分要按合理的比例均衡发展,正确处理规模、结构、质量、效益的关系。
(一)高等教育的加快发展与适度规模
(二)高等教育结构多样化,多层次,低重心
(三)学科和课程结构日益综合化
二、高等教育的可持续发展
(一)可持续发展思想对高等教育的指导意义
(二)高等教育与社会的可持续发展
(三)高等教育自身的可持续发展。在于它是否遵循高等教育自身发展规律,即高等教育的内外部规律。
1、高等教育的超前性。首先成立广泛参与的规划机构,其次,正确的预测是高等教育规划超前的基础;再次,正确处理预见性与可行性的关系,预见性必须建立在科学的基础上,遵循高教发展的客观规律。
2、高等教育的整体性。高等教育功能的整体性是指高等教育社会功能和个体发展功能彼此独立,各具特殊效用,又相互联系,相互促进,相辅相成,形成高等教育功能的整合效应。
3、高等教育的全面性。
三、高等教育的发展观
(一)高等教育质量与发展密切相连
(二)高等教育质量衡量标准
(三)质量关与发展观
第二节
高等教育发展的趋势
一、高等教育大众化
(一)高等教育大众化的概念。
高等教育大中哈uyouyige世界公认的数量指标,就是高等教育毛入学率道道15%---50%。马丁·特罗总结发达国家大众化进程的规律。15%以内为精英阶段
15%--50%以内为大众阶段 50%以上为普及阶段
(二)高等教育大众化是社会发展的必然选择
(三)高等教育大众化的途径和方式
1、办学主体多元化
2、高教结构多样化
3、专业设置多样化
4、民办高教规范化
二、高等教育国际化
(一)高等教育国际化的内涵
1、活动方法
2、能力方法
3、精神气质方法
4、过程方法
(二)高等教育国际化的主要内容
1、国际化的教育概念
2、国家化的培养目标
3、国际化的课程内容
4、人员的国际交流
5、国际学术交流和合作研究
6、国际化的教育评估
三、高等教育现代化
高等教育现代化的实质是要以整个社会现代化的客观需要为动力,以社会文化的全部最新成就武装高等教育各个层面,从而使教育自身具备适应和促进整个社会现代化的能动力量。
(一)高等教育实体的现代化
1、高等教育思想现代化
2、高等教育制度现代化
3、高等教育教学内容、教学手段和教学技术现代化
4、高等教育管理现代化
(二)高等教育现代化的本质是人的现代化
1、对自己本质真正占有
2、具有自我批判和自我超越精神
3、具备面向未来的开放性和创造精神
(三)我国实现高等教育现代化面临的问题
1、传统文化限制高等教育现代化的发展
2、现实国情制约高等教育现代化的步伐
第三节
高等教育发展的战略
一、科教兴国与高等教育发展
19(一)高等教育在科教兴国战略中的作用
(二)实施科教兴国战略是中国高等教育的发展举措
1、首要的是确保高等教育全面、可持续发展
2、重点建设若干所具有世界先进水平的一流大学
3、重点发展高等教育的创新能力
二、国家创新体系与高等教育发展
高等教育是国家创新体系的重要组成部分
由于高等学校在国家创新体系中的基本职能主要是传播知识和培养人才,而国家创新体系中的每一个部分,就其运转来说都离不开具有知识创新和技术创新能力的人才的参与。
当具备了一定的创新条件,创新则主要取决于个人的创新精神和创新能力以及实干,敢于承担风险,乐于交流以及对环境保持敏锐的洞察力等品质。
高水平的高等学校,尤其是综合性大学,还以其多学科的融合,教学和科研的相互促进的便利、良好的国际学术交流与合作的环境等特殊的又是。
三、思想观念转变与高等教育发展
思想是行动的指南
宏观层次的高等教育思想是人们对整个高等教育所持的系统看法。
微观层次的高等教育观念是人们对高等教育中某个主要部分或缓解所持的看法。
高等教育是遗传适应和制度创新相融合的产物。
高等数学课件(篇7)
一、教学背景分析
1.教学内容分析
本节课是高中数学(北师大版必修5)第一章第3节第二课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系,也为以后学数列的求和,数学归纳法等做好铺垫。而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养,如在“分期付款”等实际问题中也经常涉及到。本节以数学文化背境引入课题有助于提升学生的创新思维和探索精神,是提高数学文化素养和培养学生应用意识的良好载体。
2.学情分析
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。教学对象是高二理科班的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不完全。
二.教学目标
依据新课程标准及教材内容,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:
1、知识与技能目标:理解等比数列前n项和公式推导方法;掌握等比数列前n项和公式并能运用公式解决一些简单问题。
2.过程与方法目标:感悟并理解公式的推导过程,感受公式探求过程所蕴涵的从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质,初步提高学生的建模意识和探究、分析与解决问题的能力。
3、情感与态度目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美和数学的严谨美。
三.重点,难点
教学重点:等比数列前“等比数列的前n项和”项和公式的推导及其简单应用。
教学难点:公式的推导思想方法及公式应用中q与1的关系。
四.教学方法
启发引导,探索发现,类比。
五.教学过程
(一)借助数学文化背境提出问题
在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
【设计意图】:设计这个数学文化背境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容也紧扣本节课的主题与重点。
问题1:同学们,你们知道西萨要的是多少粒小麦吗?
