搜索

乘法分配律教案

发布时间: 2023.06.17

乘法分配律教案13篇。

这里我们整理了有关“乘法分配律教案”的资料,希望对您有所帮助。欢迎大家阅读、收藏,也可以分享给身边的人哦。教案和课件是老师日常工作中不可或缺的一环,因此我们需要认真编写自己的教学资料。只有密切结合实际教学情况编制的教案和课件,才能真正实现高效的授课效果。

乘法分配律教案 篇1

乘法分配律说课稿(一)

教学内容:六年制小学数学第八册第P64-66 页。(人教版)

教学目标:

1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

2.渗透"由特殊到一般,再由一般到特殊"的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

教学重点:充分感知并归纳乘法分配律。

教学难点:理解乘法分配律的意义。充分感知并归纳乘法分配律。

教具准备:多媒体课件

教学设想:本课试图在一种开放的教学环境下,让学生通过"联系实际, 感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际, 深化认识;归纳概括,完善认识"的探索过程来逐步丰富对"乘法分配律"的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、 主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主 导的教学原则。充分体现了"为解决实际问题而学习数学"的新理念。

教学过程:

一。复习旧知,作好铺垫。

1.回顾:说说已学过的乘法交换律和结合律,并用字母表示。

2.初次感知规律:〖算一算〗

①(3 + 2)×4            3×4 + 2×4

② 2×(11 +  9)           11×2 + 9×2

③ 20×5 + 4×5           (20 + 4)×5

【 1.计算①、②两组算式各等于多少?

2.比较两组算式相同点和不同点;3.可用什么符号连接?】

3.观察、激趣、导入。

第③组算式老师不用计算,就可以判定用等号连接,这是为什么呢?难道这里有什么奥秘吗?今天,我们就一同来研究这个问题。

二。联系实际,探究规律。

㈠影幕演示:

1.学校购买校服。每件上衣35元,每条裤子25元。买这样3 套校服,一共要多少元?

【 ①学生读题,弄清题意。②上台演示,合作讨论,研究策略。

③展示思维过程,探究解题规律。】

2.分析比较:仔细观察两种方法有什么不同?

3.结论:两个算式的结果如何?用什么符号连接?仔细观察,认真思考,发现其中有什么规律?

㈡ 探究概括规律:

1. 再一步观察、分析、比较去发现规律。〖多媒体操作引导〗

a.观察这些等式,等号左边算式有什么特点?〖多媒体演示〗

b.继续观察,等号右边的算式又是怎样计算的?先算什么?

后算什么?

c.这两个积又是怎么得到的?

结论: 把两个加数分别同这个数相乘。概括起来,说一说?

两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。

2. 字母表示乘法分配律:

如果用a、b、c分别代表三个数,你会用字母表示乘法分配律吗?

3.逆用乘法分配律、

我们知道减法是加法的逆运用,除法是乘法的逆运用。那么,乘法分配律有逆运算吗?你会运用吗?敢接受我的考验吗?

三。 质疑联想,拓展认识。

四。巩固运用规律。

(一) 数学医院:判断正误。

①  2×( 6 + 5 ) = 2 × 6 + 5- - - - - 〖   〗

② ( 25 + 7 )×4 = 25 ×4 ×7×4- - - - - 〖   〗

③ 35×9 + 35 = 35×( 9 + 1 )= 350 - - - - - -〖   〗

(二)连一连:

3×17 + 5 ×17           (22 + 44)×30

(18 + 4)×6              18 ×6 + 4 ×6

22×30 + 44 ×30          60×20 + 60×30

60 ×(20 + 30)         (3 + 5)×17

(三)填一填:

①(12+40)×3=    ×3 +  ×3

② 15×(40 + 8) = 15×   + 15×

③ 78×20+22×20=(    +    )×20

④ 66×28 + 66×32 + 66×40=(     +       +     )×

(四)做一做: ① 103×32             ② 99×32

(五)巩固与发展

(六)课外发展

五。 联系实际,深化认识。

咱们来解决一个实际问题试试。【多媒体演示】

为了丰富同学们的课余生活,学校准备购置足球和排球各20个,根据提供的信息,你能提出数学哪些问题 ?

22元                25元

六。 归纳概括,完善认识。

请同学们回忆这节课的学习过程,想想,通过这节课,你有什么收获?

乘法分配律说课稿(二)

一 说教材

本节课是人教版小学四年级数学第三章运算定律与简便计算中的内容。本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。

二 说教学目标、

根据数学课程的基本性质与目的,我拟定了如下教学目标:1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。 2.渗透"由特殊到一般,再由一般到特殊"的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

三 说教学重、难点

教学重点:掌握乘法分配律,理解乘法分配律的意义。

教学难点:掌握乘法分配律,理解乘法分配律的意义。

四 说教法和学法

(一)教学方法

在教学过程中,我运用启发式进行教学,根据小学生的心理特征和认知规律,我设计了循序渐进的教学过程,一步一步的引导学生到达新知识的制高点。其中适当的鼓励学生,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,让学生积极参与,充分体现教师的主导作用和学生的主体地位。

(二)学法指导

注意引导学生通过动手操作,采用观察、比赛、概括的方法概括出"乘法分配律".让学生都能够动手、动脑、动口,积极参与教学的整个过程。

五 说教学过程

一、谈话引入,激发兴趣。

1、回顾前面学习过的乘法交换律和乘法结合律,让学生用自己的话说一说,用字母来表示。

2、师:(指导观察主题图,理清图中的数学内容)同学们植树多么认真啊!他们为绿化祖国做出自己能做的事。这节课我们接着来探究关于其中的一些数学问题,同事们能够有兴趣解决吗?

(复习旧知识,孔子曰:学而时习之。时下正是植树节,以这样一个情境引入新课比较自然)

二、自主学习,合作探究。

1.教学例3.

负责挖坑、种树的一共有多少人?

A、要求生在练习本上列综合算式算,然后小组里交流。生汇报。

B、让一学生上黑板写。

(4+2)×25

=6×25

=150(人)

师:你是怎么想的?

C 、师问:还有同学有不同的列算式方法吗?

生:上黑板写。

4×25+2×25

=100+50

= 150(人)

师: 你是怎么想的?

(让学生说一说自己的想法,理清解题思路,与其他同学共享)

师引导学生对比观察这两个算式,你发现了什么?

生小组里交流。生汇报。

引导学生发现:1、(4+2)×25=4×25+2×25

2、第二个算式比第一个算式简便。

3、师适时引导总结出乘法分配律

……

师:谁能给我们发现的这个规律起个名字?(乘法分配律   师板书)

(这一环节充分体现了学生的主体地位,放手让学生讨论交流,得到自己的想法,培养学生观察发现交流合作的能力。)

生:翻开课本齐读乘法分配律的概念。

师:课本上用符号来表示乘法分配律,但是没有写完整,你能补充完整吗?(师巡视指导)

师板书: (a+b)×c=a×c+b×c

D、你能例举出类似的例子来吗?

生:在练习本上写,然后师指名说一说。

(由于前面学习交换律、结合律的.时候都有这些环节,所以这部分内容学生很熟悉,放手让学生做。)

E、师在黑板上板出乘法结合律的式子。(用字母表示)让学生对比乘法结合律和乘法分配律,对比它们的异同,让学生说一说。

(在这一章内容里学习了好几个运算定律,学生很容易搞混淆,所以要让学生区别它们。)

三、巩固运用,深化提高。

1、第36页"做一做".

下面哪个算式是正确的?正确的画"√",错误的画"×".

56×(19+28)=56×19+28 ()

32×(7×3)=32×7+32×3 ()

64×64+36×64=(64+36)×64 ()

2、师:运用乘法分配律可以使一些计算简便。

计算:101×13      40×65

指名两生上黑板做,并说说自己的想法。

生甲:101×13 生乙:40×65

=(100+1)×13=40×(60+5)

=100×13+1×13=40×60+40×5

=1300+13 =2400+200

=1313 =2600

(这部分的练习主要是训练学生的运用能力,可能当时对学生来说有一定的难度,老师的巡视指导。)

师:表扬鼓励学生。

四、总结提升。

这节课,你认识了什么新的运算定律?你会将它叙述一遍吗?它对我们有什么帮助?

六、说板书:乘法分配律

(a+b)×c=a×c+b×c

(简洁,一目了然)

乘法分配律说课稿(三)

一、说教材

(一)教学内容在教材中的地位和作用

本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材将乘法分配律与传统的相遇问题有机地结合在一起,合理整合知识,让学生在解决实际问题的过程中理解乘法分配律,注重引导学生运用猜想、验证、比较、归纳等方法解决问题,提高教学效率。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。

(二)教学重点、难点的确定

新的数学改革强调,现实的和探索性的数学学习活动要成为数学学习内容的有机组成部分。所以,我把本课的重点确定为引导学生发现乘法分配律及理解含义上;因乘法分配律不是单一的乘法运算,还涉及到加法运算,为此在理论算术中又称之为乘法的分配性质,理解起来有一定的难度,所以,我把本节课的难点也确定为理解掌握乘法分配律上。

(三)学情分析

学生已经学习掌握了乘法交换律、结合律,并能够初步应用这些定律进行一些简便计算的基础上接着学习"乘法分配律"不会觉得太难,但是学生的概括、归纳能力还是一个薄弱的环节。

二、说教学目标

根据《大纲》要求,教学内容和学情,本节课我制定如下教学目标。

(一)知识目标:

学会解答相遇问题,在解答实际问题的过程中理解乘法分配律。

(二)智能目标:

借助已有经验和具体运算,初步学会用猜想、验证、比较、归纳等数学方法学习知识。

(三)情感目标:

使学生欣赏到数学运算简洁美,体验"乘法分配律"的价值所在,从而提高学习数学的兴趣和学习数学的主动性。

三、说教法与学法

(一)教学方法

在设计求平均数的教学时,利用问题情境,以解决问题为线索,让学生在独立思考、合作探究的过程中,充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。

(二)学法指导

本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练,积极参与教学的整个过程。

(三)教学准备

多媒体课件

四、说教学程序  (共分四个环节)

一、创设情境,激趣引入。

师:你了解我国高速公路的一些情况吗?山东境内有哪几条主要的高速公路?你

知道济青高速公路的情况吗?

学生在小组内交流课前收集的有关资料,师简要介绍我国及山东省高速公路发展

情况。(板书课题)

出示情境图,引导学生观察。你从图中得到了哪些信息?根据图中的信息你

能提出什么数学问题?(引导学生提出有关乘法的问题)

学生交流,师适当板书:济青高速公路全长约多少千米?

【青岛版教材的一大特点是:()突出问题意识的培养。这一环节中让学生自己发现问题——提出问题——解决问题,培养学生收集和处理数学信息的能力。极大地提高了学生的学习兴趣,带入学生进入学习过程。】

紧接着进入第二环节:

二、合作探索,发现规律

本环节意在引导学生通过已有经验和具体运算,在观察、猜想、比较、归纳、验证、

与交流的数学活动中,理解乘法分配律。具体可分四步进行:

1、解决问题

师::"济青高速公路全长约多少千米?"这个问题怎么解决?

学生先独立思考,小组探究,全班交流:求济青高速公路全长就是求两辆车两小

时行驶的路程和。师根据学生的交流,进一步借助课件或画出线段图,表示出解决这个问题

的两种思路。学生独立列式计算,集体交流后,师适当板书。一种思路是先求每辆车分别行

驶的路程,再求公路的全长。110×2+90×2=400(千米)。一种是先求两辆车1小时行驶的

路程和,再求2小时行驶的路程和。(110+90)×2=400(千米)

2、观察猜想

师:观察、比较上面两个算式,你有什么发现?

学生思考交流,师引导学生重点从计算结果、算式的结构和计算方法上进行比较。

师:根据前面所学的定律,结合刚才的发现,你有什么想法?

学生交流,提出猜想。(110+90)×2和110×2+90×2可能相等。

3、验证猜想:

你们能想办法验证自己的猜想吗?

学生小组合作,举例验证,并进行记录,全班汇报交流。

师:你们真了不起!刚才你们发现的规律:两个数的和与一个数相乘,可以把这

两个加数分别与这个数相乘,再把积相加,这个规律叫做乘法分配律。学生仿照(110+90)×2和110×2+90×2写算式。验证揭示了这些例子共同特点,就是两个数的和乘一个数等于和里的每一个加数……在举例验证的过程中提示学生可以使用计算器。

4、用字母表示规律,

你能用字母把它表示出来吗?    学生尝试表示,师板书。

再次凸现乘法分配律的含义:(a+b)·c=a·c+b·c.

三、巩固练习

1、自主练习第一题,学生独立完成,订正时,指生交流是怎么链接的,为什么

这样链接?

2、第二题,学生独立完成,交流时说说这样填写的理由。

3、第三题,学生独立判断对错,在小组内交流结果,说说错的原因并将错误的

算式进行纠正。

四、总结评价

师:这节课上你有什么收获?你能评价一下你和小组同学的表现吗?

板书设计:               济青高速公路

方法一  110×2+90×2=400   

方法二  (110+90)×2=400

乘法分配律:(a+b)。c = a.c+b.c

综观上述设计,在创设情景中发现并提出问题——然后在解决问题的过程中发现规律 ——通过猜想验证巩固规律 ——简单运用规律。我执教青岛版小学数学四年级上册已有两年,在课堂教学中实践了上述教学流程,并不断地充实、完善。极大地激发了学生求知欲,培养了学生自主、合作、探究的能力,使数学课堂"活"起来。通过这样精心的安排,体现了数学学科的特点,呈现了数学思维规律的探索过程。

乘法分配律教案 篇2

知识与技能目标:

1、经历探索的过程,发现乘法分配律,并能用字母表示。

2、能够运用乘法分配律进行一些简便的计算。

过程与方法:

培养学生观察、归纳、概括等初步的逻辑思维能力。

情感与价值观:

渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。

教学重点

理解并掌握乘法分配律

教学难点

乘法分配律的推理及运用

教学准备

多媒体电脑、课件

教学过程

一、用简便方法计算下面各题。

452+199+24838×125×8×3

二、比赛激趣,提出猜想

(1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)

10×37+10×63

10×(37+63)

(2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)

这两道题运算顺序不同,但结果相同,可以用一个等式表示:

10×37+10×63=10×(37+63)

(3)命名猜想。

这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

(设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)

三、引导探究,发现规律。

1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

2、(1)谁能估计一下一共贴了多少块瓷砖?

(2)请大家用自己的方法来验证他的估计是否正确。

(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)

(设计意图:学生用不同的'方法列式计算,为探讨规律做准备。

3、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?

5、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)

(设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)

(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

(4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?

(a+b)×c=a×c+b×c

(5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。

四、探索发展,应用规律

(1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

(2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

(80+4)×2534×72+34×28

(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

(3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

38×29+3843×102

(4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

(设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)

五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)

1、请大家根据运算定律在下面的_里填上适当的数。

(10+7)×6=______×6+______×6

8×(125+9)=8×______+8×______

7[]×48+7×52=______×(______+_______)

2、将得数相等的算式用线连起来。

3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?

六、全课小结

请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?

今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

乘法分配律教案 篇3

义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)

“乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。

在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。

1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;

2、理解和掌握乘法分配律并会用字母表示;

3、能够运用乘法分配律进行简便计算;

4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。

引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。

乘法分配律的应用,进行一些简便计算。

多媒体教学课件

(一)情境导入,发现问题

昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?

课件出示:图片一共贴了多少块瓷砖?

(1)谁能估一估,贴了多少块瓷砖?

(2)谁来用自己的方法来验证估计是否正确?

还有不一样的方法吗?谁来说说看?(生口答,师板书)

板书:6×9+4×9(6+4)×9

=54+36=10×9

=90(块)=90(块)

(3)请同学们观察,看看有什么发现?(学生讨论,汇报)

(二)引导探究,发现规律

1、猜想、验证

(1)能不能利用你的发现举些例子来呢?

生:举例

(2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?

(学生小组合作尝试,进行探索)

2、概括、归纳

(1)说说你们刚才验证的`情况。

生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。

生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。

生3……

生4……

(2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?

问:我们能不能用一个式(字母)把乘法分配律表示出来呢?

生:(a+b)×c=a×c+b×c

(3)等号表示什么意思?(这个等式反过来也成立)

(三)加强应用、深化理解

我们发现了乘法分配律,它又有怎样的应用呢?

(课件分步出示练习)

1、填一填(课本49面练一练第一题)

2、请同桌同学合用研究下面这些题目,怎样计算比较好?

(80+4)×2534×72+34×28

(1)学生讨论研究;

(2)汇报计算方法,重点说为什么这样算;

(3)小结:通过研究,应用乘法分配律可以使一些计算简便。

(四)巩固练习、解决问题

(课件分步出示)

1、填一填

(10+7)×6=__×6+__×6

8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)

2、同桌合作研究下面这些题目,怎样计算比较好?

(80+4)×2534×72+34×28

2、下面这些题,能用简便方法计算吗?怎样计算?

(20+4)×2532×(200+3)38×29+38×1

39×10138×29+3825×41

(五)课堂小结

1、说说今天我们研究了什么?

2、大家想一想,我们是怎样发现乘法分配律的呢?

3、乘法分配律有什么应用?

乘法分配律教案 篇4

【教学内容】

《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

【教材简析】

本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

【教学目标】

1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

【教学重点】

让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

【教学难点】

清楚地表述自己发现的规律,理解及应用乘法分配律。

【教学过程】

一、创设情境,感知规律

1.提出问题,列出算式。

出示情境图

谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

问题预设:济青高速公路全长约多少千米?(板书)

谈话:请你试着用两种方法在答题纸上解答。

生独立解答。

预设:

2.结合情境,感知规律。

提出要求:结合线段图说说算式每一步的含义。

回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】

二、研究素材,猜测规律

教师引导学生观察算式谈发现。

预设发现:两个算式结果相等。可以用等号连接。

教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

谈话:根据前面运算律的学习,你有什么想法?