引导学生写出麦粒总数“等比数列的前n项和”
(二)师生互动,探究问题
问题2:“等比数列的前n项和”
有些学生会说用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。)
问题3:同学们,我们来分析一下这个和式有什么特征?
(学生会发现,后一项都是前一项的2倍)
问题4:如果我们把(1)式每一项都乘以2,就变成了它的后一项,那么我们若在此等式两边同以2,得到(2)式:
“等比数列的前n项和”
比较(1)(2)两式,你有什么发现?(学生经过比较发现:(1)、(2)两式有许多相同的项)
问题5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:“等比数列的前n项和”
【设计意图】:这五个问题层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之后,突然发现上述解法,也让学生感受到这种方法的神奇。
问题6:老师指出这就是错位相减法,并要求学生纵观全过程,反思为什么(1)式两边要同乘以2呢?
【设计意图】:经过繁难的计算之苦后,突然发现上述解法,让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导做好铺垫。
(三)类比联想,构建新知
这时我再顺势引导学生将结论一般化。
问题7:如何求等比数列“等比数列的前n项和”的前“等比数列的前n项和”项和“等比数列的前n项和”:
即:“等比数列的前n项和”
(学生相互合作,讨论交流,老师巡视课堂,并请学生上台板演。)
注:学生已有上面问题的处理经验,肯定有不少学生会想到“错位相减法”,教师可放手让学生探究。
将“等比数列的前n项和”两边同时乘以公比“等比数列的前n项和”后会得到“等比数列的前n项和”,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有改变?这些都是用错位相减法求等比数列前“等比数列的前n项和”项和的关键所在,让学生先思考,再讨论,最后师在突出强调,加深印象。
两式作差得到“等比数列的前n项和”时,肯定会有学生直接得到“等比数列的前n项和”,不忙揭露错误,后面再反馈这个易错点,从而掌握公式的本质。
【设计意图】:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的成就感。增强学习数学的兴趣和学好数学的信心。
问题8:由“等比数列的前n项和”得“等比数列的前n项和”对不对呢?这里的“等比数列的前n项和”能不能等于1呀?等比数列中的公比能不能为1?那么“等比数列的前n项和”时是什么数列?此时“等比数列的前n项和”?你能归纳出等比数列的前n项和公式吗?(这里引导学生对“等比数列的前n项和”进行分类讨论,得出公式,同时为后面的例题教学打下基础。)
再次追问:结合等比数列的通项公式“等比数列的前n项和”,如何把“等比数列的前n项和”用“等比数列的前n项和”、“等比数列的前n项和”、“等比数列的前n项和”表示出来?(引导学生得出公式的另一形式)
公式:
“等比数列的前n项和”
注:公式的理解
知三求二:nqa1anSn;
n的含义:项数(通项公式是qn-1);
q的含义:公比(注意q=1,分类讨论);
错位相减法:乘公比(作用是构造许多相同项)后错开一项后再减。
【设计意图】:通过反问学生归纳,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管仅仅几句话,然而却有画龙点睛之妙用。
(四)讨论交流,延伸拓展
问题9:探究等比数列前n项和公式,还有其它方法吗?
“等比数列的前n项和”(学生讨论交流,老师指导。依学生的认知水平可能会有以下几种方法)
(1)错位相减法
“等比数列的前n项和”(2)提出公比q
“等比数列的前n项和”(3)累加法
【设计意图】:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围、这有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用、
(五)应用公式,深化理解
例1:在等比数列{an}中,
(1)已知a1=3,q=2,n=6,求Sn;
(2)已知a1=8,q=1/2,an=1/2,求Sn;
(3)已知a1=-1、5,a4=96,求q与S4;
(4)已知a1=2,S3=26,求q与a3。
【设计意图】:初步应用公式,理解等比数列的基本量也可“知三求二”,体会方程思想。
例2:等比数列{an}中,已知a3=3/2,S3=9/2,求a1与q。
【设计意图】:注意公式中的分类讨论思想。
例3:求数列{n+}的前n项和。
【设计意图】:将未知问题转化为已知问题,进一步体会等比数列前n项和公式的应用。
练习1:求等比数列“等比数列的前n项和”前8项和;
练习2:a3=,S9=,求a1和q;
练习3:求数列{n+an}的前n项和。
(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予适时的表扬。)
【设计意图】:通过练习,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思想.
(六)总结归纳,加深理解
问题10:这节课你有什么收获?学到了哪些知识和方法?