预设回答:这可能又是一个规律。

【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】

三、讨论交流,验证规律

1.举例验证规律。

谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

学生独立计算举例。

指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。

预设举例:(25+35)×4=25×4+35×4

(60+50)×2=60×2+50×2

(65+55)×42=65×42+55×42

……

教师引导学生发现像这样的例子举不完,可以用省略号表示。

2.观察几组等式的相同点。

教师引导学生观察这几组等式的左边和右边分别有什么相同点。

预设回答:①这几组等式的左边都是两个数的和乘一个数。

②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

3.总结规律。

教师引导学生用自己的话说说这个规律。

谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。

教师出示乘法分配律。

谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

生按要求说什么是乘法分配律。

谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

预设回答:可以用字母表示。

教师要求学生在答题纸上试着用字母abc来表示乘法分配律。

学生试着在答题纸上写字母表达式。

指生板演(a+b)c=ac+bc。

谈话:对于乘法分配律用字母来表示,感觉怎么样?

预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】

四、巩固拓展,应用规律

1.连一连。

2.在□里填上合适的数或字母。

3.火眼金睛辨对错。

乘法分配律教案 篇5

教学目标:

1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

3、发挥学生主体作用,体验探究学习的快乐。

教学重点:

指导学生探索乘法的分配律。

教学难点:

乘法分配律的应用。

教学准备:

课件、口算题、例题、练习题等。

教学策略:

本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

教学流程:

一、设疑导入

师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?

生:可以使计算简便。

师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】

二、探究发现

1。猜想。

师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

师:这道题算得怎么不如刚才的快啊?

生:它和前面的题目不一样。

师:好,我们来看一下它与前面的题目有什么不同?

生:前面的题都是乘号,这道题既有乘号还有加号。

生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

生:(10+4)×25=10×25+4×25。

师:为什么这样算哪?

生:我是根据乘法分配律算的。

师:你是怎么知道的?你知道什么是乘法分配律吗?

生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

2。验证。

师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

3。结论。

生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)

师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

(a+b)×c=a×c+b×c

师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

三、练习应用

(生练习应用定律。)

师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

四、总结

师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

乘法分配律教案 篇6

教学内容:

乘法分配律的应用

教学目的:

1.引导学生能运用乘法分配律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、复习准备

出示:

1.口算:

73+27138100

100-64641

89125

(4+40)25

2.在□里填上适当的数。

302=300+□

(300+2)43=300□+2□

20xx=2000+□

(2000+3)14=2000□+□□

二、新授

我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。

出示102()

学生任意填上一个两位数。

老师迅速说出它的得数,而不用笔算。

出示:

计算10243

小组讨论完成。

学生可能出现:

(1)(100+2)43

(2)102(40+3)

在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。

小练:

(1)在□里填上适当的数。

300184=□84+□84

92203=92(200+□)

=92200+92□

(2)计算10224

出示:937+963

学生在练习本上独立完成。

(1)937+963

=333+567

=900

(2)937+963

=9(37+63)

=9100

=900

找出不同的方法,进行板演。

引导学生对比两种方法,重点理解、说明第二种方法。

小结:这类题目的结构形式的特点是算式的运算符号一般是、+、的形式,也就是两个积的和。

在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。

另外两个不同的因数,一般是两个能凑成整十、整百、整千的数。

小练:(80+8)25

32(200+3)

3537+6537

3829+38

讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?

订正时,说明怎样运用运算定律简算的。

引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。

三、巩固练习

1.师生对出题。

我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。

2.根据乘法分配律把相等的算式用=连接起来。

2312+2388

(35+45)12

(1125)4

25(4+40)

讨论:2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改?

3.P38/5

四、小结

谈收获。

五、作业:P38/68

课后小结:

第八课时:教学内容:

乘法运算定律的复习

教学目的:

1.引导学生能运用乘法运算定律进行一些简便运算。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、知识点的复习

回忆《乘法的运算定律》这一小节的学习内容。

教师引导回忆,并相应板书。

二、联系实际复习

1.学生汇报课前收集的有关乘法的运算定律的相应知识。

2.学生汇报课前自己根据乘法运算定律自编的题目或搜集的题目。

教师把符合要求的题目贴上黑板。

学生根据前面的知识点的复习,进行题目的独立解答。

要求:选择自己喜欢的方法解答。

教师巡视,加以必要的指导。

有必要的题目可以让学生练习画线段图。

小组内交流。

全班汇报。

三、小结

学生谈收获

课后小结:

乘法分配律教案 篇7

教学内容:国标本苏教版小学数学第八册p54—55。

教学目的:

1 .使学生理解掌握乘法分配律的意义,概括出这个定律。

2.培养学生观察、抽象概括以及口头表达的能力。

3.鼓励学生大胆尝试,并渗透通过现象看本质和变中不变的思想

教学重点:理解乘法分配律的意义,并归纳出定律

教学难点:抓住等号左右两边算式的特征和联系,理解乘法分配律的意义。

教具准备:实物投影仪、学具卡,多媒体课件。

教学过程:

一、设疑引入

1、 口算

a b

(2+8)×5 2×5+8×5

(2+10)×3 2×3+10×3

(9+11)×6 9×6+11×6

(12+18)×5 12×5+12×5

(出现第四组口算题时,后一道先不出示,让学生猜一猜可能是怎样的口算题。学生猜后再公布答案。)

教师提出疑问:你们真厉害,一下子就猜对了。这里面有什么秘密吗?

2、我们观察这两组口算题的结果怎样?可以用什么符号连接?等号左右的算式一样吗?

3、教师设疑:为什么上面算式不同而结果相等呢?结果相等的两个算式有什么联系?刚才你们有是根据什么秘密猜出了最后一道口算的?这节课我们一起研究这个问题。

二、指导探索: ×

1、(小黑板出示长方形图)书p55的第3题:

学校要在这块长方形草地周围植树,你能算出这块草地的周长吗?

(1) 学生动手,独立计算周长。

(2)汇报解答思路:(选代表回答)交流时要讲清每一步计算的意义。

教师板书算式:(64+26)×2 64×2+26×2

(3)观察两个算式计算结果怎样?可用什么符号连接?并引导学生读一读这个算式。65×5+45×5=(65+45)×5

2、统计本班的男女生人数,写在小黑板上。

现在要求每人栽3棵树,那我们班一共能栽多少棵树?

(1)学生动手,独立计算棵树。

(2)汇报解答思路:(选代表回答)交流时要讲清每一步计算的意义。

教师板书算式:

(3)观察两个算式计算结果怎样?可用什么符号连接?并引导学生读一读这个算式。

三 尝试讨论:

1、从上课到现在,我们一共写了6组算式,他们结果相同,可是算式不一样,我们来找找看,这些算式有什么共同的特点?

仔细观察这些算式等号的左边都是一些怎样的算式?(教师根据学生的回答即时小结“两个加数的和乘一个数”并板书)

仔细观察等号的右边,这些算式又有什么共同的特点?它和左边的算式有什么联系?(教师根据学生的回答及时小结“两个加数分别乘第三个数,再把积相加”并板书)

2、验证发现:

(1)是不是所有像这样写的两个算式就有这样的规律呢?你能照样子写出几个这样的算式并验证一下吗?

在写之前,先想一想,你写了2个算式准备如何验证?(引导学生用计算的方法验证)

(2)学生尝试写算式。验证 然后汇报交流。

(3)汇报讨论结果:

教师板书学生的算式,并问学生是如何验证的?

(4)观察这些算式,等号左边有什么共同点?右边呢?等号左右两边有什么联系?

(5)小结:等号左边的算式都是“两个加数的和与一个数相乘”的积,等号右边的算式都是这“两个加数分别与一个数相乘,再把所得的积相加。等号左边算式中的两个加数,就是等号右边算式中两个不同的乘数;等号左边算式中的一个乘数,就是等号右边算式中两个相同的乘数.

3、总结乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这就是我们今天学习的乘法分配律(板书课题)。

你能用你喜欢的方式表示这个规律吗?

学生自编公式,集体汇报介绍自己写的公式。

四、反馈调节:

1、你能用今天学的知识解释 刚才你怎么猜出第四道口算题的?

2、现在我们把书翻到p55第1题,这些等式不完整,你能把它们补充完整吗?

先请学生读题目要求

(42+35)×2=42× +35×

27×12+43×12=(27+ )×

15×26+15×14= ( )

72×(30+6)=

学生自己思考,填写,校对时请学生说一说是怎样思考的,填写的依据是什么?

2、书p55的第二题:在作业纸上呈现。

先请学生读题目要求,再独立完成,校对时说说自己是怎么判断的?

(64+36)×8 64×8+36×8

(28+32)×7 28×7+32

15×39+45×39 (15+45)×39

40×50+50×90 40×(50+90)

74×(20+1) 74×20+74

25×(17+3) 25×17+25×3

再请学生在四组得数相等的算式中各选做一题,比比谁算得快。

学生选题计算。

交流都是选得什么题目?为什么选它们?(因为计算简便)

运用乘法分配律还可以使计算简便,该怎样简算,这是我们下节课学习的内容。

3、解决实际问题:

(1)变新授时的长方形题目为求这个长方形的长比宽多多少米?

让学生独立解答。汇报交流。(得到两种解法,板书)

(2) 变植树题为求女生比男生少种多少棵树?

让学生独立解答。汇报交流。(得到两种解法,板书)

(3) 现在你对乘法分配律有什么新的认识吗?

五、总结:

今天你学会了什么?你能向大家介绍一下乘法分配律吗?

乘法分配律教案 篇8

乘法分配律是本单元重点,在此之前,学生已经过乘法的交换律和结合律,以及应用这些运算律进行简便运算。进一步学习乘法分配律,不仅有利于学生从整体上了解整数范围内的基本运算律,而且有利于他们更灵活地解决计算问题,通过用两种方法解决同一个问题,引导学生比较列出的两道算式,发现它们的内在联系,再让学生照例子列举出同类算式,分析共同特点,并用字母抽象、概括出乘法分配律。教材有意识让学生经历乘法分配律的发现过程,并在合作与交流中和掌握乘法分配律。这样,既有利于学生积累探索数学规律的经验,感受不完全归纳法,又有利于学生发展符号感,进一步感受数学表达的严谨与简练。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。

1、使学生在解决实际问题的过程中发现并理解乘法分配律。

2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。

教学有法,教无定法。新课程以学生的发展为本,这是现代教育的根本目标,也是我们每一堂课教学的根本目标。新的理念提倡人人学有价值的数学,从获得必要的数学,不同的人在数学上得到不同的发展。根据这一总体目标,我采用了以下的方法:

兴趣是一个人学习的动力,是最好的老师。在教学过程中,我运用启发式教学,根据小学生的心理特征和谁知规律,设计一些引人入胜的学习情境来激发学生的学习兴趣,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,设计一些易混题,最后设计一个找朋友的游戏,让学生积极参与,既活跃了课堂气氛,又能充分发挥学生学习的积极性和主动性,充分体现教师的主导作用和学生的主体地位。

主动参与,乐于探究。新课程标准指出学生是学习的主人,教师只是学习的组织者,引导者和合作者,学生始终参与教学活动中。因此在教学过程中,我先出示了学生的生活情景图,让学生去解决实际问题,并通过解决问题发现了乘法分配律。

合作交流,体会规律。在教学过程中,以小组合作的开工,充分调动学生的积极性,主动性,让学生有充分的时间和机会通过观察、交流、反思等活动,提升思维品质,发展创新意识。

五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,施老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)

【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。

买这些些服装,施老师一共要付多少元钱呢?你能用两种方法列出综合算式吗?

请生交流解题思路,并比较哪种解法更简便。

通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?

小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。

(1)提出类比问题:如果施老师选择选择的是另两种服装,买的数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?

(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!

(3)学生小组合作完成,交流反馈,相机板书:

(4)观察算式,引导列成等式,仿照等式随意举例像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。

举例,小组交流,挑选几组板书。

【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。

(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?

学生有自己的语言描述发现的规律。

通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。

交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。

【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。

(1)游戏“交朋友”

课件出示:(80+2)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)

出示:6×(10+20)(A+100)×5,(42+45)×▲,请生帮它们交朋友

像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8

【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。

学生独立填写,指名报,全班共同校对。

明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?

学生自己判断。然后请生说说判断的依据。

让每位学生都用两种方法计算长方形的周长,指名板演。

小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。

让学生各自按运算顺序计算,指定两人板演,共同订正。

提问:每组两道算式有什么联系?哪一题的计算比较简便?

小结:有时是先乘再求和比较简便,有时是先求两数的各再乘比较简便,大家要根据实际情况的不同,灵活对待。

【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。

今天这节课,你有什么收获,从中你得到什么启发?

【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。

两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

乘法分配律教案 篇9

一、说教材:

本课时教学为苏教版第八册第54-55页运算律的第1课时内容,是在学生学习了加法、乘法的交换律与结合律基础上进行教学的,本内容要为应用乘法分配律进行简便计算打下基础,教学重点应放在引导学生发现规律、理解含义上。

二、说目标:

《数学课程标准(修订稿)》(以下简称《标准》)指出:数学教学要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。基于此,我结合教材内容特点及课前调查,确定了如下教学三维目标:

1.知识和技能:使学生在解决实际问题过程中发现、探索、理解乘法分配律。

2.过程和方法:引领学生在主动参与、探索、发现和概括的过程中,培养观察、比较、猜测、分析、概括、推理等能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁。

3.情感、态度和价值观:学生在活动中感受数学规律的确定性和普遍适用性,获得成功的体验,激发学习兴趣,增强自信心。

《标准》还提到:要探索并了解运算律,会应用运算律进行一些简便运算。据此,本节课的教学重、难点要注重引导学生自主探索、发现乘法分配律的内在规律,并与他人交流。

三、说学情:

由于学生已初步具有探索、发现运算律并应用运算律简便计算的经验,本节课遵循解决问题发现规律交流规律表达规律的顺序来呈现内容,这样的安排易引起学生对学过的方法的回顾,亦有利于他们顺利学习和掌握本节课内容。在实际教学时,我还强调依主题图情境引导观察、比较、猜测、分析、理解、概括出乘法分配律,以亲历贯穿学习全过程,重学生的成功体验,引领他们在合作、交流的和谐氛围中理解算理,一步步发现与成功、探索与理解。

四、说教法和学法:

数学教学需要多种教法与学法的有机结合。本内容是数学教学的难点,根据内容特点、教学目标及四年级学生独有心理规律和个性特征,通过情境的巧妙改设、练习的层次递进、语言的幽默生动,促进学生知识的逐步建构、思维的螺旋上升,使得学生对乘法分配律的认识由感性走向理性,努力将数学教学活动创设成活泼、主动、富有个性的学习活动空间,引领学生在动手实践、自主探索、合作交流中去发现、去思考、去质疑、去辨析、去交流、去释疑,直至豁然开朗,开怀一笑。

五、说教学流程:

本节课我主要设计了4大教学环节:

课前,幻灯展示刚出版的《快乐数学》班级数学小报第3期,学生自由欣赏自编数学笑话4则等数学笔记,师生近距离谈话。

[设计意图:充分利用课前2分钟及数学小报的开展,融洽师生关系,沟通师生心灵,拉近心理与交流的距离,为后面顺利教学奠定基础。]

1.导入猜想验证:

我出示改设的主题情境图,启发性谈话:从图中你能获得哪些数学信息?要解决什么问题?

师:你是怎么列综合算式的?你怎么想?有和他的列式和想法一致的吗?(板书)

师:看这两种列式,猜一猜两道算式的结果可能会出现什么情况?有猜想就要有验证,要验证就要有行动,请同学们认真计算,看计算结果是否如我们的猜想?