【设计意图】:以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法等方面总结。以此培养学生的口头表达能力,归纳概括能力。
(学生小结归纳,不足之处老师补充说明。)
1.公式:等比数列前n项和
当q≠1时,Sn==
当q=1时,Sn=na1
2.方法:错位相减法(乘以公比)
3.思想:分类讨论(公式选择)
(七)故事结束,首尾呼应
最后我们回到故事中的问题,可以计算出国王奖赏的小麦约为1、84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺了。
【设计意图】:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。
(八)课后作业,分层练习
(1)阅读本节内容,预习下一节内容;
(2)书面作业:习题P308、10;
(3)拓展作业:求和:“等比数列的前n项和”
【设计意图】:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。
高等数学课件(篇8)
高等数学课程是大学数学课程的一种,通常包括微积分、线性代数等内容。它为学生提供了更深入的数学知识,为他们在数学领域的研究和专业发展打下了坚实的基础。以下是关于高等数学的主题范文。
一、微积分是高等数学的重要组成部分,其应用范围非常广泛。通过学习微积分,学生可以更深入地理解数学对于自然科学和工程科学的重要性,以及数学在经济学和金融学等领域的应用。此外,微积分也是理解人类历史上最伟大的数学要素之一,如牛顿与莱布尼茨的发现和应用。随着时代的变化和数学的发展,现代微积分也经历了很多新的变化和应用,如微分方程和复变函数。
二、线性代数是另一个重要的高等数学领域,它将数学的概念与实际的科学和工程应用结合起来。学生学习线性代数的过程中,他们将会掌握矩阵的基本概念,矩阵方程,向量空间,线性变换,欧几里得空间等重要概念。线性代数也是现代计算机科学领域中应用广泛的领域,因为它对于处理大量复杂和抽象的数据有着重要的方法和工具。
三、高等数学的Calculus(微积分)和Linear Algebra(线性代数)是现代科学和工程的基础。这些数学思想和方法的理解和掌握将使得学生们在科学领域中更加成功。学生不仅要掌握计算技能,更重要的是理解概念和理论的物理和几何意义。在应用和计算方面,学生还需要熟练掌握数学软件和工具,如MATLAB, Maple等。
四、高等数学教育是大学教育中最重要的组成部分之一,它不仅为自然科学和工程学科的发展做出了重要贡献,而且也为其他领域的理论和应用提供了强有力的工具。高等数学不仅为理解和探究自然界和人类文化提供了基础,而且还为学生的个人发展和成就提供了坚实的数学知识基础。因此,高等数学教育的重要性在当今社会中变得越来越明显,我们应该重视数学教育,并为学生提供更好的数学教育资源和机会。
五、高等数学教育应强调学生们对数学知识的理解和应用能力的培养。要实现这一目的,教育者应该采用更多的探究式学习方法和应用例子来让学生发现数学概念的重要性。同时,教育者应该鼓励学生们利用数学知识,为社会做出更大的贡献。
总而言之,高等数学教育是大学教育的重要组成部分。学生通过学习微积分和线性代数等数学知识,将会掌握更深入的数学理解和应用,从而对自然科学和工程学科的发展做出更大的贡献。教育者应该注重学生对数学知识的理解和应用能力的培养,同时鼓励学生利用数学知识为社会创造更大的价值。
等差数列教案十二篇
编辑特意搜集并整理了“等差数列教案”,此文一读相信您会拥有新的认知深度。教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。 教学质量的提高需要关注学生的反应情况。
等差数列教案(篇1)
教学准备
教学目标
知识目标等差数列定义等差数列通项公式
能力目标掌握等差数列定义等差数列通项公式
情感目标培养学生的观察、推理、归纳能力
教学重难点
教学重点等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用
教学过程
由《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察----发现?
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:….
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2-a1=d
a3-a2=d
a4-a3=d
……
an-an-1=d
即可得:
an=a1+(n-1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
∴an=a1+(n-1)d
=3+(n-1)×2
=2n+1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=-2,先求出通项公式an,再求出a20
解:∵a1=10,d=8-10=-2,n=20
由an=a1+(n-1)d得
∴a20=a1+(n-1)d
=10+(20-1)×(-2)
=-28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n-1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
解:由题意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n-1)×2=2n
练习
1.判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④-1,-8,-15,-22,-29;
答案:①不是②是①不是②是
等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a等于()
A.1B.-1C.-1/3D.5/11
提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)
3.在数列{an}中a1=1,an=an+1+4,则a10=.
提示:d=an+1-an=-4
教师继续提出问题
已知数列{an}前n项和为……
作业
P116习题3.21,2
高中数学有效的学习方法
高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。
1、认识高中数学的特点。
高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象.