[设计意图:合理利用并依据现实生活实际改造现有的主题图情境,将5件(条)改为2件(条),更贴近生活实际的生活情境创设,使学生更易在具体情境中发现问题、提出问题、解决问题,得出不同的解题思路,列出不同的算式,在计算结果相等的情况下组成等式,这为学生感受乘法分配律提供了现实背景,学生从中也体会到乘法分配律的合理性。]

2.交流类推表达:

合作交流等式(65+45)2=652+452,观察比较左右两个算式的异同点,强调:都买2件,也就是买2套,(65+45)个2也就是65个2加 45个2。

继续引导从情境图中发现问题:要买2件短袖衫和2条裤子,需要付出多少元?假如买5件,等式能成立吗?让学生尝试用两种综合算式来完成,简单交流。

比较类推:象这样有规律的左右两边都相等的等式多吗?举一些类似这样的式子?(注意强调计算结果)学生交流、讨论、探讨,尝试用自己喜欢的方式,表述自己所理解的这类规律。之后要求学生用字母a 、b 、c来表示这个规律,教师在板书的同时注意结合手势比划简要说明乘法分配律的意义。

[设计意图:从问题的实际意义〈都买2件,也就是买2套〉和数学运算的意义〈(65+45)个2也就是65个2加 45个2〉两个层面来体会与认识;从比较类推、手势表达等活动探索与理解,学生能够很好地理解乘法分配律的意义,同时,在交流合作中加深对乘法分配律的透彻感悟。]

3.揭题细读静想:

教师顺势揭题,进而结合乘法分配律的自述(课件)让学生细读静想,体会、感悟、理解乘法分配律的规律表述、逆应用及变式。

[设计意图:对乘法分配律的意义,我不强调口头上的简单表述,而力求通过乘法分配律的自述再次强化与渗透,让学生深刻印象。]

本节课我设计了5个层次的练习:

4.结合本校3、5、6年级班级数和平均每班学生人数改编问题,交流、指导学生根据不同的条件选择相应的条件进行解答,并尝试运用多种方法完成。

5.自提问题,自由完成:一块长方形菜地种青菜和萝卜(长方形菜地宽36米,青菜地长66米,萝卜地长34米),让学生根据收集的数学信息自编数学问题,自由解决。

[设计意图:练习设计上,我深入解读教材练习设计的同时,对练习进行了适当的加工改造,力求体现现实性、趣味性、层次性、思考性、发展性。多形式、多层次的练习,深化学生对乘法分配律意义的理解,更多注重的是深层次的挖掘,比如:乘法分配律的逆应用,其在减法中的应用等,这使得乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解。]

回顾学习收获,安排学生课后补充完成第55页相关知识内容,并写数学笔记一篇。

乘法分配律教案 篇10

学习内容:

人教版小学四年级下册第三单元乘法分配律

学习目标:

1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。

2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。

3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。

学习重难点

借助乘法的意义理解乘法分配律的意义和内涵。

配套资源

实施资源:

《乘法分配律》教学课件

学习过程:

一、情境导入,引入新课

师:之前我们已经学习了乘法交换律、结合律,今天这节课我们继续学习乘法的另一个运算定律。

请同学们认真看下面的题目:有一个长方形的果园,原来宽20米,长80米,扩大规模后,长增加了30米。问:现在这个果园的面积有多大

二、学习新知

①自主探索,独立解决问题

请大家闭上眼睛想象一下,如果用一幅图来表示题目的意思,这幅图会是怎样的呢

把你想到的图形画在练习本上。并试着去解决这个问题。

②汇报交流,明确算法

谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。

③全班反馈(课件动态演示)

先来看第一种方法:

可以先算出扩大规模后果园的长,再算出扩大规模后果园的面积,即(80+30)×20=2200(平方米)

(设计意图:借助于课件,展示出这道题目的示意图,进行动态演示,可以让学生清楚地看到每一步的计算表示的实际意义是什么,对理解另一种方法打下基础。)

再来看第二种方法,可以先算出果园原来的面积,再算出后来增加的面积,最后把原来的面积和增加的面积全起来就是果园现在的面积。即80×20+30×20=2200(平方米)

(设计意图:借助于课件,进行动态演示,让学生从中清楚地看到这种方法和第一种方法的不同之处,同时又真正的明白,虽然方法不同,但所要求的结果完全一样)

同学们,你们有什么发现呢大家是不是已经发现了尽管这方法不一样,但这两种方法的结果都是一样的。那就说明(80+30)×20=80×20+30×20(这两个式子是相等的)

(设计意图:借助于课件的动态演示,使学生更清楚地看到,两种方法求出的是同一个结果,同时,更能给学生初步感悟乘法分配律提供一定的帮助。)

②师:刚才扩大规模后的长是增加了30米,现在给大家一次机会,你来决定让长增加几米同时请你用两种方法算一算,看用两种方法计算出的结果是否一样

如果我们把果园的宽的米数用圆形来表示,原来的米数用三角来表示,长增加的米数用五角星来表示,上面的式子我们是不是就可以这样表示了呢

( +▲)×★=×★+▲×★

(设计意图:利用课件的方便性,在很短的时间给学生展示了不同的数据所计算出的结果都是一样的,让课堂节奏更稳,更快,解决问题更高效,同时在一定程度上让学生的注意力更加集中了。)

③接下来,我们共同来验证一下,看我们想到的这个式子是不是正确的呢现在这里面原来的长和宽及扩大规模后增加的长的数量都由你来决定填写,填写完后,进行计算,验证,来证明这个等式不仅适用上面的两个例子,同样适用于你所举的例子。

验证;(100+50)×40=100×40+50×40

结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把积相加。

同学们,你们真厉害,你们所发现的规律在数学上就叫做乘法分配律。用字母表示为a+b)×c=a×c+b×c

三、巩固练习:

1、请看下面这个算式,(40+8)×25

结合刚才的长方形的面积,你想到了什么

我们可以想象成宽是25米,原来的长是40米,扩大规模后增加的`长是8米,因此我们可以先求出原来的面积40×25和增加的面积8×25,合起来就是现在的面积。

2、计算59×20+41×20

师:除了把它们想象成刚才的长方形的面积,还可以想象成什么呢实际上生活中有很多这样的情况,我们可以把它想象这样的场景:学校要举行歌唱比赛,参加的20名同学要统一着装,老师们先买了20件上衣,每件59元,又买了20条裤子,每条裤子41元,老师买这些衣服一共花费了多少元钱呢

59×20+41×20

=(59+41)×20我们可以先求出一套衣服多少元再乘以

=100×20它的套数,是不是计算更简单呢

=20xx

亲爱的同学们,相信你们通过今天的学习,对乘法分配律已经有了一个初步的认识,今天的课快要结束了,老师留给大家一个问题:如果这道题目问的是原来的面积比增加的面积多多少平方米你认为应该怎样做呢如果有两种方法可以解答,你认为这两种方法之间有联系吗请大家认真思考,下节课我们再见!

乘法分配律教案 篇11

一、教材分析:

乘法分配律是北师大版教材四年级上册第四单元运算律第56、57页教学内容。乘法分配律是本单元的教学重点,也是难点。教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程。同时,学好乘法分配律是学生下节课进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。

二、教学目标:

1、结合具体的问题情境,经历探索乘法分配律的过程,理解并掌握乘法分配律的意义;

2、在观察、比较、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁;

3、在学习活动中不断产生对数学的好奇和求知欲,培养良好的学习习惯。

三、教学重点和难点:

教学重点:经历探索乘法分配律的过程,建立乘法分配律模型。

教学难点:理解乘法分配律的意义。

四、教学流程:

(一)创设情境,感知规律

师生谈话导入新课。

师:同学们,“爸爸和妈妈都爱我。”这句话还可以怎么说?

“小明和小华都是他的好朋友。”这句话也可以怎么说?

生:……

师:真聪明,回答正确,在数学王国里也有类似的表达,今天让我们一起去探索吧!

[设计意图:本环节通过创设一个充满趣味的生活问题,引领学生发展自身的灵性,寻求数学知识,与现实问题之间的本质联系,促进学生感悟、内化、激发学生探索新知的兴趣。]

(二)解决问题,明晰算理。

1、情境一——厨房贴瓷砖

(1)让学生从图中获取数学信息,提出数学问题。

(2)生汇报,师择取问题:一共贴了多少块瓷砖?

让学生用多种方法列综合算式解答问题,然后小组内交流算法及解题思路。

(3)组织全班交流,要求学生讲清楚是怎样想的.。教师配以课件演示并适时板书四种算法:3×10+5×10;(3+5)×10;4×8+6×8;(4+6)×8。

(4)小组讨论:观察四个算式,哪两个算式联系紧密,是否可以用等号连接?

(5)全班交流。[(3×10+5×10与(3+5)×10联系紧密,可用等号连接;4×8+6×8与(4+6)×8联系紧密,可用等号连接。]

追问:为什么可以用“=”连接?让学生充分讲道理。

(6)比较:观察上面两组算式,你有什么发现?(第一组中的第一个算式里10出现了两次,而第二个算式里10只出现了一次,第一个算式没有小括号,第二个算式有小括号,改变运算顺序了……)

[设计意图:关注学生已有知识经验,以学生身边熟悉的情境,为教学的切入点,激发学生主动学习的需要。为学生创设了与生活环境、知识、背景密切相关的感兴趣的学习情境——根据主题图,提出问题并通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。]

2、情境二——花圃

(1)让学生看图并解决问题。

(2)学生汇报算法及解题思路,师配以课件演示并板书:(30+25)×2;30×2+25×2。

师:这两个算式是否可用等号连接,为什么?(可以因为它们的结果相同,都是求篱笆的长,只是运算顺序不同。)

3、举实例

师:生活中,像用这样两种方法解决的问题很多,你能举个例子吗?学生独立思考后全班交流。比如:(1)老师买了5个篮球和5个足球,一个篮球50元,一个足球80元,一共花了多少钱?(2)一辆中巴车限乘20人,一辆小轿车限乘4人,现在各租2辆,一共能坐多少人?

[设计意图:创设问题情境,联系生活实际为学生感受乘法分配律提供现实背景,在学生独立思考的基础上,引导有效的交流,使学生对乘法分配律有所初步感知。]

(三)观察对比,概括规律

这一环节是本节课的中心环节,为了突出重点,突破难点,发挥学生的主体作用。我安排了观察总结、举例验证、抽象概括和尝试应用四个层次进行教学。

1、观察总结

(1)师:同学们,请观察黑板上这几组算式,你有什么发现吗?请小组内讨论交流。

(2)学生汇报(学生结合算式,能说出自己的发现即可)。

(3)教师在学生总结的基础上指着算式小结乘法分配律的意义:两个数和同一个数相乘,等于把这两个加数分别同这个数相乘,再把两个积相加,结果不变。

(4)师揭示课题,板书课题:乘法分配律。

[设计意图:这一环节让学生从多组算式入手,通过观察比较,互相补充,在算式中寻其相同点和不同点,并在分析题意中,找寻其存在规律的必要性,帮助学生在理解算理的基础上,明确乘法分配律的含义。]

2、举例验证

让学生列举不同的算式来验证乘法分配律,再小组交流,集体反馈时教师有选择地板书学生列举的算式并适时表扬。

[设计意图:学生举例验证过程,是学生不完全归纳的过程,对于学生识记乘法分配律,理解乘法分配律的内涵有重要的作用,通过自己举例验证有利于学生将新的知识纳入到自己已有的知识体系。]

3、抽象概括

(1)让学生用a、b、c表示乘法分配律,有困难的学生教师即时指导,再汇报交流,师板书:a×c+b×c=(a+b)×c,生齐读字母公式。

(2)让学生比较乘法分配律与“爸爸和妈妈都爱我,爸爸爱我,妈妈也爱我。”这两句话之间的相似之处。

生:a相当于爸爸,b相当于妈妈;c相当于我,爱相当于乘号。

[设计意图:让学生用字母表示乘法分配律,历经归纳推理到抽象概括的过程,体会用字母式子表示乘法分配律的严谨与简洁。]

4、尝试应用

(1)让学生用自己喜欢的方法表示4×9+6×9……,说明乘法分配律是成立的;

(2)学生独立完成后,小组交流;

(3)教师巡视抽取有代表性的方法展示给大家看;

(4)再问这个算式还可以怎样表示?学生说出另一种算式,课件呈现4×9+6×9=(4+6)×9

[设计意图:让学生借助自己喜欢的方式结合此题说说这个算式还可以怎样表示,学生的思考过程就是乘法分配律形式的再现过程,要让多个学生表达,在相互表达中,加深对乘法分配律的理解。]

(四)挑战过关,应用规律:

第一关:请算一算一共有多少个方格?(用两种方法列综合算式计算)。

(1)学生汇报算法;

(2)比较哪种方法比较简便?为什么?

第二关:填一填

①(12+40)×3=□×3+□×3

②15×(40+8)=15×□+15×□

③78×20+22×20=(□+□)×20

④66×28+66×32+66×40=(□+□+□)×□

(1)学生展示填写的答案。

(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便?为什么?

第三关:学校要给28个人的合唱队买服装,一件上衣58元,一条裤子42元,请你算算买服装要花多少钱?(用两种方法列综合算式解答)

(1)学生汇报算法。

(2)比较哪种方法比较简便?小结:学习了乘法分配律可以灵活选择算法,怎么计算简便就怎么算。

[设计意图:多样练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓展知识视野,完善认知结构,提升认识境界、增长人生智慧的过程。在练习中,帮助学生继续完善对乘法分配律的理解。]

(五)课堂总结,梳理新知

让学生谈谈本节课的收获,教师加以梳理,最后质疑解惑。

[设计意图:让学生将知识系统化、条理化,对在获取新知中体现出的数学思想方法进行反思,从而加深对知识的理解。]

五、板书设计

乘法分配律

(3+5)×10=3×10+5×10

(4+6)×8=4×8+6×8

(30+25)×2=30×2+25×2

(35+65)×5=35×5+65×5

(2+3)×5=2×5+3×5

(a+b)×c=a×c+b×c

乘法分配律教案 篇12

人教版小学四年级下册第三单元乘法分配律

1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。

2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。

3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。

学习重难点

借助乘法的意义理解乘法分配律的意义和内涵。

配套资源

实施资源:

《乘法分配律》教学课件

学习过程:

师:之前我们已经学习了乘法交换律、结合律,今天这节课我们继续学习乘法的另一个运算定律。

请同学们认真看下面的题目:有一个长方形的果园,原来宽20米,长80米,扩大规模后,长增加了30米。问:现在这个果园的面积有多大

①自主探索,独立解决问题

请大家闭上眼睛想象一下,如果用一幅图来表示题目的意思,这幅图会是怎样的呢

把你想到的图形画在练习本上。并试着去解决这个问题。

②汇报交流,明确算法

谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。

③全班反馈(课件动态演示)

先来看第一种方法:

可以先算出扩大规模后果园的长,再算出扩大规模后果园的面积,即(80+30)×20=2200(平方米)

(设计意图:借助于课件,展示出这道题目的示意图,进行动态演示,可以让学生清楚地看到每一步的计算表示的实际意义是什么,对理解另一种方法打下基础。)

再来看第二种方法,可以先算出果园原来的面积,再算出后来增加的面积,最后把原来的面积和增加的面积全起来就是果园现在的面积。即80×20+30×20=2200(平方米)

(设计意图:借助于课件,进行动态演示,让学生从中清楚地看到这种方法和第一种方法的不同之处,同时又真正的明白,虽然方法不同,但所要求的结果完全一样)

同学们,你们有什么发现呢大家是不是已经发现了尽管这方法不一样,但这两种方法的结果都是一样的。那就说明(80+30)×20=80×20+30×20(这两个式子是相等的)

(设计意图:借助于课件的动态演示,使学生更清楚地看到,两种方法求出的`是同一个结果,同时,更能给学生初步感悟乘法分配律提供一定的帮助。)

②师:刚才扩大规模后的长是增加了30米,现在给大家一次机会,你来决定让长增加几米同时请你用两种方法算一算,看用两种方法计算出的结果是否一样

如果我们把果园的宽的米数用圆形来表示,原来的米数用三角来表示,长增加的米数用五角星来表示,上面的式子我们是不是就可以这样表示了呢

( +▲)×★=×★+▲×★

(设计意图:利用课件的方便性,在很短的时间给学生展示了不同的数据所计算出的结果都是一样的,让课堂节奏更稳,更快,解决问题更高效,同时在一定程度上让学生的注意力更加集中了。)

③接下来,我们共同来验证一下,看我们想到的这个式子是不是正确的呢现在这里面原来的长和宽及扩大规模后增加的长的数量都由你来决定填写,填写完后,进行计算,验证,来证明这个等式不仅适用上面的两个例子,同样适用于你所举的例子。

验证;(100+50)×40=100×40+50×40

结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把积相加。

同学们,你们真厉害,你们所发现的规律在数学上就叫做乘法分配律。用字母表示为a+b)×c=a×c+b×c

1、请看下面这个算式,(40+8)×25

结合刚才的长方形的面积,你想到了什么

我们可以想象成宽是25米,原来的长是40米,扩大规模后增加的长是8米,因此我们可以先求出原来的面积40×25和增加的面积8×25,合起来就是现在的面积。

2、计算59×20+41×20

师:除了把它们想象成刚才的长方形的面积,还可以想象成什么呢实际上生活中有很多这样的情况,我们可以把它想象这样的场景:学校要举行歌唱比赛,参加的20名同学要统一着装,老师们先买了20件上衣,每件59元,又买了20条裤子,每条裤子41元,老师买这些衣服一共花费了多少元钱呢

59×20+41×20

=(59+41)×20我们可以先求出一套衣服多少元再乘以

=100×20它的套数,是不是计算更简单呢

=20xx

亲爱的同学们,相信你们通过今天的学习,对乘法分配律已经有了一个初步的认识,今天的课快要结束了,老师留给大家一个问题:如果这道题目问的是原来的面积比增加的面积多多少平方米你认为应该怎样做呢如果有两种方法可以解答,你认为这两种方法之间有联系吗请大家认真思考,下节课我们再见!

乘法分配律教案 篇13

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

教学目标

1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学过程

一、创设情境,谈话导入

谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)

二、自主探究,合作交流

1、交流算法,初步感知。

提问:从图中你获得了哪些信息?

再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。

反馈:你是怎样解决这一问题的?为什么这样列式?

组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

学生在自己的'本子上写,教师板书,让学生读一读。

谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)

提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

根据学生回答,列出算式:32×5+45×5和(32+45)×5。

再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

启发:比较这两个等式,它们有什么相同的地方?

2、深入体验,丰富感知。

引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?

分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?

要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

学生举例并组织交流。

3、揭示规律。

提问:像这样的等式,写得完吗?

谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]

三、实践运用,巩固内化

1、“想想做做”第1题。

谈话:下面我们利用乘法分配律解决一些简单的问题。

出示“想想做做”第1题,让学生在书上填一填。

学生完成后,用课件反馈。

2、“想想做做”第2题。

你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

回答第2小题时,让学生说一说理由。

3、“想想做做”第3题。(略)

四、梳理知识,反思总结

提问:今天这节课,你有什么收获?有什么感受想对大家说?

五、布置作业

“想想做做”第4、5题。

GZ85.com扩展阅读

乘法分配律课件12篇


在大量的资料中工作总结之家小编精选了一篇极其有用的“乘法分配律课件”,此页面资讯仅供参考请自行判断信息准确性。教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。教师的教学方法要与教案相结合才能取得好的教学效果。

乘法分配律课件(篇1)

教学内容分析:

乘法分配律是北师大版小学数学四年级上册第三单元P48~P49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

教学目标:

知识与能力:

1、在探索的过程中,发现乘法分配律,并能用字母表示。

2、会用乘法分配律进行一些简便计算。

过程与方法:

1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

情感、态度与价值观:

1、在这些学习活动中,使学生感受到他们的身边处处有数学。

2、增加学生之间的了解、同时体会到小伙伴合作的重要。

3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

教学过程:

一、创设情境,激趣导入。

1、出示:

125×8=25×9×4=18×25×4=

125×16=75+25=89×100=

教师请个别学生口算并说出部分题的口算依据及应用的定律。

2、再出示:119×56+119×44=

师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?

二、引导探究,发现规律。

1、出示课本插图

师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?

生:我看到两个工人叔叔在贴瓷砖。

生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。

生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。

师:你真细心。大家能根据获得的信息提一个数学问题吗?

学生提问题,教师出示问题:一共贴了多少块瓷砖?

2、估计

师:谁能估计工人叔叔大约贴了多少块瓷砖?

学生试着估计。

3、列式解答

师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。

学生用自己喜欢的方法计算,教师巡视。

师:谁来向大家介绍一下自己的算法?

生:6×9+4×9(板书)

=54+36

=90(块)

师:这边的6×9和4×9分别是算什么?

生:分别算出正面和侧面贴的块数。

师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?

生:我是这样列的,(6+4)×9(板书)

=10×9

=90(块)

师:你能说说为什么这样列式吗?

生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。

师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?

生:计算方法不一样,结果却是一样的。

师:所以这两个式子我们可以用一个什么样的数学符号连接起来?

生:等于号。

教师板书。

4、观察算式的特点

师:观察等号两边的式子,它们有什么特点呢?

生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边

的算式是这两个加数分别与一个数相乘,再把所得的积相加。

生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。

师:是这样吗?你们能再举一些类似的例子吗?

5、举例验证

让学生根据算式特征,再举一些类似的例子。

如:(40+4)×25和40×25+4×25

63×64+63×36和63×(64+36)

讨论交流:

(1)交流学生的举例是否符合要求:

(2)交流不同算式的共同特点;

(3)还有什么发现?(简便计算)

师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。

6、字母表示。

师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。

7、揭示课题。

三、应用规律,解决问题。

课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?

1、(80+4)×25

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

(3)鼓励学生独自计算。

2、34×72+34×28

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求。

(3)简便计算过程,并得出结果。

3、让生观察:36×3

=30×3+6×3

=90+18

=108

师:你能说说这样计算的道理吗?

生独自思考,小组讨论,全班交流。

四、总结。

师:说说这节课你有什么收获?

师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。

乘法分配律课件(篇2)

《探索与发现(三)乘法分配律》教学反思

东新四小学 王唯

教学内容:

小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页

教学目标:

1、经历探索的过程,发现乘法分配律,并能用字母表示。

2、会用乘法分配律进行一些简便计算。

教学重点:理解乘法分配律的特点。

教学难点:乘法分配律的正确应用。

教学过程:

一、复习回顾

(出示课件1)计算

35×2×5=35×(2×)

(60×25)×4=65×(×4)

(125×5)×8=(125×)×5

(3×4)×5 × 6=(×)×(×)

师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。

二、探究发现

(出现课件2)

师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?

生:我发现有两个叔叔在贴瓷砖

生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。

师:你最想知道什么问题?

生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?

生:我估计大约有100块瓷砖

生:我估计大约有90块瓷砖。

师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)

师:谁来向大家介绍一下自己的做法?

生:6×9+4×9(板书)

=54+36

=90

分别算出正面和侧面贴的块数,再相加,就是贴的总块数。

生:(6+4)×9(板书)

= 10×9

=90(块)

因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。

师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?

生:我发现计算方法不同,但结果却是一样的。

6×9+4×9 = (6+4)×9(板书)

师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?

(学生举例,教师板书)

师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)

小组1:符合要求,因为每组中两个算式都是相等的。

小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。

(板书用=连接算式)

师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。

小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。

小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的关于乘法的第三个定律。

师:大家齐读一遍。

师:和同桌说一说自己对乘法分配律的理解。

师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。

(a+b)×c=a×c+b×c

师:这叫做乘法分配律

三、巩固练习:

1、计算

(80+4)×25 34×72+34×28

师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。

2、判断正误

( 25 + 7 )×4 = 25 ×4 ×7×4 ( )

35×9 + 35

= 35×( 9 + 1 )

= 350 - - - - ( )

3、填一填

(12+40)×3=× 3 +×3

15×(40 + 8) = 15×+ 15×

78×20+22×20=(+ )×20

四、总结

师:说说这节课你有什么收获?

师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

[板书设计]

探索与发现(三)

-----乘法分配律

(a+b)×c=a×c+b×c

6×9+4×9 =(6+4)×9

(40+4)×25 = 40×25+4×25

(64+36)×42 = 42×64+42×36

乘法分配律课件(篇3)

教材分析:

本课时是苏教版小学数学第八册第七单元的第一课时,乘法分配律涉及到乘法和加法两种运算。教材中实际情境中引出问题,引导学生用不同的方法进行解答,引导学生观察、比较列出两道算式,发现他们的内在联系,再让学生例举同类算式,分析共同点,从中发现乘法分配律,并用字母表示出来,练习中安排了应用乘法分配律进行简便计算,以及把乘法分配律延伸到它的逆应用和类推到两个数的差与一个数相乘,使乘法分配律的概念得到了有效的延伸。

学情分析:

学生在第七册学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2周长=(长+宽)×2

教学重点与难点:

重点:理解乘法分配律的意义

难点:引导学生经历探索并发现乘法分配律的过程。

设计理念:根据学生已有的知识经验和教材的实际内容,本课的教学主要是教师创设情境,让学生对知识进行主动的探索,从而发现规律,并应用规律灵活地解决计算问题。

教学主要流程:

一、 创设情境,导入教学

挂图出示例题:买5件夹克衫和5条裤子,一共要付多少元?

[创设与学生生活相联系的情境,让学生感受生活中的数学问题,激发学生学习的兴趣]

二、 经历探索、分析比较、得出规律

1、让学生独立解答,得到两种不同的方法,集体订正,说出两个算式计算过程的含义

2、分析两个算式的联系,形成两个算式相等的共识(结果都是求出的是5件夹克衫和5条裤子的总价)即:(65+45)× 5=65 ×5+45× 5

3、建立初步的概念,写出类似的几组算式

4、小组合作,说说这样的算式所蕴涵的规律,得到乘法分配律公式并用字母来表示。

[新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,教师引导学生感悟两种方法的相同点和不同点,经历观察、比较、分析,在学生的合作交流中,概括出乘法分配律的含义,从乘法分配律的认识由感性逐步上升到理性。培养了学生初步的归纳推理的能力]

三、 巩固应用、深化延伸

1、做第1题,讲解2、3小题时重点强调相同乘数提出来,不相同的乘数相加,指出是乘法分配律的逆应用。

2、完成第2题,提示第3小题74×1的1可以省略不写,

第4小题中什么数是相同的乘数

3、完成第3、4题,比较两种方法中的哪种方法比较简便,渗透简便计算的思想

4、做第5题,重点提示学生第2题 48×3-45×3可以写成(48-35)×3

把分配律中的加法类推到减法。

[乘法分配律的逆应用虽然在例题中没有出现,但现在这个知识结构中是很重要的一部分,乘法分配律在减法中的应用也是非常重要的,所以在教学中应该重视,使乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解]

四、 课堂小结:

今天我们学习了什么知识,我们是怎么来学习的?

乘法分配律课件(篇4)

学情分析:

乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

教学目标:

1.理解并掌握乘法分配律并会用字母表示。

2.能够运用乘法分配律进行简便计算。

3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

教学重点:

理解并掌握乘法分配律。

教学难点:

乘法分配律的推理及运用。

教学过程:

一、情景激趣,提出猜想

1.情景

暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

①整理条件、问题

从这段资料中你知道了那些信息?王老师遇到了哪些问题?

②学生列式,抽生回答: (18+23)×8, 18×8+23×8

③交流算式的意义

第一个算式先算什么?再算什么?第二个算式呢?

④计算:(发现两个算式结果相等)

⑤观察、分析算式特点

咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

⑥全班交流,引导学生从下面几个方面进行思考

A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

C.计算结果:结果相等。

(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

2.提出猜想

真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?

怎样才能知道像这样的算式都有这样的规律?

引导学生想到用举例的方法进行验证。

师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。

(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)

二、举例验证,证明合理性

1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。

2.分组举例

两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

3.交流:谁愿意把你举的例子和大家一起分享?

A.这个式子符合要求吗?

B.这些式子都有一个共同的规律,这个共同的规律是什么?

教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

三、概括归纳,建立模型

1.个性概括

这样的式子你们还能写吗?能写完吗?

强调这样的例子还有很多很多,是写不完的。

你能用一个式子将所有的像这样的式子都概括出来吗?

学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

2.统一认识

教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

(a+b)×c=a×c+b×c

给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。

3.进一步认识

这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

齐读式子。

(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

四、巩固应用,深化认识

1.哪些算式与72×35相等

72×30+72×5

72×35 72×30+5

70×35+2×35

70×35+2

问:为什么相等?

(设计意图:让学生理解乘法分配律的本质意义)

2.你会填吗?

(10+7)×6= ×6+ ×6

8×(125+9)=8× +8×

7×48+7×52= ×( + )

问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

(设计意图:学生进一步深刻理解乘法分配律)

3. 7×48+7×52 7×(48+52)

这两个式子你想选择哪个进行计算?为什么?

如果只给你第一个式子,你会想办法让你的计算变得简便吗?

小结:利用乘法分配律有时候可以使计算变得更简便。

(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

>>

4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

①34×72+34×28(订正时问:为什么不直接算)

(80+4)×25

订正时问:把(80+4)×25写成80×25+4×25依据是什么?

如果不用好不好算?

(80+20)×25

问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

教师小结:在计算中要根据数据特点,灵活运用乘法分配律。

②21×25 75×99+75

小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

五、全课小结

孩子们,你们今天收获了什么?

当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

板书设计

乘法分配律

(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)

=41×8 … … … …

=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25

18×8+23×8 … … … … (80+20)×25

=144+184 个性概括:… …

=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75

乘法分配律课件(篇5)

教案内容:

一、课题:《乘法分配律》

二、主要讲解的内容:

课本第26页例7及相关练习题

三、学习目标

1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。

2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。

3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。

教学重难点

借助乘法的意义理解乘法分配律的意义和内涵。

四、教学准备:多媒体课件,电脑,网络,耳机等

学生准备:数学书、笔、练习本、笔记本

五、教学环节

1、反馈家庭作业(表扬做的优秀的学生,鼓励并引导完成不太好的学生积极完成作业)

2、复习导入

算一算,比一比

(10+5)×5= (8+2)×7=

10×5+5×5= 8×7+2×7=

课前同学们已经完成了复习任务,请同桌交流计算的结果和发现。我们已经学习了乘法交换律、结合律,应用它们可以使一些计算简便。

什么是乘法的交换律和结合律?今天这节课我们再来学习乘法的另一个运算定律。

3、新授

还记得我们提出的第三个问题吗:一共有多少名同学参加了这次植树活动?

①自主探索,独立解决问题

你怎样解决这个问题?列式计算。设计意图:让学生独立解决问题,促成多种解决问题方法的生成,为探索运算定律准备了资源。②汇报交流,明确算法 学生先自己做上传自己想法,连麦让个别学生说明。

谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。

方法一:先算每个小组人数,再算总人数。

(4+2)×25

=6×25

=150(人)

方法二:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数,再算总人数。

4×25+2×25

=100+50

=150(人)

同学们用不同的方法解决了这个问题,计算结果都是150人。

③观察对比,概括规律

这两个算式之间有什么关系呢?

(4+2)×25=4×25+2×25

你能用自己的语言来描述这个等式吗?学生发语音

左边是4加2的和与25相乘,右边是4和2分别与25相乘,然后再相加。左右两边结果相等。

教师适时用箭头表示出来。

请你再举几个这样的例子吗,写在练习本上。

观察这些等式,你有什么发现?

两个数的和与一个数相乘,或者先把它们与这个数分别相乘再相加,结果相等。

④你能结合乘法的意义理解这个规律吗?

如:(4+2)×25=4×25+2×25

左边表示6个25,右边表示4个25加2个25,也是6个25,所以两者结果相等。

得出结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

⑤用字母怎样表示这个规律?

(a+b)×c=a×c+b×c

a×(b+c)=a×b+a×c

4、练习巩固

(1)下面哪些算式是正确的?正确的画“√”,错误的画“×”。

56×(19+28)=56×19+28 ( )

32×(7×3)=32×7+32×3 ( )

64×64+36×64=(64+36)×64 ( )

答案:× × √

解析:考查目标:1、借助乘法意义判断,进一步理解乘法分配律的含义,注重形式表达的认识与强化。

(2)观察下面的竖式,说一说在计算的过程中运用了什么运算定律。

答案:运用了乘法分配律25×12=25×2+25×10

解析:考查目标:2、结合两位数乘两位数的笔算过程,唤起学生已有的经验,体会乘法的算法与乘法分配律的关系。

(3)李阿姨购进了60套这种运动服,花了多少钱?

答案:(75+45)×60

=120×60

=7200(元)

解析:考查目标:3、借助熟悉的生活问题情境,在列出不同算式的基础上,以生活情境的材料解释算式意义,进一步加深对乘法分配律意义的认识和理解。

5、课堂小结通过本节课的学习,你都有哪些收获?

这节课我们一起研究了一个新的运算定律:乘法分配律

用字母表示是(a+b)×c=a×c+b×c

左边表示(a+b)个c,右边表示a个c加b个c,所以两者结果相等。

如果反过来,等式仍然成立。

如4×7+4×3=4×(7+3)

利用这个定律可以使计算简便,帮助我们解决许多问题。

6、钉钉家校本布置家庭作业,当天提交。

乘法分配律课件(篇6)

一、说教材

本节课是人教版小学四年级数学第三章运算定律与简便计算中的.内容。本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。

二、说教学目标

根据数学课程的基本性质与目的,我拟定了如下教学目标:

1、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

三、说教学重、难点

教学重点:掌握乘法分配律,理解乘法分配律的意义。

教学难点:掌握乘法分配律,理解乘法分配律的意义。

四、说教法和学法

(一)教学方法

在教学过程中,我运用启发式进行教学,根据小学生的心理特征和认知规律,我设计了循序渐进的教学过程,一步一步的引导学生到达新知识的制高点。其中适当的鼓励学生,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,让学生积极参与,充分体现教师的主导作用和学生的主体地位。

(二)学法指导

注意引导学生通过动手操作,采用观察、比赛、概括的方法概括出“乘法分配律”。让学生都能够动手、动脑、动口,积极参与教学的整个过程。

五、说教学过程

(一)谈话引入,激发兴趣。

1、回顾前面学习过的乘法交换律和乘法结合律,让学生用自己的话说一说,用字母来表示。

2、师:(指导观察主题图,理清图中的数学内容)同学们植树多么认真啊!他们为绿化祖国做出自己能做的事。这节课我们接着来探究关于其中的一些数学问题,同事们能够有兴趣解决吗?

(复习旧知识,孔子曰:学而时习之。时下正是植树节,以这样一个情境引入新课比较自然)

(二)自主学习,合作探究。

1、教学例3。

负责挖坑、种树的一共有多少人?

A、要求生在练习本上列综合算式算,然后小组里交流。生汇报。

B、让一学生上黑板写。

(4+2)×25 =6×25 =150(人)

师:你是怎么想的?

C 、师问:还有同学有不同的列算式方法吗?

生:上黑板写。

4×25+2×25

=100+50

= 150(人)

师:你是怎么想的`?

(让学生说一说自己的想法,理清解题思路,与其他同学共享)

师引导学生对比观察这两个算式,你发现了什么?

生小组里交流。生汇报。

引导学生发现:

1、(4+2)×25=4×25+2×25

2、第二个算式比第一个算式简便。

3、师适时引导总结出乘法分配律

......

师:谁能给我们发现的这个规律起个名字?(乘法分配律师板书)

(这一环节充分体现了学生的主体地位,放手让学生讨论交流,得到自己的想法,培养学生观察发现交流合作的能力。)

生:翻开课本齐读乘法分配律的概念。

师:课本上用符号来表示乘法分配律,但是没有写完整,你能补充完整吗?(师巡视指导)

师板书:(a+b)×c=a×c+b×c

D、你能例举出类似的例子来吗?

生:在练习本上写,然后师指名说一说。

(由于前面学习交换律、结合律的时候都有这些环节,所以这部分内容学生很熟悉,放手让学生做。)

E、师在黑板上板出乘法结合律的式子。(用字母表示)让学生对比乘法结合律和乘法分配律,对比它们的异同,让学生说一说。

(在这一章内容里学习了好几个运算定律,学生很容易搞混淆,所以要让学生区别它们。)

(三)巩固运用,深化提高。

1、第36页“做一做”。

下面哪个算式是正确的?正确的画“√”,错误的画“×”。

56×(19+28)=56×19+28()

32×(7×3)=32×7+32×3()

64×64+36×64=(64+36)×64()

2、师:运用乘法分配律可以使一些计算简便。

计算:101×13 40×65

指名两生上黑板做,并说说自己的想法。

生甲:101×13生乙:40×65

=(100+1)×13 =40×(60+5)

=100×13+1×13 =40×60+40×5

=1300+13 =2400+200

=1313 =2600

(这部分的练习主要是训练学生的运用能力,可能当时对学生来说有一定的难度,老师的巡视指导。)

师:表扬鼓励学生。

(四)总结提升。

这节课,你认识了什么新的运算定律?你会将它叙述一遍吗?它对我们有什么帮助?