2、要提高自我调控的“适教”能力。
一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。
3、正确对待学习中遇到的新困难和新问题。
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。
数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。
5、要养成良好的预习习惯,提高自学能力。
课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。
6、要养成良好的审题和解题习惯,提高阅读能力。
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
7、要养成良好的演算、验算习惯,提高运算能力。
学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。解后要反思,提高分析问题的能力。解完题目之后,要不失时机地回顾:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。
8、要善于交流,提高表达能力,养成纠错订正的习惯。
在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
9、要勤学善思,提高创新能力。
“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。
10、要养成做笔记的习惯,提高理解力。
为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力,也养成归纳总结的习惯。
总之,要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。
高中数学考试的技巧
总体原则
1、先做简单题,后做难题。
2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。
3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。
一、整体把握、抓大放小
拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。
二、确定每部分的答题时间
1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。
2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。
三、碰到难题时
1、你可以先用“直觉”最快的找到解题思路;
2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;
3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。
4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。
四、卷面整洁、字迹清楚、注意小节
做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。
等差数列教案(篇2)
第三课时 等差数列(一) 教学目标: 明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识. 教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点: 等差数列“等差”特点的理解、把握和应用. 教学过程: Ⅰ.复习回顾 上两节课我们共同学习了数列的定义及给出数列的两种方法――通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子 Ⅱ.讲授新课 10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,… 首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列. 1.定义 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式 若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N*时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d
等差数列教案(篇3)
《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。等比数列的前n项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到.具有一定的探究性。
在认知结构上已经掌握等差数列和等比数列的有关知识。在能力方面已经初步具备运
用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。
(1)能够推导出等比数列的前n项和公式;
(2)能够运用等比数列的前n项和公式解决一些简单问题。
过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。体会公式探求
过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。
情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。
《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。
为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。
为达到本节课的教学目标,我把教学过程分为如下6个阶段:
1、创设情境:
创设一个西游记后传的情景,即高老庄集团,由于资金短缺,决定向猴哥进行贷款,猴哥每天给八戒投资1万元,以后每天比前一天多1万,连续30天,但有一个条件:第一天返还1分,第二天返还2分,第三天返还4分后一天返还数为前一天的2倍.假如你是高老庄集团企划部的高参,请你帮八戒决策.这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,营造了积极、和谐的学习气氛,使学生产生学习心理倾向,并进一步了解数学来源于生活.
2、探究问题,讲授新课:
根据创设的情景,在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。提出如何求等比数列前n项和的问题,从而引出课题。通过回顾等差数列前n项和公式的推导过程,类比观察等比数列的特点,引导学生思考,如果我们把每一项都乘以2,则每一项就变成了它的后一项,引导学生比较这两个式子有许多相同的项的特点,学生自然就会想到把两式相减,进而突破了用错位相减法推到公式的难点。教师再由特殊到一般、具体到抽象的启示,正式引入本节课的重点等比数列的前n项和,请学生用错位相减法推导出等比数列前n项和公式。得出公式后,学生一起探讨两个问题,一是当q=1时Sn又等于什么,引导学生对q进行分类讨论,得出完整的等比数列前n项和公式,二是结合等比数列的通项公式,引导学生得出公式的另一形式。
3、例题讲解:
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。本节课设置如下两种类型的例题:
2)等比数列中知三求二的填空题,通过公式的正用和逆用进一步提高学生运用等比数列前n项和的能力.
4.形成性练习:
练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。
(2)推导公式的所用方法——从特殊到一般的思维方法、错位相减法和分类讨论思想。通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前n项和公式,来加深学生对这一知识点的理解程度。
等差数列教案(篇4)
请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25. 思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25. 思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值. [例2](1)求等差数列8,5,2…的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项. 答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项. Ⅲ.课堂练习1.(1)求等差数列3,7,11,……的'第4项与第10项. (2)求等差数列10,8,6,……的第20项. (3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d; (2)已知a3=9,a9=3,求a12. Ⅳ.课时小结 通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。 Ⅴ.课后作业 课本P39习题 1,2,3,4
等差数列教案(篇5)
教学目标
1。通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2。利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3。通过参与编题解题,激发学生学习的兴趣。
教学重点,难点
教学重点是通项公式的认识;教学难点是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑。
教学方法
研探式。
教学过程
一。复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。
二。主体设计
通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 )。找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。
1。方程思想的运用
(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项。
(2)已知等差数列 中,首项 , 则公差
(3)已知等差数列 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。
2。基本量方法的使用
(1)已知等差数列 中, ,求 的值。
(2)已知等差数列 中, , 求 。
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于 和 的`二元方程组,以求得 和 , 和 称作基本量。
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。
如:已知等差数列 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列 中, 求 ; ; ; ;…。
类似的还有
(4)已知等差数列 中, 求 的值。
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3。研究等差数列的单调性
,考察 随项数 的变化规律。着重考虑 的情况。 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果。这个结果与考察相邻两项的差所得结果是一致的。
4。研究项的符号
这是为研究等差数列前 项和的最值所做的准备工作。可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2)等差数列 从第________项起以后每项均为负数。
三。小结
1。 用方程思想认识等差数列通项公式;
2。 用函数思想解决等差数列问题。
四。板书设计
等差数列通项公式
1。 方程思想的运用
2。 基本量方法的使用
3。 研究等差数列的单调性
4。 研究项的符号
等差数列教案(篇6)
教学目标
1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;
(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;
(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.
2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.
3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.
关于等差数列的教学建议
(1)知识结构
(2)重点、难点分析
①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
(3)教法建议
①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.
②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.
③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.
④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.
⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.
⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
等差数列通项公式的教学设计示例
教学目标
1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的兴趣.
教学重点,难点
教学重点是通项公式的认识;教学难点是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
研探式.
教学过程()
一.复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项.
(2)已知等差数列 中,首项 , 则公差
(3)已知等差数列 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列 中, ,求 的值.
(2)已知等差数列 中, , 求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列 中, 求 ; ; ; ;….
类似的还有
(4)已知等差数列 中, 求 的值.
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3.研究等差数列的单调性,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
4.研究项的符号
这是为研究等差数列前 项和的最值所做的准备工作.可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2)等差数列 从第________项起以后每项均为负数.
三.小结
1. 用方程思想认识等差数列通项公式;
2. 用函数思想解决等差数列问题.
等差数列教案(篇7)
一、创设情景,导入新课。
师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯“神速求和”的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:“把从1到100的自然数加起来,和是多少?”年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。
例1,计算:1+2+3+4+5+6+7+8+9+10.
这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。
生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。
生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。
上面两式相加得2S=11+10+......+11=10×11=110
所以我们得到S=55,
师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。
理由是:1+100=2+99=3+98=......=50+51=101,有50个101,所以1+2+3+......+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?
生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.
师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。
两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)
师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得
上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?;这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。
三、公式的应用(通过实例演练,形成技能)。
1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:
请同学们先完成(1)-(3),并请一位同学回答。
(1)1+2+3+......+n=
(2)1+3+5+......+(2n-1)=
师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。
生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以