六、说板书:乘法分配律

(a+b)×c=a×c+b×c北师大版4年级上册乘法分配律教学设计教学反思说课稿

乘法分配律是人教版四年级数学下册的内容,是一节比较抽象的概念课,是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。因此,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算往完整地感知,对所列算式进行观察、比较和回纳,大胆提出自己的猜想并举例进行验证……

所以,本课的教学目标,我定位在:

(1)从学生已有生活经验出发,通过观察、类比、回纳、验证、运用等方法深化和丰富对乘法分配律的熟悉。

(2)渗透“由特殊到一般,再由一般到特殊”的熟悉事物的方法,培养学生独立自主、主动探索、发现题目,解决题目的能力,进步数学的应用意识。

本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的题目情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决题目的方法,引出运算定律。

教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的题目是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用“=”连接,即25×(4+2)=25×4+25×2。我将其首先呈现给学生,目的是结合学生熟悉的题目情境,帮助学生体会运算定律的现实背景。

接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲看。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希看获得成功的动机。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得欢快,自己动手编题、自己动脑探索,从数目关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学会了像数学家一样进行研究、发现!这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。纵观教学过程,学生学得轻松,学得主动。

我通过这节课的教学感受到:认真钻研教材,深进挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

乘法分配律课件(篇7)

—乘法分配律教学设计与反思

设计说明

当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。 教学目标

1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。

2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表

达数学规律的意识,进一步体会数学与生活的联系。

3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学过程

一:创设情境导入

提问:长方形的面积怎样求?

指明回答

这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)

学生动手操作

(课件出示两个长方形组合的动画)

二:自主探索,交流合作

1、交流算法,初步感知

提问:请同学们自己求一下新长方形的面积。

教师巡视,观察学生不同的解法

反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导

(课件出示两种解法)

谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?

学生自己写一写,请学生说一说,教师相机板书。

2、比较分析,深入体会

提问:算式左右两边有什么相同和不同之处呢?小组内交流。

反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。

设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。

组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。

3、规律符号化,揭示规律

提问:像这样的算式,写的完吗?

我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。

反馈引导学生用不同的方式来表达规律。

小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)

三:实践运用,初步理解。

1、想想做做1

学生自主完成,组织交流。

第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是

12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)

2、想想做做2

自主完成,组织交流。

第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个

74,也就是74.

第四小题要和想想做做题1的第二小题做对比。

四:拓展延伸,内化新知

再次出示两个长方形纸片,提问:如何比较这两个长方形的大小

学生反馈,引导说出可以重叠比较。学生动手实践

再问:那么大长方形比小长方形大的面积是那一块?

让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。

学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。

学生反馈,交流。课件出示两种解法。

谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算 式,课件出示并板书。

再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。

谈话:这个规律用字母如何表示呢?自己试着写写看。

学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。

想想做做题5

课件出示,学生读题。

问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个 算式之间的联系。

问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对

乘法分配律延伸的理解与内化。

反思:

这节课我是分三个层次来教学。

第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。

第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。

最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。

乘法分配律课件(篇8)

一、教材分析

(一)教学内容在教材中的地位和作用

这部分内容教学应用乘法分配律进行简便计算。能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),分别相乘比较简便,可以直接应用乘法分配律分别相乘,再求和,算出结果;另一种是:求两积之和的算式里有一个乘数相同,另外两个乘数的和正好是整百、整十的数,可以逆向应用乘法分配律把相同的加数提出来,先求和,再相乘,算出结果。这两种情况分别在例题和“试一试”中进行教学。

(二)教学重点、难点的确定

教学重点、难点:学会应用乘法分配律进行简便计算。

让学生从正、反两方面正确理解乘法分配律,熟练应用乘法分配律使计算来得简便。

(四)学情分析

学生已经学习了乘法分配律,初步掌握了乘法分配律的内容,应用乘法分配律进行一些简便计算,体验简便算法的实际应用价值。

二、教学目标的确定

根据课标要求、教学内容和学情,本节课我制定如下教学目标。

(一)知识目标:

使学生进一步理解和掌握乘法分配律,会应用乘法分配律进行简便运算。

(二)智能目标:

培养学生的分析、比较、综合能力以及初步的抽象概括能力。

(三)情感目标:

通过学生的自主学习,激发学生学习数学的兴趣。

三、教法与学法分析

(一)教学方法

在教学应用乘法分配律使计算简便时,依据学生的认知发展水平和已有的知识经验。采用自主学习、当堂训练的教学模式。充分发挥学生的自主性、能动性,把课堂还给学生,让学生多思、多说、多练,使学生由被动的学习转为积极主动参与的学习。

(二)学法指导

本节课以学生自主学习、自主探索交流为主,让学生去感受数学问题的探索性和挑战性。通过学生多思、多说、多练。积极参与教学的整个过程。

四、教学过程分析

(一)铺垫引入

1.在□里填上合适的数,在○里填上运算符号。

27×6+27×4=27○(□+□)

25×(2+4)=□○□○□○□

2.提问:你是根据什么规律来填的?仔细观察两个等式,每个等式中是左边的算式计算简便还是右边的算式计算简便?

(a+b)×c=a×c+b×c

3.谈话:这节课我们继续研究乘法分配律。

(二)探究新知

1.教学例题。

王叔叔到商场去采购一批服装。

(1)出示例题图。提问:从图中你知道了哪些信息?

谈话:求买102件短袖衫.一共要多少钱,应该选择哪些信息来解决这个问题?怎样列式?

板书:32×102=XXXXXXXX元

(让学生在具体的情景中学习,激发学生学习的兴趣,唤起强烈的的求知欲望,这样的学习素材生动、真实、有效,紧密联系生活实际。)

(2)提问:你能先估计一下计算的结果吗?

预设:

(1)32接近30,102接近100,30×100=3000(元)

(2)把102件看作100件,32×100=3200(元),

师:3200比3000更接近准确的结果。。

实际付出的钱要比3200元(),多多少,你能口算出来吗?

(学生在估计时会很自然地把102件看作100件,根据32×100=3200,估计出实际结果一定大于3200。估计是过程自然提示学生注意到102是个接近100的数,从而为把102看作“100+2”进行口算,以及应用乘法分配律进行简便计算作了必要的孕伏。)

提问:你能口算出买102件要付多少钱了吗?

学生回答时,教师板书:买100件用3200元,买2件用64元,一共用3264元。

(3)谈话:口算得对不对呢,我们再用笔算来验证一下,各自列式计算,指定一人板演。

(4)谈话:口算和笔算相比,你觉得哪种算法更简便?

(学生用笔算和口算的方法计算结果是已有的经验。呈现出完整的竖式计算过程和口算过程,既是解决问题的需要,也能让学生体会口算比竖式计算快捷方便。)

(指名口答)现在我们就把口算的过程详细地记录下来。边板书边谈话:我们把102分成两个数,于是写成32×(100+2)。你能把下面的算式填完整吗?为什么可以这样计算?你能接着算下去吗?

32×102

=32×(100+2)

=32×口+32×口

学生说算式,教师完成板书。

谈话:这就是用简便方法计算32×102的思考过程。回顾这个过程,谁来说一说,先怎么办?再怎么办?这样计算的根据是什么?

(5)填一填

15×2031001×84

=15×(200+)=(+)×84

=15×200+15×=×84+×84

(6)用简便方法计算下列各题。

48×20273×lOl302×15

指定三人板演,其他学生任意做1~3题,共同订正。

这些题目都可以用简便方法计算,它们都有什么特点?学生交流。

3.教学“试一试”。

独立练习:用简便方法计算。

46×12+54×12

展示部分学生的答案,共同评议。

(让学生逆向应用乘法分配律,探索求两积之和的简便计算的方法,更全面地掌握应用乘法分配律进行简便计算的思路。在练习阶段,还给学生学习的自主权,还给学生自我展示的空间。并通过比较,感悟计算方法的灵活多样,培养学生灵活运用所学知识解决生活中遇到的问题。在设计练习时,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”基本教学理念。)

5.小结:

什么样的式题能够应用乘法分配律使计算来得简便呢?

一种是:一个数乘两个数的和(或可以转化成一个数乘两个数的和),分别相乘比较简便,可以直接应用乘法分配律分别相乘,再求和,算出结果;另一种是:求两积之和的算式里有一个乘数相同,另外两个乘数的和正好是整百、整十的数,可以逆向应用乘法分配律把相同的加数提出来,先求和,再相乘,算出结果。

(三)巩固练习

1.做“想想做做”第1题。

先独立填空,再让学生交流各是怎么想的,依据是什么。

2.做“想想做做”第3题。

指名口算第1题,学生说口算过程,教师演示:

32×3

=(30+2)×3

=30×3+2×3

提问:你能说一说这样做的依据吗?

同桌相互说一说另外两题是怎样应用乘法分配律的。

(五)全课总结

提问:通过这节课的学习,你有什么收获?

乘法分配律课件(篇9)

一、设计思路

老师教学的本质就在于帮助、激励和引导。本节课我是利用学生的已有经验,注重实际,根据新课程解决问题和计算相结合的特点设计的,力争做到“数学思想、数学方法、数学知识、数学技能有机统一。

二、说教材:

(一)教学内容在教材中的地位和作用

本节课是人教版义务教育课程标准实验教科书小学数学第八册第36、38页的《乘法分配律》,本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。学习这部分教学内容有利于提高学生的观察能力、比较能力和概括能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。

(二)学情分析

教学本课前,我对学生进行了一项调研。发现学生能够初步应用乘法交换律、结合律进行一些简便计算,正确率为91.35%。但能对规律进行独立、完整归纳的只有20.1%。由此可见,学生的概括、归纳能力还是一个薄弱的环节。

三、说教学目标:

根据《新课程理念》、教学内容和学情,本节课我制定如下教学目标。

(一)知识目标:

使学生在解决实际问题的过程中发现并理解乘法分配律。

(二)智能目标:

使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

(三)情感目标

使学生能主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重点:运用科学的方法——发现问题、提出假设、举例验证、建立模型探索乘法分配律。

教学难点:能用已学的知识解释乘法分配律。

四、说教法学法

教学有法,教无定法。新课程以学生的发展为本,这是现代教育的根本目标,也是我们每一堂课教学的根本目标。根据这一目标,我采用了以下的方法:

(一)说教法

兴趣是一个人学习的动力,是最好的老师。在教学过程中,我运用启发式教学,根据小学生的心理特征和谁知规律,设计情境来激发学生的学习兴趣,调动学生的学习热情。同时在练习的过程中注意练习的层次和坡度,发挥学生学习的积极性和主动性,充分体现教师的主导作用和学生的主体地位。

(二)说学法

动参与,乐于探究。新课程标准指出学生是学习的主人,学生始终参与教学活动中。因此在教学过程中,我先出示了学生的生活情景图,让学生去解决实际问题,并通过解决问题发现了乘法分配律。合作交流,体会规律。在教学过程中,以小组合作的开工,充分调动学生的积极性,主动性,让学生有充分时间和机会通过观察、交流、反思等活动,积极参与教学的整个过程,提升思维品质,发展创新意识。

五、教学准备:

乘法分配律的教学是在学习乘法和加法的交换律与结合律的基础上进行的。目的是让学生对大量运算中的一类特殊的积和运算进行概括,使学生的计算在积累一定经验之后上升到一种理性认识,在小学阶段渗透恒等变换的思想,从而更好地发展数与代数的运算能力。课前对学生进行调研。我把本节课的教学指导思想设定为“重视学生个性发展全过程让学生自主尝试”。把本课的重点确定为指导学生探索和理解乘法分配律。

六、说教学过程:

乘法分配律是运算中的一个特例,怎样将它与实际背景相联系,这实在有一点难度。课前我做了这样的安排,先让学生讨论和积问题的意思,明确后,我就布置学生收集自己身边的“和积问题”,把课前研究题设计为:主标题是研究一个和积问题,要求学生具体地完成三个小问题:①你的问题是:(要求学生写出一个和积问题);②你的解法是:(要求学生用几种方法列式计算,写出算式);③你的发现是:(学生写出自己的发现)让学生带着问题多渠道的寻找答案、搜集材料)。

(一)激趣引入

设计意图:目的在于创设一个充满趣味的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。

(二)展开探索过程

1、初步感知

(1)根据这些信息,你能提出什么数学问题?

(2)学生独立列式,教师巡视。

(3)交流反馈:你是怎么想的,怎样列式。

(4)列成等式。

设计意图:从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。

3、体验感悟。

(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?

学生用自己的语言描述发现的规律。

(2)验证算式,感悟规律

二、组织堂上交流小结:虽然这两个算式运算顺序不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。

2、类比展开

设计意图:充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。

4、揭示规律

你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。

用字母表示:〔a+b〕×c=a×c+b×c

用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

设计意图:从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。

乘法分配律课件(篇10)

乘法分配律

一、教学目标:

(一)知识目标:

使学生在解决实际问题的过程中发现并理解乘法分配律。

(二)智能目标:

使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

(三)情感目标

使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重点:在解决实际问题的过程中发现并理解乘法分配律

教学难点:自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。

二、教法学法:启发式教学

三、教学准备:

多媒体课件投影仪主动参与,乐于探究

四、教学过程

(一)创设问题情境

五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,我们学校教舞蹈的老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)

【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。

(二)展开探索过程

1、初步感知

(1)提出要求:仔细观察,从图中你获得了哪些信息?

买这些些服装,叶老师一共要付多少元钱呢?你能列出综合算式吗?

(2)学生独立列式,教师巡视

(3)交流反馈:你是怎么想的,怎样列式

板书:65×5+45×5(65+45)×5

请生交流解题思路,并比较哪种解法更简便。

(4)列成等式

通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?

小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。

2、类比展开

(1)提出类比问题:如果叶老师选择选择的是另两种服装,买的数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?

(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!

(3)学生小组合作完成,交流反馈,相机板书:

32×6+65×6(32+65)×6

32×8+65×8(32+65)×8

32×6+45×6(32+45)×6

32×8+45×8(32+45)×8

(4)观察算式,引导列成等式,仿照等式随意举例

像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。

举例,小组交流,挑选几组板书。

【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。

3、体验感悟

(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?学生有自己的语言描述发现的规律。

(2)修改算式,感悟规律

通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。

课件出示:

(3+4)×63×6+4×6

3×17+3×53×(17+5)

20×(5+13)20×5+5×13

(13+7)×413×4+7

(13+7)×413×4+7

交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。

【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。

4、揭示规律

(1)游戏“交朋友”

课件出示:(80+20)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)

出示:6×(10+20),(A+100)×5,(42+45)×▲,请生帮它们交朋友。

(2)揭示规律

像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表

示??)

用字母表示:〔a+b〕×c=a×c+b×c

用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8 9×18+9×282

【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。

(三)巩固内化

1、根据乘法分配律,在__里填入合适的数

(1)、(15+23)×2=____×2+_____×2

(2)、(37+12)×16=37×____+12×____

(3)、___×___+___×___= ( 16+26)×8

(4)、(125+11)×8=____×____+____×_____

(5)、276×38+276×62=____×(___+___)

如果计算的话,(4)、(5)你会选择左边的算式还是右边的算式进行计算,为什么?

2、判断下面各题是否正确,把错误的改正过来

(1)2×15+4×15=(2+4)×15??????()

订正:

(2)5×(20+6)=5×20+6????????()

订正:

(3)8×23+8×27=8×23+27????????()

订正:

(4)9×(6×4)=9×6+9×4????????()

订正:

3、应用题

一块长方形的桌面,长68厘米,宽32厘米。周长是多少厘米?(用两种方法解答,并说说你喜欢哪种方法)

*4、用简便方法计算(任选一题)

①(125+9)×8 ②128×31-28×31 ③43×5+46×5+11×5

小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。

【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。

(四)总结回顾

今天这节课,你有什么收获,从中你得到什么启发?

【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。

(五)课堂作业

六、说板书设计

乘法分配律

例:短袖衫裤子夹克衫乘法分配律:

32元45元65元两个数的和与一个数相乘,可以把这65×5+45×5=(65+45)×两个数分别和这个数相乘,再相加。=325+225=110×5

=550(元)=550(元)

其他购买方案:

32×6+65×6=(32+65)×6

32×8+65×8=(32+65)×8

32×6+45×6=(32+45)×6

32×8+45×8=(32+45)×8

〔a+b〕×c=a×c+b×c

《乘法分配律》教学反思教学乘法分配律之后,发现学生的学习效果很不理想,特别是乘法分配律的'运用,正确率很低。针对这种情况,我想,在教学中应该注意以下几个问题:

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。教学中通过“朝三暮四”的故事解决“这只猴子20天要吃多少个栗子?”这一问题,结合具体的故事情景,得到了(3+4)×20=3×20+4×20这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等

的?”这里不仅要从解题思路的角度理解(3+4)×20=3×20+4×20是相等的,还要从乘法的意义的角度理解,即左边表示7个20,右边也表示7个20,所以(3+4)×20=3×20+4×20。

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算125×88;101×89你能用几种方法?125×88 ①竖式计

算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

4、多练。

针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等

乘法分配律课件(篇11)

教学内容

P36页例3,做一做,练习六习题。

教学目标

1、知识与技能:引导学生探究和理解乘法分配律。

2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

教学重点

乘法分配律的意义和应用。

教学难点

乘法分配律的反应用。

教学过程

一、目标导学

(一)导入新课

1、复习导入

(8+2)×1258×125+2×125

2、揭示课题:乘法分配律

(二)展示目标(见教学目标1、2)

二、自主学习

(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)

1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?