原式=-(2+4+6+......+2n)
生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:
师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。
例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。
①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。
2、用整体观点认识Sn公式。
例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)
师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?
生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的'性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。
师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。
最后请大家课外思考Sn公式(1)的逆命题:
已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。
四、小结与作业。
师:接下来请同学们一起来小结本节课所讲的内容。
高等数学课件
想要了解“高等数学课件”的原理或者相关技巧考虑看看这篇文章,为了帮助大家更好地了解本主题我们很高兴地为您提供这篇文章。教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。教案是教育教学过程中对学生进行培养和指导的必要手段。
高等数学课件【篇1】
高等数学课件是一种重要的教学资源,能够帮助学生更好地理解和掌握数学知识,提高数学能力。在现代教育中,教育技术的发展和应用,使得教师能够使用多种形式的教学资源,包括课件等。因此,高等数学课件的编写和使用已经成为了现代高等数学教学的重要课题。
高等数学课件的编写需要考虑到学生的学习需求和教学目标。在编写课件时,应当根据课程内容、学生的知识水平、教学目标等因素进行分析和设计,以达到最好的教学效果。由于高等数学的知识层次较为复杂,因此编写高等数学课件时需要充分考虑到学生的认知模式和学习习惯,力求让学生更好地理解和掌握数学知识。
高等数学课件应具备以下几个方面的要求:
一、准确性。高等数学知识的准确性是基本要求,因为任何一个错误的公式或概念,都会对学生成长和知识的累积产生负面影响。因此在编写和使用高等数学课件时,应严格控制内容的准确性,确保学生能够掌握正确的知识和技能。
二、清晰性。高等数学是一门较为抽象的学科,对于学生来说,掌握数学知识本身就需要花费较大的认知代价。因此,在编写和使用高等数学课件时,应力求将知识的概念和原理表达得尽可能清晰和易懂,避免出现模糊或难以理解的语言和表达方式。
三、实用性。高等数学课件的编写和使用应力求贴近实际问题和应用情境,帮助学生理解知识的实际应用场景和方法,培养学生的解决实际问题的能力。
四、适用性。高等数学课件的设计应当考虑到不同年级、不同层次、不同专业学生的不同需求,尽可能做到适用性的设计,以便保持高效和灵活性。
在高等数学课件的编写和使用中,应尽可能满足学生的学习需求和教学目标,强化课程知识的建设和教学策略的完善,以提高数学教育的质量和水平。同时,高等数学课件的编写和使用应在保持教学质量和效果的同时,适应教育技术的不断创新和进步,推动教学模式和教学流程的优化和升华。
高等数学课件【篇2】
高等数学课件
随着科技不断进步,我们身边的世界在不断地发生变化。比如,人们不再需要手动计算,而是通过计算机、智能手机等设备来完成数学运算。这就给数学教学带来了重大影响。而"高等数学课件"是指一种数字化教学工具,它不仅能够使数学课程更加生动、形象化,而且可以帮助学生更好地掌握数学知识。
一、高等数学课件的特点
1.丰富的内容和形式
高等数学课件包括许多数学概念和运算符号,形式多种多样,如图像、动画、视频、演示等。比如教师可以用PPT讲解解析几何中的直线和平面,文字和图像相结合,呈现出来是更加生动形象的。
2.传递信息更加灵活
使用高等数学课件,教师的讲解可以录制下来,让学生自行学习。这种方式不仅方便了师生交流,而且也有利于学生自主学习,提高了学生的学习效率和兴趣。
3.互动性强
高等数学课件不只是单方面的讲解,它还包含了许多互动式的教学模式。学生可以通过高等数学课件的模拟试题、练习题等方式,快速检验自己的学习成果,从中发现不足并加以改进。
二、高等数学课件的应用
1.提高课堂效率
使用高等数学课件可以加速数学课的进度,在较短的时间内完成更多的教学内容,从而提高学生的数学学习效率。
2.增强学生的学习兴趣
高等数学课件的图像、动画等多种形式的呈现方式使得课堂更加生动有趣,更能够吸引学生的兴趣,增强学生的学习热情,从而更好地掌握数学知识。
3.便于教学管理
高等数学课件可以方便教师进行教学管理,及时了解学生学习进度和反馈,以便及时提供帮助和改善教学方法。
4.提高考试成绩
高等数学课件的模拟试题和练习题等可以帮助学生做更多的练习,不断提升数学能力,提高考试成绩。此外,还有一些高等数学课件可以结合实际案例进行分析,更加贴近学生的生活,让学生更好地掌握数学知识并运用到实际中去。
三、结语
总之,高等数学课件为数学教育带来了革命性的变化,使得数学教育更加生动、形象化,更加具有吸引力和互动性。对于学生和教师来说都是一个非常好的数字化教学工具,未来也将有更多的教育信息化工具投入到数学教育中,提高数学教育的质量,也会让数学教学变得更加智能和人性化。
高等数学课件【篇3】
高等数学课件是对我们学习高等数学这门学科提供了很好的帮助。它内容丰富,特别是讲解中涉及的各种数字、公式和图表都呈现得非常清晰。在高等数学这门学科中,学生可以学到诸如微积分、线性代数、微分方程论等许多重要的概念和理论。下面我们将从三个不同的主题角度来探讨高等数学课件。
一、高等数学的矩阵论
高等数学的矩阵论是一门非常重要的数学分支,它涉及到向量空间、线性变换等许多学科。高等数学中关于矩阵的课件可以使学生更加深入地了解数学理论。在矩阵的知识点中,最常见的就是矩阵的加法、乘法等基本运算。而且,在讲解矩阵的过程中,授课教师还会引导学生了解到更多的相关信息。因此,在开始学习高等数学时,矩阵论的相关课件必定是非常重要的。
二、高等数学的微积分
微积分是高等数学中最重要的分支学科之一。它涉及到导数、微分、积分等众多概念,因此需要一份优秀的高等数学课件来解释这些概念。高等数学的微积分课件可以更加清晰地解释这些复杂的数学概念,特别是对于那些初学者来说,这些概念非常难以理解。对学生而言,高等数学的微积分课件可以让他们更加深入地了解微积分的相关知识。通过高清晰度的图表和精确的解释,学生可以更轻松地掌握微积分的各个概念。
三、高等数学的微分方程论
微分方程论是高等数学中的另一个重要领域。它主要涉及到高阶微分方程、一阶微分方程等一系列概念。高等数学微分方程课件在讲解微分方程时,会对每个概念进行详细的解释,还会有丰富的图表来描绘每个概念。高等数学微分方程课件对于学生来说非常有用,因为它们可以让学生更加深入地理解微分方程的概念。通过这样的课件,学生可以轻松掌握微分方程的相关知识,从而在学习中取得更好的成绩。
综上,在高等数学引入的各种学科中,需要精心构建高质量的课件来指导学生的学习。高等数学微积分的课件、矩阵论的课件以及微分方程论的课件,这些都是非常有用的资源,可以帮助学生更好地了解数学理论的各个方面。因此,在构建高等数学课件时我们需要思考学生的需求,了解何种内容对学生来说最为重要。通过优质的高等数学课件,我们可以培养出更优秀的学生,让学生在数学领域有所发展。
高等数学课件【篇4】
高等数学是大学数学的一种,是指在基础数学的基础上,研究和探讨复杂问题的数学分支。高等数学课件的出现使得我们更加高效地学习高等数学,抓住重点和难点,了解其理论证明和实际应用。以下是关于高等数学的主题范文。
一、高等数学的基本特点及意义
高等数学是一门抽象的数学学科,是现代科学和技术不可或缺的基本工具。高等数学作为现代科学的基础,有其独特的基本特点。高等数学的基本特点主要包括:抽象性、系统性、严谨性和应用性。抽象性是指高等数学的概念和方法比较抽象,需要较强的数学思维和理论知识;系统性是指高等数学是一个完整的系统,各个概念和方法之间相互关联,构成一个庞大的数学体系;严谨性是指在高等数学中每一个结论都需要经过理论证明才能成立;应用性是指高等数学在现代科学和工程技术中有着广泛的应用,涉及到各个领域。
高等数学在现代科学和技术中的重要性不言而喻。高等数学的研究和应用,不仅能够提高科学技术的水平,还能够推动社会的进步和发展。高等数学已经成为各个领域的基础和前沿,比如:物理、化学、生物、经济、计算机等领域。因此,掌握高等数学的概念和方法、掌握高等数学的理论和应用,能够使我们更好地走向现代科学和技术的道路。
二、高等数学的应用举例
高等数学的应用范围非常广泛,涉及到各个领域的发展和进步,并为我们的生活带来了许多便利和改变。以下是几个高等数学在不同领域中的应用举例:
1、物理
高等数学在物理学中起着关键的作用,许多物理学家都是数学家出身。物理学领域中的微积分、线性代数、矩阵论等数学概念和应用,是理解和解释物理现象的基础。比如,在量子力学中,矩阵的运算是非常重要的,它描述了电子、光子、原子等微观尺度的系统。
2、计算机科学
高等数学在计算机科学中的应用也非常广泛。计算机科学领域中最基本的数学概念是离散数学,它包括图论、概率论等方面。在计算机的逻辑设计、算法分析和优化、人工智能等方面,都需要离散数学的知识。比如,图论在计算机网络和数据库管理中扮演着重要的角色。
3、金融
在金融领域中,高等数学的应用也是不可或缺的。金融学家需要理解数学概念和算法,例如蒙特卡罗模拟、风险管理和金融衍生品估值。这些数学方法使得金融工具的设计和金融风险的管理更加实用和准确。
三、高等数学课程的重点和难点
高等数学课程在许多学生眼中是一门极其难懂的学科。然而,只要我们掌握了一定的方法和技巧,高等数学也不再难以理解。以下是几个高等数学课程的重点和难点:
1、微积分
微积分是高等数学的一个主要分支,是许多其他高等数学学科的基础。微积分的内容较为丰富,需要深入理解微分和积分的概念、定理和方法。微积分的难点在于如何理解和运用微分和积分的概念、理论和性质,以及如何联想和运用到实际问题中。
2、线性代数
线性代数是高等数学中比较抽象和理论性较强的一个分支。该学科主要探讨线性方程、矩阵和向量空间等概念的理论和性质。线性代数的难点在于如何理解抽象的概念和方法,并具体地运用到实际问题中。
3、多元函数微积分
多元函数微积分是微积分的一种扩展。它涉及到多个变量的函数、偏导数、梯度、散度、旋度等概念和方法。多元函数微积分的难点在于如何理解多元函数和多元微积分的概念和方法,并具体地运用到实际问题中。
总之,高等数学作为一门抽象、系统、严谨和应用性强的学科,具有广泛的应用前景和不可替代的地位。只有掌握了高等数学的基本概念和方法,并善于运用到实际问题中,才能在未来的职业生涯和学术研究中有所作为。
高等数学课件【篇5】
高等数学课件是大学数学课程中最重要的资源之一,它涵盖了数学的核心概念和基本技能的所有内容。本文将讨论与高等数学课件相关的主题,包括它们的特点、使用方法以及如何创造高质量的课件。
一、高等数学课件的特点
高等数学课件主要有以下几个特点:
1. 包括大量的数学公式和图表。由于数学是一门严密的学科,因此数学课件的核心内容通常是公式和图表。这些公式和图表是理解数学概念和解决数学问题的必要条件。