2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?

3、计算这两道题你发现了什么?能用一句话概括吗?

4、这是乘法的什么运算律?用字母怎样表示?

5、会用简便算法计算4×25+6×25吗?

(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)

(三)自学检测

下面哪些算式运用了乘法分配律?

117×(3+7)=117×3+117×7

24×(5+12)=24×17

(4+5)×a=4×a+5×a

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1、解答各小组自学中遇到不会的问题。

2、针对自学提纲5题请不同方法同学汇报。

3、结合“自学提纲”引导学生归纳总结:(并板书)

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。

四、达标训练(1、2题必做,3题选做、4题思考题)

1、下面哪个算式是正确的?正确的打√,错误的打×。

56×(19+28)=56×19+28()

32×(7+3)=32×7+32×3()

64×64+36×64=64×(64+36)()

2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数

⑴25×(200+4)⑵35×201

25×200+25×435×200+35

⑶265×105—265×5⑷25×11×4

265×(105—5)11×(25×4)

3、用乘法分配律计算。

103×20xx×5524×205

4、在()里填上适当的数。

167×2+167×3+167×5=167×()

28×225—2×225—6×225=()225

39×8+6×39—39×4=()×()

五、堂清检测

(一)出示检测题(1-2题必做,3题选做,4题思考题)

1、用简便方法计算。

24×75+24×25125×22—125×14

(25+20)×435×99+35

2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?

3、计算。

89×10135×36+35×63+35

4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?

(二)堂清反馈:

作业布置

练习册相关习题。

板书设计

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25(2)4×25+2×25

=6×25=100+50

=150(人)=150(人)

(4+2)×25=4×25+2×25

(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

乘法分配律课件(篇12)

本课题教时数:25本教时为第20教时备课日期11月15日

教学目标

1.使学生认识乘法口算应用了乘法分配律,并能说明是怎样应用乘法分配律口算乘法。

2.使学生初步理解和学会应用乘法分配律进行简便计算的方法,能对一些乘法算式用简便算法正确计算,进一步培养学生采用合理、灵活的方法进行乘法计算的能力。

教学重难点

使学生初步理解和学会应用乘法分配律进行简便计算的方法。

教学准备

投影片

教学过程设计

教学内容

师生活动

备注

一、复习旧知

二、学习新课

三、巩固练习

四、布置作业

1.复习乘法分配律

(1)什么是乘法分配律?你能用字母式子表示吗?

(2)根据乘法分配律在括号里写出算式。

(40+7)6=()

4(25+70)=()

363+243=()

572+528=()

2.揭示课题

上面四道题,哪边的计算适用于口算?

应用乘法分配律,可以使一些计算用口算,比较简便。这节课我们就学习乘法分配律的应用,使一些计算简便。(板书课题)

1.乘法分配律在口算中的应用

(1)口算234

让学生说说口算的过程。指出:我们学过的乘法口算的方法,应用了什么运算定律?怎样运用的?

(2)口算:

323164482

指名学生讲是怎样算的?

2.学习例6

(1)出示计算第1题10332

(2)小组讨论:看怎样计算比较简便?

(3)学生尝试着进行计算,指名学生板演。

(4)请板演的同学说说是怎样计算的?应用了什么运算定律?

(5)用简便方法计算:3042240116

2.学习例6第2题4612+1254

(1)以学习小组为单位,讨论:看怎样计算比较简便?

(2)学生尝试着进行计算。指名学生进行板演。

(3)请板演的同学讲一讲计算的方法。

(4)用简便方法计算:387+627

5629+5631

3.学习试一试

(1)出示359+35

(2)学生独立完成,完成后请同学讲讲计算方法。

(3)口算:

489+482619+26

3749+375399+53

1.做练一练第2题。

指名3人板演,其余学生做在练习本上。

集体订正。让学生说说每一题是怎样想的?

2.这节课我们学习了什么内容?在什

么情况下我们用乘法的分配律使计算简便?你能举几个例子吗?

练习十八第5题第二、三行

课后感受

好多同学会把分配律运用错误,有下面的错误:

乘法运算律教案8篇


资料所覆盖的面比较广,可以指学习资料。在日常的学习工作中,我们都会用到各方面的资料。参考相关资料会让我们的学习工作效率更高。你是否收藏了一些有用的资料内容呢?小编经过搜集和处理,为你提供乘法运算律教案8篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

乘法运算律教案 篇1

教材分析:

《整数乘法运算定律推广到小数》是义务教育标准实验教材小学数学五年级上册第一单元内容。这部分内容是在学生掌握了整数的四则运算和简便算法,以及小数加减法的基础上进行教学的。

教学目标:

1、知识与技能目标:

通过猜测、验证、应用等环节引导学生探索,并理解整数乘法运算定律对于小数同样适用。

2、过程与方法目标:

能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。

3、情感态度与价值观目标:

让学生相互交流、合作、体验成功的喜悦

教学重点:

探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。

教学难点:

运用运算定律进行小数乘法的简便计算。

学情分析:

五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

教法学法:

本节课我主要采用自主探究,合作交流,汇报验证等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:

1、情景创设法。

2、活动探究法 。

3、集体讨论法 。

教学流程:

第一环节:创设情境,导入新课。

上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?

学生们会回答:乘法交换律、乘法结合律和乘法分配律。

接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。

在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究欲望,让他们有目标的去思考。

第二环节:自主探索,解决问题。

本环节我设计了以下几个教学活动。

(一)小组合作,猜测验证。

1、用幻灯片出示以下题目。

2○1.2

0.4○0.8

0.5○2.4

让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)

2、学生自己探究,验证。

让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的'。

接着我引导学生们仔细观察每一组算式,它们有什么特点?

学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。

3、举例验证。

我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?

孩子们可能有两种意见:能或是不能。

针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。

(给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)

学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。

在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)

在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。

(二)灵活应用,解决问题。

出示例题8

师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。

4.784 0.65201

(1)让学生独立思考,然后尝试写在练习本上。

(2)指名让学生板演。

然后我会让孩子们思考:

第①题中为什么先让0.25和4相乘?这里运用了什么运算定律呢?

孩子们会自然而然的答出:运用了乘法交换律

接着问他们:

你们认为第②小题中解题的关键是什么?

学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)

然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)

在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的欲望,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。

第三环节:精心选题,多层训练。

本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。

练习题组设计如下

通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

第四环节:质疑总结,反思评价。

用幻灯片出示以下两个问题

让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。

在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。

板书设计:

本课的板书设计如下这样的板书设计既条理清楚、简单明了、一目了然;同时又突出了本课的教学重点,对学生的学习起到帮助作用。

乘法运算律教案 篇2

含有乘法和加、减法的混合运算

本课题教时数:1本教时为第1教时

教学目标

1、初步理解综合算式的含义,掌握含有乘法和加、减法混合运算的顺序;

2、能够通过运算顺序进行对混合运算进行运算,并解决一些简单的实际问题;

3、经历对比、推理总结混合运算的特点,培养学生交流合作意识,提高学习数学的兴趣并形成一定的学习技能;

教学重难点

教学重点:掌握含有乘法和加、减法混合运算的顺序,并进行正确的计算;

教学难点:通过技能的生成解决实际问题;

教学准备POWERPOINT课件一份

教学过程设计

一、问题提出、引入课题

师:同学们再过几天我们学校的读书月活动即将结束,为了鼓励在这次活动中涌现出的优秀同学老师现在正想为他们准备一些礼物。你们认为准备什么礼物好呀!

生:书、铅笔师:你们的提议真好,其实老师已经准备好了,请同学们们看【出示P30的插图】

师:现在呀老师买了3本笔记本和1个书包,一共用去多少钱?

请同学们帮老师算算,我该花多少钱呀?

把你的算出来的结果和方法记录下来并和同桌说说。

【集体交流,学生叙述各自的方法,教师相应把学生的运算方法板书在黑板上,并根据实际情况说明学生的做法,做适当点评】

师:那么同学们用分步做的方法很好,不过我们能不能列出一个算式就能解决这个问题呢?

二、探究新知,总结方法

1、让学生观察刚才的两个算式并说说各表示什么数量关系;

2、那解决这个问题的数量关系是什么?

【3本笔记本的钱+1个书包的钱=总共用去的钱】

3、根据数量关系式那我们能不能把刚才两个算式合并成一个算式呢?

【生讨论交流后总结最佳式子:53+20】

4、那么让学生说为什么要列成:53+20?

我们在算的时候该先算什么?为什么要样算?

【让学生联系现实问题的数量关系和解决过程,明确这样的问题应该先解决什么、再算什么。在这个过程中注意学生书写格式的指导。】

5、出示P30的第二个问题,让学生尝试用混合运算的方法列出综合算式。

然后交流并讨论运算的顺序,为什么要这样运算?

6、总结比较两个算式让学生说出算式中有乘除法和加、减法,应先算乘法的规律。三、巩固提高

1、出示P31的第1题,先让学生说说每题的运算顺序,再在课本上写出计算的过程。要提醒学生注意每一步的书写格式。最后交流结果,并指名学生说说为什么这样算。

2、让学生打开书本仔细观察P59第2题找出其中的错误,再进行订正。

最后指名学生说说每题错在什么地方,应该怎样改正。

3、出示P31的第3题先让学生分组比较每组中两道题的运算顺序有什么不同,再进行计算,最后集体交流。

4、出示P31的第3题先帮助学生弄清图中所提供的信息,再让学生列综合算式分别解决三个问题。

四、简单总结完成作业

P31第4题

课后感受通过教学使学生理解综合算式的含义,掌握含有乘法和加、减法混合运算的顺序,并能利用混合运算解决一些实际的问题,教学效果很好。

乘法运算律教案 篇3

一、说教材

1、教学内容:义务教育课程标准实验教科书四年级数学上册61-62页的例题和试一试、想想做做1-4题。

2、教材的编排情况及地位。

乘法的这两个运算定律,跟学生前面所学的加法交换律、结合律类似,也是由生活情境的数学问题引出一组等式,通过启发性的问题,引导学生在探索并在小组里交流,发现并归纳出乘法运算律。乘法的运算律,不仅有助于加深乘法计算方法的理解,还能使一些计算简便,而且在以后学习中也要经常用到。因此,这些运算律是小学数学最基础的知识之一,教学中要积极引导学生对这些规律性知识进行探讨,自觉应用中,并在应用加以巩固。

3、教学目标

知识与能力:使学生理解和掌握乘法交换律和乘法结合律,并会运用乘法运算律进行简便计算。

过程与方法:使学生在合作交流中对运算定律的认识由感性认识逐步发展到理性认识,合理构建知识。

情感态度与价值观:培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的兴趣。

4、教学重点、难点:

重点:引导学生概括出乘法运算律,并运用乘法运算律进行简算。

难点:乘法运算律的推导过程。

二、设计理念

《新课程》提倡注重知识形成的过程。对这两种运算律的教学,不应仅仅满足于学生的理解、掌握及运用,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这是一个教学重点,也是难点。我根据学生实际情况,从学生的生活经验出发,设计创设情境、动手操作、玩游戏活动等活动,并组织学生探索、合作、交流、参与讨论,使学生发现并归纳出乘法运算律,既使学生学有价值的数学,人人成为学习数学的小主人,又充分调动了学生参与学习的积极性、主动性。

三、说学情

教学课程标准中提出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础上。学生在之前几个年级里,通过对四则运算学习和前几课时加法运算律的学习,对乘法运算律已经有一些感性认识。所以,在合作探索运算过程及掌握运算律时,我提倡联系加法运算律的推导方法进行学习,这一点会大大地减少学生推导乘法运算律的难度,为学生探索知识过程提供了一个构建知识的桥梁。

四、说教法

成功的数学教学策略应该让学生既学会又会学,最终达到教是为了不教的目的。在教本课时过程中,为了充分发挥学生的积极性、主动性,我采用的教学方法是:

1、情境教学法:在导入环节时,我通过设计联系学生生活现实的情景,找出生活中常见问题,使学生感到数学与生活是联系的,增强了学习数学的兴趣。

2、动手操作法:在推导乘法交换律环节时,我让学生用小石子或火柴,动手摆一摆,说一说,写一写,在自主探索中发现问题,使学生的实践能力和思维能力得到发展。

3、游戏法:在巩固知识环节,我根据学生的兴趣爱好,通过设计了游戏教学法,找朋友活动,从而增强课堂教学趣味性。

五、说学法

教学中,通过引导学生自主探究,小组合作,引导学生抓住问题,尝试解决问题,感悟知识的形成。

六、说教学程序

(一)创设情景,激发兴趣,导入新课,引出问题。

(1)要求学生上台排队:5人一组,组成4组。(提问:共有多少人?有几种列式?)

(2)(教师口头表达)学校买来15箱课外书,每箱有25本,每本4元,用了多少钱?看谁算得最快。

(这样创设情境,提出启发性问题,既体现了知识与生活的联系,激发了学生的学习兴趣,又为导入学习乘法交换律、结合律做好铺垫。)

观察插图,说说从中知道哪些信息,要求共有多少人?应该怎样列式?

(数学来源于生活,让学生在实际生活情境中学习数学,加强了知识与生活的联系,让学生从感性上掌握乘法交换律的特点,同时也激发了学生的学习兴趣。)

(二)教学乘法交换律

1、出示例题插图,弄清题意。

2、合作、探究、交流解决问题。

1)解决问题。

(1)指名说出列式:35=(5)(3)

(2)观察、讨论:这两组解法有什么异同?

引导学生说出相同点都是两个数相乘积相同;不同点是两个因数位置交换了。

2)分析,发现规律。

(1)摆一摆,写一写类似的等式。

发动学习动手实践、操作,拿出课前准备好的火柴,同桌合作学习,摆放要用乘法算的火柴,并列出相应的等式。

(2)学生自由汇报摆放好后所列的等式。

(3)交流、讨论:你发现了什么?

小组交流、讨论,每组中的两个算式有什么样的关系?每组算式有什么相同点及不同点?通过观察,你发现了什么规律。

(4)启发学生通过观察,发现两个数相乘,交换因数的位置,它们的积不变。

说明:这条规律就是乘法交换律。

(经过活动,既突破了重点、难点,掌握了乘法运算律的推导过程,让学生实现了经历一个数学学习的过程。又培养学生的合作意识、动手操作能力,发展思维。)

3)归纳知识:

(1)用你自己喜欢的方法表示乘法交换律。

这一点要求在认识加法运算律时,学生已掌握用+=+,甲数+乙数=乙数+甲数,学生会联系加法运算律,根据已有经验写出相应的=,甲数乙数=乙数甲数。这样既加强复习旧知,学习新知的训练,又培养学生应用知识的能力。

(2)乘法交换律也可以用字母表示,如果用a、b表示两个因数,怎样表示乘法交换律?

指名说出:ab=ba

提问:式子表示什么意思?

5、运用知识。

练习:计算,并用乘法交换律进行验算:2372

(培养了学生应用知识的能力)

(三)教学乘法结合律。

1、出示例题:

华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每个班有23人参加,一共有多少人参加?

2、解决问题。

(1)学生独立解答

(2)展示学生解题方案,畅谈解决方法。(指名板演,并分别说说每种解题思路。)

板书:(235)623(56)

=1156=2330

=690(人)=690(人)

(3)交流两组解法异同。

教师帮助学生小结:相同点是,三个数相乘,三个数相同,积也相同;不同点是左边的式子是先把23和5相乘,再和6相乘,右边的式子是先把5和6相乘,再和23相乘。

3、分析、发现规律。

(1)请同学们将这两算式写成一个等式。

(235)6=23(56)

(2)观察,交流讨论:发现了什么规律?

归纳概括:三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一数相乘,它们积不变。

说明:这条规律就是乘法结合律。

4、归纳知识。

如果用字母a、b、c表示3个因数,你能用字母表示乘法结合律吗?

(ab)c=a(bc)

提问:这个等式表示什么意思?

(四)做游戏,复习反馈。

1、出示动物头像,上面分别有根据乘法运算律,写出来的两组相等的乘法算式,标有算式相等的动物是好朋友,请同学们看准后,帮他们找到好朋友。

2、教师把一组小企鹅图画贴在黑板上,一组小企鹅卡片发给学生,两组企鹅身上都分别写着乘积是整十、整百或整千的因数,学生拿着卡片根据要求找朋友,并贴在相应的图画上。

(创设情境,经过游戏活动,将枯燥、理论化的知识变活,学生会在快乐的氛围下学数学,产生浓厚的兴趣。第一项找朋友游戏,是为了让学生对所学知识有所巩固;第二项找朋友游戏是为了让学生重新熟记乘积是整十、整百、整千的两个因数,为下面灵活运用乘法运算律进行简便运算做好铺垫。

(五)反馈练习。

1、教学试一试

乘法运算律教案 篇4

乘法运算律及简便运算

第1课时

教学内容

义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。

教学目标

1经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。

2理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。

3体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。

教学重点

在具体情景中探索发现乘法交换律、乘法结合律。

教学过程

一、创设情景,探索新知

1教学例1

出示例1图,学生独立列式解答,然后在小组中互相交流。

板书:94=36(个),49=36(个)。

学生观察板书,思考:这两个算式有什么特点?

板书:94=49。

教师:你还能写出几个有这样规律的算式吗?

板书学生举出的算式。

如:152=215

85=58

教师:观察这些算式,你发现了什么?

学生1:两个因数交换位置,积不变。

学生2:这就叫乘法交换律。

教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)

教师:如果用a、b表示两个数,这个规律可怎样表示呢?(ab=ba)

2教学例2

出示例2情景图,口述数学信息和解决的问题。

学生独立思考,列式解答。

然后在小组中交流解题思路和方法。

全班汇报,教师板书。

(824)68(246)=1926=8144=1152(户)=1152(户)

学生对这两种算法进行观察、比较,有什么相同点和不同点?

板书:(824)6=8(246)。

出示下面的算式,算一算,比一比。

1652=16(52)=35254=

35(254)=121258=12(1258)=

观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。

板书:1652=16(52)35254=35(254)431258=43(1258)谁能说出这几组算式的规律?

学生1:每个算式只是改变了运算顺序。

学生2:每排左、右两个算式计算结果相等。

学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。

教师:谁知道这个规律叫什么?

教师板书:乘法结合律。

教师:如果用a、b、c表示3个数,可以怎样表示这个规律?

教师板书:(ab)c=a(bc)。

教师:这个规律就叫乘法结合律。

小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。

二、课堂活动

1练习四第1题:学生独立完成,全班交流,说出依据。

2连线。

(学生独立完成)

2315217(1254)17125439(258)3925823(152)

三、课堂小结

今天这节课你都有哪些收获?还有什么问题?

乘法运算律教案 篇5

教学内容

P12页例8和做一做,练习二第2题

教学目标

使学生理解整数乘法的运算定律对于小数同样适用,并会运用乘法的运算定律进行一些小数的简便计算。

知识重点

乘法运算定律中数(包括整数和小数)的适用范围

教学难点

运用乘法的运算定律进行小数乘法的的简便运算

教学过程

教学方法和手段

教学过程

1、计算:

259542532448+64810256

2、在整数乘法中我们已学过哪些运算定律?请用字母表示出来。

根据学生的回答,板书:

乘法交换律ab=ba

乘法结合律a(bc)=(ab)c

乘法分配律a(b+c)=ab+ac

2、让学生举例说明怎样应用这些定律使计算简便。(注意学生举例时所用的数。)

3、出示教材P.9页的3组算式:下面每组算式左右两边的结果相等吗?

0.71.2○1.20.7

(0.80.5)0.4○0.8(0.50.4)

(2.4+3.6)0.5○2.40.5+3.60.5

让学生看每组算式是否相等。

●从而得出结论:整数乘法的交换律、结合律和分配律,对于小数乘法同样适用。

4、揭题并板书课题:整数乘法的运算定律推广到小数乘法。

二、尝试

1、出示例8第(1)题:0.254.784

2、引导学生进行思维迁移:你能仿照整数乘法中,类似的题目的简算方法来计算这道题吗?请你试着做一下,指名板演。

3、你能说一说每一步各应用了哪一条运算定律吗?根据学生的回答,板书:

0.254.784

=0.2544.78乘法交换律

=14.78

=4.78

指出:用虚线框起来的部分可以省略。

4、尝试后练习:关键是什么?(把........,用律完成)

500.140.21.250.80.80.32.50.4

生独立完成,师巡视辅导有困难的学生。指名板演,集体订正。

5、示范:例7第⑵题:0.65201

你认为此题的关键是什么?(把201变成200+1,用乘法分配律完成)

你会做吗?谁来讲讲这道题的解题思路?(指名上台讲解演示)

0.65201

=0.65(200+1)

=0.65200+0.65

=130+0.65

=130.65

6、练习:

0.78100.51.51021.22.5+0.82.5(提取公因数)

生独立完成,师巡视辅导有困难的学生。指名板演,集体订正。

三、运用

1、P.12页做一做:用简便方法算下面各题。

0.0340.50.61020.45

=0.034(0.50.6)=(100+2)0.45

=0.0340.3=1000.45+20.45

=0.0102=45+0.9

=45.9

25+5.6-0.6200.0145

=25+(5.6-0.6)=(200+0.01)45

=25+5=20xx5+0.0145

=30=900+0.45

=900.45

课堂练习

小结与作业

课堂小结

今天,你有什么收获?

课后追记

本课应用的运算定律之前都有学过并在整数的简便计算中广泛应用,但是小数应用运算定律来简算,难点在与学生不知道要拆哪个数,如何搭配构建出符合运算性质的形式,之后才进行应用定律来简算。

乘法运算律教案 篇6

乘法交换律、乘法结合律以及相关的简便运算

教学内容:p.61~62

教材简析:

这部分内容是在教学了加法的运算律及其相关简便运算后学习的。对于乘法的交换律,学生学习表内乘法时有了初步体验,知道根据同一幅图能列出两个乘法算式,知道互换乘数位置得数相同。在学习两位数乘两位数的验算方法时,知道互换乘数的位置,积不变。教材对乘法交换律的编排与加法交换律类似,也是由生活情境中的数学问题,引出一组算式,让学生初步理解两个乘数交换位置,积不变;再让学生通过举例,经历分析、综合、抽象的过程,得出乘法交换律并用字母表示。乘法结合律的编排与加法的结合律相似,但对学生探索的要求有多提高。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验

教学重点:理解并掌握乘法交换律和结合律

教学准备:光盘

教学过程:

一、学习新课:

1、学习乘法交换律:

演示例题图,谁能用数学语言说说图意?

(一组5人踢毽子,3组一共有多少人?)

把算式写在自己的本子上,全班交流:

(1)35=15(人)(2)53=15(人)

观察这两个算式,有什么相同和不同的地方?

(乘数相同,位置不同,积相等)

因为积相等,我们就可以把这两个算式合写成一个等式,谁能把它写出来?

(35=53)

读一读,这个等式,问:类似的等式你还能说几个吗?

说得完吗?那你有什么好办法?

板书:ab=ba

指出:这是乘法运算中的一个规律,知道叫什么吗?(板书:乘法交换律)

2、学习乘法结合律:

演示例题:华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参加比赛?

请学生独立列式解答。全班交流,可能有的结果:

(1)6523(2)5236

=3023=1156

=690(人)=690(人)

(3)6(523)(4)6235

=6115=1385

=690(人)=690(人)

评讲这几种方法:

方法一先算的是多少个班级,再算全部

方法二先算的是一个年级参加的人数,再算全部

方法三也是先算多少个班级,再算全部

方法四先算623意义不好说,所以不提倡

比较方法一和方法二,这两个算式之间有什么联系呢?(交换了6和23的位置,用到了刚学的乘法交换律)

比较方法一和方法三,它们有什么联系呢?(三个乘数没变,位置没变,但乘的顺序变了,积没变。)

想一想,这又是乘法中的什么规律呢?

随学生回答板书:乘法结合律

谁能用字母来表示这一规律?abc=a(bc)

3、学习试一试

你能用简便方法计算吗?

(1)23152(2)5372

学生先独立计算,指名板演。

讲评时注意书写的规范,并要学生能说出各是用了什么运算律?

二、完成想想做做的部分练习

1、先填空,再想想应用了什么运算律(题略)

注意最后一题:13跑到了前面,那肯定是用到了乘法交换律,本来是没有括号的,那就是先前面的,后面的算式在后面多了个括号,那就变成了先算后面的,这就用到了乘法结合律

2、比较上下两题,你更愿意算哪题?算一算

3、你能很快说出每束气球上三个数连乘的积吗?

先是同桌互说,再是指名说。其中最后一束,要让学生比较多种方法都比较简便的时候,选择最简便的方法

三、布置作业:

第4、6题

课后小记:

这课在教学的时候感觉比较顺,学生很容易接受。在作业中发现,类似于想想做做第1题最后1题的题目,学生做不好,往往是只写了一种运算律,或者是两种都写到了,但写成了乘法交换结合律这需要老师在课堂上有必要的示范与提醒。

乘法运算律教案 篇7

教学目标

3、使学生掌握分数乘法和加、减法混合运算的运算顺序,并能正确地进行计算,提高计算能力。

4、使学生能运用乘法的运算定律使一些分数乘法和加、减法混合运算的计算简便,能合理、灵活地进行一些混合运算,提高计算能力。

教学重难点

乘法和加、减法混合运算的运算顺序,正确地进行计算。

教学准备

教学过程设计

教学内容

师生活动

备注

一、复习

二、教学新课

三、巩固练习

四、小结

五、作业

1、P24复习题

说说每道题的运算顺序。

2、问:在没有括号的算式里,如果有乘法又有加、减法,按怎样的顺序运算?在有括号的算式里,要按怎样的顺序运算?

1、引入新课

2、教学例2

说说这道题要先算哪一步再算哪一步?为什么要按照怎样的顺序运算?

学生板演。

3、教学例2

(1)说明:同样的,整数乘法的交换律、结合律对于分数乘法同样适用。

(2)出示例2

说说这道题例的数据有什么特点?这样算简便吗?为什么这样可以简便?应用了什么运算定律?

按简便算法计算结果。

3、练一练

想先那些题可以用简便算法?

指名板演。

2、练习五2

做书上。第三题为什么可以用简便算法。

3、练习五3后两题

为什么这样算?

练习五1、3、5

课后感受

由于内容比较简单,放手让学生自己学习,学习气氛好。注意强调运算顺序。

乘法运算律教案 篇8

教学内容:教科书练习六的第6-13题。

教学目的:通过综合练习使学生进一步熟悉学过的运算定律,能够运用学过的运算定律进行简便计算。

教具准备:将下面复习中的题目写在黑板上。

教学过程:

一、复习

把下面相等的式子用线连起来,并说明符合什么运算定律。

a+ba(bc)

(a+b+c)b+a

(ab)ca+(b+c)

abacc+bc

(a+b)cba

让学生一个一个地在黑板上连线,并说明符合哪个运算定律。

教师:应用这些运算定律可以使一些计算简便。

二、做练习六的第6题

先让学生独立做,做完后集体核对。

1、核对第6题时,学生说出一种算法后,再提问:还有别的算法吗?教师把学生所说的算式都写在黑板上。

提问:哪一种算法比较简便?请几个学生发言。

3、提前做完的学生可以做练习六的第11题和第13题。

(1)第11题,做题时要让学生特别明确口里填的是同一个数后,提问:

等号左面的式子还能等于什么?根据是什么?教师板书:3口十2口=(3+2)口。

想一想,5乘以什么数的积仍是这个数呢?

(2)第13题,是两个数的差同乘以一个数的规律。开始先让学生自己依照乘法分配律类推,再提问:

等号左面的算式表示什么意思?(一个数与两个数的差相乘。)

等号右面的算式表示什么意思?(被减数和减数分别与这个数相乘,再把两个乘积相减。)

教师:两个算式中间用等号连起来,就表示一个数与两个数的差相乘等于被减数和减数分别与这个数相乘,再把两个乘积相减,结果不变。

你能不能再用两个其它的例子说明一下这个规律?

四、作业

练习六的第9、10题。

乘法交换律教案15篇


资料通常是指书籍、报刊、图表、图片等。当我们的学习任务遇到困难时,往往都需要参考资料。参考资料我们接下来的学习工作才会更加好!可是,我们的资料具体又有哪些内容呢?下面,我们为你推荐了乘法交换律教案15篇,供大家借鉴和使用,希望大家分享!

乘法交换律教案【篇1】

教学内容:小学数学第七册第61-62页。

教学目标:

1、让学生探索乘法交换律和乘法结合律的过程,理解并掌握规律,并能应用规律进行一些简便的运算。

2、培养学生灵活选择和应用乘法交换律和乘法结合律的能力,增强数学的应用意识。

3、培养学生研究、比较、分析、综合和归纳、概括等思维能力,体会学习数学的乐趣。

教学过程:

一、复习引新

1、学生口算练习。

2、谈话:你们已经学习了哪些加法运算定律?你会用字母表示加法交换律和结合律吗?

乘法有类似的运算定律吗?

二、猜测、探索

1、大胆猜测。

猜一猜,乘法有哪些运算定律?

2、学习乘法交换律。

(1)情景导入题意。

你们喜欢踢毽子吗?看,(出示例题图)这些同学在开展踢毽子比赛呢!

教师:题目的条件和问题分别是什么?

学生说出条件和问题后,教师要求学生编出一道完整的应用题。

(2)计算推导过程。

要求学生独立列式计算。

引导学生得出:53=35

让学生猜测这种运算律的名称,并让学生用自己的语言表述规律:两个数相乘,交换乘数的位置,积不变。

指导学生用字母表示乘法交换律:ab=ba。

(3)填空促进体验。

156=6()()46=()54

□0=()()a8=()a

3、学习乘法结合律。

(1)教师出示例题:

华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加,一共有多少人参加比赛?

(2)学生独立列式,并说出解题思路。

第一种思路:

先算出一个年级参加的人数,再算出6个年级一共多少人。

(235)6

第二种思路:先算出全校有多少班级,再算一共有多少人。

23(56)

由此得出:(235)6=23(56)

请学生仔细观察:等号两边的算式有什么异同点?

(3)小组学习。

①独立写出两个这样的算式。

②组内交流等式,仔细观察,互相说说发现的规律。

③一起给这个规律取名。

④讨论并写出用字母表示的等式。

教师板书:乘法结合律:(ab)c=a(bc)

(4)做想想做做第3题。

要求学生说出做得快的诀窍。

4、试一试。

学生独立尝试,指名板演。

集体讲评。重点讨论第2题应用了什么运算律?

三、巩固应用。

1、想想做做第1题。

学生独立完成并汇报,说一说运用了什么运算律?

2、想想做做第2题。

先计算,再比较。

讨论:每组中哪一道算是计算比较简便,它们有什么特点?

四、全课小结。

这节课学习了哪些知识?你有什么收获?

五、课堂作业

第62页想想做做第4题。

教后反思:

乘法交换律和乘法结合律以及相关的简便运算,是在学生学习了表内乘法及两位数乘两位数的验算方法的基础上,并经过加法交换律和加法结合律的铺垫上进行教学的,所以学生通过前两课所学的加法运算定律这一新旧知识迁移的生长点,学生在轻松愉快的氛围中,理解和掌握了本节课的知识内容。本节课的教学内容比较枯燥,也比较乏味。因此在教学过程中,创设了一些教学情境,用贴近学生生活的场景,激发学生的情感冲动,产生学习数学知识的欲望,使学生由感知感觉感受的内化过程向表述表现表达的外化过程进行转换,在知识传授的过程中注意了学生能力的培养,因此取得了比较好的教学效果。

乘法交换律教案【篇2】

教学内容:

教科书例1、例2及做千做,练习十三第1、2题。

(一)知识教学点

1,使学生在原有知识的基础上,进一步理解乘法的意义,并能运用它解决

实际问题。、

2.进一步认识乘法算式中各部分的名称,明确1和0在乘法中的特殊性。

3.使学生理解和掌握乘法交换律,并能运用它进行验算。

(二)能力谰练点

借助观察、比较、综合、概括等方法,培养学生的分析推理能力,抽象概括能

力。培养学生运用新知解决实际问题的能力。

(三)德育渗透点

认识知识间的相互关系、内在联系性及发展性。

(四)美育渗透点:

使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

引导学生运用已有经验,由感性上升到理性,进一步抽象概念。

教学重点:使学生理解并运用乘法的意义及其运算定律--交换律。

教学难点:乘法交换律的应用。

投影仪、投影片、卡片。

(一)镭蛰孕伏

1,口算:1435030250154127

22430126040425165

2.导人:以前我们学习了一些乘法计算的知识,这节课我们继续学习乘法

勺有关知识。乘法的意义、乘法的交换律。(板书课题)

(二)探求新知

1.教学乘法意义:

(1)出示例1(投影),指名读题,引导学生分析,横着看,每排放几个,一共有

L排?要求盘里一共有多少个鸡蛋?可怎样解答?还可以怎样解答?弓1导学

E回答后,教师板书:

用加法计算:5+5+5+5+5+5:30(个)或6+6+6+6+6:30(个)

用乘法计算:56;30(个)或65;30(个)

(2)求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比

交简便。

得出结论:求几个相同加数和的简便运算叫做乘法。

反馈练习:

①下列算式能否改成乘法算式,为什么?

120+120+1助+12080+90+7015+15+15+20

②判断:(投影出示)

求几个加数和的简便运算叫乘法。()

求几个相同加数和的运算叫乘法。()

(3)在乘法算式中,乘号前面的数叫什么蚜乘号后面的数叫什么数?乘

零的结果叫什么?明确:相乘的两个数叫做因数,乘得的数叫积。

(4)教学1和0的乘法特点:

我们知道,求几个相同加数和的简便运算叫乘法。如56表示的是几个

目同加数?13呢(教师板书)03呢?依据13;303启发学生说出:

11;130;000;0(教师板书)

我们看这几个算式都和哪个数有关系?(都和1、0有关系)这些数和1相

乘,得到的积都是什么数?和0相乘呢?

说明一个数和1相乘,仍得原数;一个数和0相乘,仍得0。

2.教学乘法交换律:

(1)观察下面每组的两个算式,它们有什么样的关系?

1250512

引导学生分组计算,使学生明确:左边两个数的乘积和右边两个数的乘积

相等。

是不是所有像这样的式子都具有这些特点呢?引导学生互相讨论,自己举

例说明,教师巡视。

启发学生回答总结得出结论:两个数相乘,交换因数的位置,它们的积

不变。

教师指出:这叫做乘法的交换律。

反馈练习:

①下列各式运用了乘法的交换律,对吗?为什么?

1009二9100218二218O+6二6+O

②课本第60页做一做第1题。

(2)加法交换律可用字母表示出来,用。和6表示两个因数,那么乘法的交

换律用字母怎样表示?