2. 注重知识的连贯性。高等数学中的概念和技巧之间存在着严格的关系,因此数学课件需要将这些知识点连接起来,形成完整的知识体系。
3. 强调思考和解决问题的能力。高等数学课件不仅要传达知识,还要促进学生的实际应用能力。为此,很多数学课件会包含实例和练习题,以帮助学生巩固所学内容。
二、高等数学课件的使用方法
1. 在课堂上使用。高等数学课件可以在课堂上使用,帮助教师向学生传达概念和技巧。此外,教师还可以通过课件展示实例,以帮助学生更好地理解和应用学习的内容。
2. 在自学中使用。由于高等数学课件的多样性和丰富性,它们也可以作为学生自学的重要资源之一。学生可以在自己的时间和地点复习所学的内容,并通过实例和问题解决巩固自己的知识。
3. 与其他工具一起使用。高等数学课件可以与其他工具一起使用,例如数学软件、模拟器等。这些工具可以帮助学生更好地理解和应用数学概念和技能。
三、如何创造高质量的高等数学课件
1. 设计用于特定学习目标的课件。着眼于学生的学习目标,高等数学教师可以创建精心设计的课件,其中包括深入的理论知识和与学生标准匹配的实际应用。
2. 添加足够的练习题。练习题是培养学生数学技巧和解决问题能力的关键,因此,在高等数学课件中添加足够的练习题非常重要。
3. 加入形象化的元素。为了促进学生对抽象概念的理解和记忆,数学教师可以通过添加形象化的元素(例如动画和演示文稿)来提高课件的吸引力和清晰度。
4. 使用模板创建统一的外观和感觉。为了使高等数学课件的内容易于理解和吸引力,教师可以考虑使用模板来创建统一的外观和感觉。
总之,高等数学课件是大学数学教育中不可或缺的一部分。创造高质量的课件需要数学教师深入理解学生的学习需求和课程目标,并通过形象化的元素、足够的练习题和统一的外观和感觉增强课件的吸引力和清晰度。
高等数学课件【篇6】
口诀1:函数概念五要素,定义关系最核心。
口诀2:分段函数分段点,左右运算要先行。
口诀3:变限积分是函数,遇到之后先求导。
口诀4:奇偶函数常遇到,对称性质不可忘。
口诀5:单调增加与减少,先算导数正与负。
口诀6:正反函数连续用,最后只留原变量。
口诀7:一步不行接力棒,最终处理见分晓。
口诀8:极限为零无穷小,乘有限仍无穷小。
口诀9:幂指函数最复杂,指数对数一起上。
口诀10:待定极限七类型,分层处理洛必达。
口诀11:数列极限洛必达,必须转化连续型。
口诀12:数列极限逢绝境,转化积分见光明。
口诀13:无穷大比无穷大,最高阶项除上下。
口诀14:n项相加先合并,不行估计上下界。
口诀15:变量替换第一宝,由繁化简常找它。
口诀16:递推数列求极限,单调有界要先证,两边极限一起上,方程之中把值找。
口诀17:函数为零要论证,介值定理定乾坤。
口诀18:切线斜率是导数,法线斜率负倒数。
口诀19:可导可微互等价,它们都比连续强。
口诀20:有理函数要运算,最简分式要先行。
口诀21:高次三角要运算,降次处理先开路。
口诀22;导数为零欲论证,罗尔定理负重任。
口诀23:函数之差化导数,拉氏定理显神通。
口诀24:导数函数合(组合)为零,辅助函数用罗尔。
口诀25:寻找ξη无约束,柯西拉氏先后上。
口诀26:寻找ξη有约束,两个区间用拉氏。
口诀27:端点、驻点、非导点,函数值中定最值。
口诀28:凸凹切线在上下,凸凹转化在拐点。
口诀29:数字不等式难证,函数不等式先行。
口诀30:第一换元经常用,微分公式要背透。
口诀31:第二换元去根号,规范模式可依靠。
口诀32:分部积分难变易,弄清u、v是关键。
口诀33:变限积分双变量,先求偏导后求导。
口诀34:定积分化重积分,广阔天地有作为。
口诀35:微分方程要规范,变换,求导,函数反。
口诀36:多元复合求偏导,锁链公式不可忘。
口诀37:多元隐函求偏导,交叉偏导加负号。
口诀38:多重积分的计算,累次积分是关键。
口诀39:交换积分的顺序,先要化为重积分。
口诀40:无穷级数不神秘,部分和后求极限。
口诀41:正项级数判别法,比较、比值和根值。
口诀42:幂级数求和有招,公式、等比、列方程。
高等数学课件【篇7】
高等数学课件主题范文:微积分的基本概念
微积分是高等数学的核心内容之一,其基本概念对于理解微积分的理论和应用至关重要。本文将从微积分的起源和基本概念入手,介绍微积分在数学和其它学科中的应用以及其对社会进步的贡献。
一、起源和定义
微积分源于十七世纪的牛顿和莱布尼茨,在研究贝尔纳多经验规律和机械运动时,发现了微积分的基本思想。微积分的定义有两个方面:一是导数,二是积分。导数是函数在某点处的变化率,积分是累加变化量的运算。
二、微积分的基本概念
微积分的基本概念包括:函数、极限、导数、微分、积分。其中,函数是自变量和因变量之间的关系;极限是自变量趋近于一个值时函数的取值趋近于一个定值的概念;导数是函数在某一点处的变化率;微分是函数在某一点处的近似值;积分是函数的反导数。
三、微积分的应用
微积分在不同的学科领域中有广泛的应用。在自然科学中,微积分的应用包括:物理学中的运动学和动力学、化学中的速率和反应动力学、天文学中的天体运动和引力等。在社会科学中,微积分的应用包括:经济学中的收益、成本和利润、社会学中的人口结构和增长等。在工程学中,微积分的应用包括:土木工程中的桥梁和隧道的设计、电气工程中的信号和系统等。
四、微积分对社会进步的贡献
微积分的应用在各个领域都有着深刻的贡献。例如,在天文学中,微积分的应用帮助科学家们更好地了解和预测天体的运动和变化;在医学中,微积分的应用帮助医生们更好地理解和治疗疾病;在金融业中,微积分的应用帮助投资者和金融机构更好地掌握市场和风险。可以说,微积分的应用对社会进步产生了深远的影响。
总之,微积分是高等数学中的重要内容,其基本概念和应用对于理解数学和其它学科中的理论和现实问题至关重要。未来,微积分的应用将继续推动科学技术的发展和社会进步的实现。