学生回答,教师板书:o6=60

教师指出:这里o、6表示大于0或等于0的整数。

关于乘法交换律,实际上在过去我们早已接触过,请同学们回忆一下,我们

学习哪些知识时用了乘法交换律。引导学生说出笔算乘法验算时用到了乘法

交换律,另外,应用乘法交换律还可以使一些计算比较容易。

(如果873交换位置再计算比较容易)

练习课本第60页的做一做第2题。(投影出示)

学生练习,将写在胶片上的题再打出来,集体订正。

(三)巩固发现

A组:

1,填空:

56+56+56+56

7548二48()

口6二()()

一个数和1相乘得(

一个数和0相乘得(

2.计算下列各题并验算:

365420

B组:

1.填空:

18+18+18二()(

354改写成加法算式是(

()o:()20

2.哪些式子连起来后,使用了乘法交换律?

15169+7

9+720xx

20xx1615

O0

3.计算并验算:

101020xx2345060

(四)课堂小结

师生共同总结本节课学习了什么?注意什么问题?

乘法的意义和乘法交换律

用加法计算:5+5+5+5+5+5:30(个)

用乘法计算:56=30(个)

答:一盘可以放30个鸡蛋。

例1意义:求几个相同加数和的简便运算叫乘法

13二303二031二3

11=130=000=0

例2交换律

56=6540020=20400

101000=100010O6=6O

两个数相乘交换因数的位置,它们的积不变。

乘法交换律教案【篇3】

本课时的教学内容是义务教育课程标准实验教科书四年级下册第3335页中的乘法交换律和乘法结合律。这部分内容是在教学了加法的运算定律及其相关简便运算后学习的。我主要是从下面几个环节展开教学的。

1、复习环节,我首先让学生共同回忆了加法交换律和加法结合律,因为本节课的教学内容是乘法交换律和乘法结合律,实际上加法交换律和乘法交换律、加法结合律和乘法结合律,它们的基本原理一样,只是所处的运算不同。我在教学中,就充分把握这一点,引导学生利用旧知迁移新知,自主探究出乘法的交换律和结合律。还进行了诸如25,254,1258,205,这样的口算题训练,其目的之一是通过这组口算题的练习,明确这些题目的共同特点是都是乘法运算,而且积是整十或整百或整千数,为后面运用乘法的交换律和结合律进行简便计算奠定了基础,其目的之二是通过这一组乘法口算,揭示今天的学习内容。

2、探究新知环节,我主要是通过引导学生对主题图的观察,让学生探究解决负责挖坑、种树的一共有多少人?和一共要浇多少桶水?这两个问题,找出解决问题的相关信息,并会用不同的方法解答。在此基础之上,再引导学生通过对两种方法的比较,归纳总结出乘法交换律和乘法结合律。随后还引导学生学会运用刚刚学到的乘法交换律和乘法结合律进行简便计算,培养了学生学以致用的能力。

3、巩固练习主要穿插在各个知识点的教学之后,及时反馈学生对各个知识点的掌握情况。注重引导学生经历解决问题的过程,让学生在体验过程的同时感受到了成功的喜悦。

当然,在教学过程中,也存在很多的不足,如。

1、在推导规律的过程中,导课比较快主观上是时间紧张,可课后想想,实际上是引导不到位,难以完整地总结出乘法结合律。结果,有个别学生对乘法结合律不太理解,运用时问题较多。

2、教学语言还要注意精炼,有时还是喜欢重复学生的回答。

3、要注意多媒体运用和板书的有机结合。

今后的工作中,要多向以下几个方面努力。

1、多听课,多学习。学习优秀教师的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。

3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数。

乘法交换律教案【篇4】

【教材分析】

本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程,通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。

【学情分析】

学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。

知识技能上:在学习本课前,学生已经知道:25×4=100 、125×8=1000以及整十整百整千数乘法计算比较简便。

【学习目标】

知识与技能:通过探索活动,发现乘法交换律、结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。

过程与方法:经历数学探索过程,进一步体会探索的过程和方法。

情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。

【学习重难点】

探索、发现、理解、应用乘法结合律。

【教学策略】

创设情境,组织探索,引导自主学习。

【教学过程】

一、创设情境,发现问题

师:同学们喜欢搭积木吗?

生:喜欢

师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?

生:想

师:那好,就让我们一起去探索与发现。

二、探索乘法交换律

播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)

师:你知道图中有多少个小正方体吗?说说自己是怎样想的。

生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。

生:竖着数一排有4个小正方体,一共有5排,4×5=20个。

师(板书5×4=4×5)可以这样写吗?为什么?

生:可以因为积相等,(求的就是一个整体)

师:认真观察这个等式,你能发现什么奥妙吗?

生思考,汇报(数字相同,交换了位置,积不变)

师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?

生:……

师:请你帮淘气举一些这样的例子来验证一下行吗?

生举例验证

师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?

生说师板书:

a×b﹦b×a叫做乘法交换律

师:a。b指的是什么?

(设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。)

三、探索乘法结合律

1、课件2出示情景图(书54页)

师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?

学生独立观察、思考后集体交流。(说说估计的方法)

师:谁估计的准确呢?请同学们在本子上算一算。

(学生独立思考,计算,教师巡视)

师:谁愿意把你的想法介绍给大家?

生举手汇报,师追问:怎样想的?

师引导从上面、正面观察

上面:(3×5)×4

师:这个算式可以写成 (5×3)×4 吗?

生:可以,都是求同一个物体,

生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。

师:出示4×(5×3) 可以这样写吗?

生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。

正面:(4×5)×3

师:你还可以怎样写?根据是什么?

生:(5×4)×3 3×(5×4)

(设计意图:通过对算式的变换,巩固乘法交换律)

师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。

生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。

师:可以写成(3×5)×4 = 3×(5×4)吗?

生思考回答。

(设计意图:通过对算式异同的比较,让学生自己发现规律,)

2、提出假设,举例验证

师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器

(学生在小组内举例交流讨论,教师巡视指导。)

师:谁愿意介绍一下你们举例的情况。

生:……

3、概括规律

师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?

生思考概括

师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?

生说师板书:

(a×b)×c﹦a×(b×c)叫做乘法结合律

三、运用模型,完成练习

1、学生独立完成“练一练”1题。最后运用课件集体订正。

2、运用乘法结合律很快算出38×25×4 42×125×8

生独立完成,小组交流后汇报

3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。

(设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算。对所学的

知识通过练习加以巩固运用。)

五、小结:

1、 这节课你学到了什么?

2、 我们是怎样认识这个好朋友的?

板书:

探索与发现

乘法交换律 乘法结合律

a×b﹦b×a (a×b)×c﹦a×(b×c)

5×4﹦4×5 (3×5)×4 =3×(5×4)

生举例略 生举例略

乘法交换律教案【篇5】

教学内容:教科书第63页。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便运算,体验运算律的应用价值,培养学生的探究意识和解决问题能力,增强数学的应用意识。

3、培养学生观察,比较,分析,综合和归纳,概括等思维能力,使学生在数学活动中获得成功的体验。

教学重点、难点:

理解并掌握乘法交换律和乘法结合律,并会用运算律进行简便计算。

教学准备:教学光盘

教学过程:

一、复习引新。

1.什么叫做乘法交换律?乘法结合律?你能用字母表示吗?

2.口算。

计算三角形三个角上的三个数的积。

(5、17、20)(35、2、29)(25、37、4)

提问:上面各题口算时怎样算比较方便?

指出:连乘时如果有两个数相乘得的积是整十整百,要先乘,再和第三个数相乘就比较简便。

1、你知道怎样的相乘得整百或整十数?

引导学生熟记常用数据:254=100258=2001258=1000

口诀中相乘的积个位上是0的。

2、简便计算

28154451329425125188

二、运算运算律,简便计算。

出示:35182516

(1)指名板演,列竖式计算,集体练习。

(2)讨论:怎样运算比较简便,可以不必列竖式计算,直接口算得到。

(3)讨论2516,想25和谁相乘可以得到整十或整百?25需要和相乘,怎样找到4,(将16分成4乘4)

2516

=2544运用乘法结合律可以得到。

=1004

=400

(4)3518怎样做比较简便呢?学生仿照上述的样子试做。

三、出示想想做做第8题,谁能将他们做的又对又快?学生集体练习,说说上下两题的联系。怎样计算比较简便。

四、巩固练习:

1、用简便方法计算。

2512351625321252516

指名扳演,集体订正。

2、想想做做P63、7。

先独立填表,再观察和比较,说说积是怎样变化的。

四、作业

想想做做第9、10题

课前思考:

1、通过让学生算一算,在比较每组中两道题的计算过程,交流各自的体会,进一步体会使计算简便的关键。

2、35*1825*16让学生探究应用乘法运算定律得到不同的简便的方法,从中找到最简便的方法,教导学生看见25通常的情况是想到25,看见125通常想到8。

3、第7题渗透了积的变化规律。可以让学生先独立填表在观察和比较,说说积是怎样变化的。

课后反思:

针对上节课出现的问题,在复习这一环节,我们重点训练了254=100、258=200、1258=1000,352等这样常见的也是常用的简便计算的算式。在学习新课:351816时,学生心中有了简便计算的关键的一步:352、254,就自然而然地从已知的数中去寻找,很快地就有了答案。

在训练过程中,有许多新的情况出现,部分学生有些措手不及,看来这方面的练习还得多做,所谓熟能生巧还是需要,让学生在大量不同类型的题目中感悟方法的巧妙和解题的技巧。

教后反思:

和周老师一样我本堂课先复习了254=100、1258=1000这样常见的也是常用的简便计算的算式。本堂课主要是学习像3518这样的只有两个乘数的简便计算,我是先让学生自己去找方法,看谁算得快,又算得正确。学生的学习兴趣很快就被引了出来,最后的效果也不错。从作业中可以看出学生的错误率还是很高,还需多加练习。

教后反思:

简便运算具有一定的灵活性,每个学生的理解和感悟是不同的。同样教学中都是先渗透254=100、1258=1000也就是看见25最先想到4,而看见125最先想到8,而再练习中看见25还会见到分成5*5的现象的。但是大多数的同学简便运算还是比较兴趣的,毕竟可以使计算变的简便了。

乘法交换律教案【篇6】

教学目标:

知识目标:理解乘法交换律的内容;

技能目标:掌握乘法交换律,并会使用乘法交换律进行简便计算和验算,渗透合作探究的方法。

情感目标:培养合作与探究的意识与能力。

教学重点:理解乘法交换律的内容,掌握交换律的方法,应用到简便算法和验算中。

教学难点:利用知识的正迁移,自主探究乘法交换律的内容。

教学过程:

一.复习旧知,谈话导入

1.回忆加法交换律

师:同学们还记得加法交换律吗?

谁能用自己的话,或者公式,或者举个例子,说一说加法交换律?

生举例,师板书:a+b=b+a(交换加数的位置和不变)

2.提出问题

师:同学们想不想了解,减法,乘法,除法是不是也具有这个规律?

二.组织探究

1.提供材料,得出规律

师:假设减法,乘法,除法也具有分配律的性质,我们用公式怎么表示?

生答(板书):a-b=b-a

ab=ba

ab=ba

2.提出探究方法,进行自主探究。

方法:★举出具体的式子证明;

★得出结论后,用自己的话概括规律;

独立思考,自主探究

3.提出探究要求,进行合作探究

探究要求:〈1〉首先,四人组成小小组,选出组长;

〈2〉组长安排组内成员交流想法;

〈3〉针对这些想法展开讨论,得出结论,概括规律;

〈4〉组长派出一名代表汇报,汇报得最好的小组组长和组内最佳成员奖星星一颗。

小小组合探究

三.汇报,验证规律,概括规律

1.汇报:

生:减法和除法没有具备这个规律。乘法具备这个规律。

得到全班的赞同。

2.验证乘法交换律

学生举例,师板书。

3.概括规律

师:同学们举出了这么多的例子,现在可以肯定乘法具有交换律这个规律了。那么公式就用a+b=b+a。谁用自自己的话把这个规律描述出来?

生:两个因数相乘,交换因数的位置,积不变。

师板书规律,齐读规律。

四.练习与应用

1.课后练习1,练习2。校对。

2.练习3,4,读题,说一说你从这两题中明白了乘法交换律有什么用?

各选择一题做一做。校对。

五.总结。

六.作业

乘法交换律教案【篇7】

一、教学内容:

北师大版四年级上册数学第二单元p45-p46

二、教学目标:

1、经历探索过程,发现乘法结合律和交换律,并用字母表示。

2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。

3、感受数学探索的乐趣,培养自主探索问题的能力。

三、教学重、难点

1、重点:探索、发现、理解和应用乘法结合律和交换律。

2、难点:乘法结合律和交换律的探索过程。

四、教学过程

(一)口算比赛,激发学习兴趣

1、出示口算题

5×225×425×8125×8

2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。

3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?

(二)创设情境,发现问题

1、多媒体出示情境图

2、估一估

师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?

3、算一算

师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。

4、交流算法。

师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。

师板书:(3×5)×4=60(个)

3×(5×4)=60(个)

(三)比较算式的特点,发现规律

1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?

2、学生汇报:略

3、小结:(3×50)×4=3×(5×4)

(四)提出假设,举例验证

1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。

2、学生举例

同桌之间互相交流?

3、集体交流

谁愿意介绍一下你们小组举例的情况?

(五)概括规律

1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?

2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?

板书(a×b)×c=a×(b×c)

板题:乘法结合律

(六)运用规律,解决问题

1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?

2、看来运用乘法结合律可以使一些计算简便。

3、练习:p46“试一试”的题目

学生独立完成,集体订正。

(七)探索乘法交换律

1、出示两组数据

4×5=5×412×10=10×12

2、师:认真观察,看看你有什么新发现?

3、学生汇报。

4、学生举例验证。

师:你能举出像这样的例子吗?

5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?

6、板书:a×b=b×a

板题:乘法交换律

三、巩固练习

1、(完成课本第46页练一练第1题)

学生口答,集体订正。

2、应用乘法结合律和交换律,快速计算下面各题。

25×17×413×8×128(25×125)×(8×4)

(1)学生独立完成,个别板演。

(2)订正时让学生说说运用什么运算定律。

四、总结:这节课你有什么收获?

五、学生读课本第45、46页,质疑。

六、作业:课本第46页第2题。

乘法结合律 乘法交换律

乘法交换律教案【篇8】

教学内容:练习五的第6-9题。

教学目的:使学生进一步掌握乘法交换律和乘法结合律,会应用运算定律进行简便运算。

教学重点:应用运算定律进行简便运算。

教学难点:培养能力。

教具准备:把下面复习运算定律用的复习题写在黑板上。

教学过程:

一、复习所学过的运算定律

教师出示复习题:根据运算定律在下面的横线上填出适当的数。

1.26305=305()

2.(2468)125=246(8)

3.214+678=678+()

4.225+(75+437)=(225+75)十()

先让学生看清题目,再提问:

第一小题,横线上应该填什么数?根据什么运算定律?

乘法交换律说,两个数相乘,交换两个因数的位置,什么不变?

第二小题呢?乘法结合律说,三个数相乘,先把前两个数相乘,再同第三个数相乘,还可以怎样乘,它们的积不变?

第三小题,横线上应该填什么数?根据什么运算定律?

第四小题呢?

乘法和加法都有交换律,它们有什么相同的地方?有什么不同的地方?学生讨论以后,教师指出:乘法交换律和加法交换律都是交换了要计算的两个数的位置,交换前和交换后计算的结果都不变,只是加法交换律交换的是两个加数,交换前与交换后两个数的和相等;乘法交换律交换的是两个因数,交换前与交换后两个数的积相等。

乘法交换律:ab=ba

乘法和加法都有结合律,它们有什么相同的地方?有什么不同的地方?学生讨论后,让学生独立说出:乘法结合律和加法结合律都是说的三个数的运算规律,乘法结合律是先把第一个数、第二个数相乘,再同第三个数相乘;或者先把第二个数、第三个数相乘,再同第一个数相乘,它们的积不变;加法结合律是先把第一-个数、第二个数相加再同第三个数相加,或者先把第二个数、第三个数相加,再同第一个数相加,它们的和不变。

加法结合律:(a+b)+c=a+(b+c)

乘法结合律:(ab)c=a(bc)

二、做练习五的第6一8题

1.第6题、先让学生自己看题,独立思考,再集体讨论...

2.第7题,先让学生独立完成,然后再集体核对。核对时可以多让几个学生说一说是怎样做的,比较一下怎样做更简便。

3.第8题,先让一名学生读题,再提问:

这道题有什么要求?学生回答后,教师再明确指出:这道题在填表时,都要把每组的数和第一组的数比较一下,再看一看因数有什么变化,积有什么变化。然后让学生做在自己的书上。

三、学有余力的学生可以做选作题和思考题

第10题,学生有困难时,可以让学生想:小丽所在的一行有多少人?因为从前面数小丽是第9,从后面数小丽是第11,所以小丽所在的一行有9+11-1=19(人),因为4行的人数同样多,所以一共有194=76(人)。

第11题,这道题可以有不同的解法,当学生用一种方法做出后,还可以让学生再想一想还有没有别的算法。这道题可以这样做:

(24+24+8)85

.2485+(24+8)85

第3l页上的思考题.

四、作业

练习五的第9题。

乘法交换律教案【篇9】

本课题教时数:25本教时为第16教时备课日期11月7日

教学目标

1.使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

教学重难点

使学生初步理解和掌握乘法交换律和结合律,并能用字母表示。

教学准备

投影片

教学过程设计

教学内容

师生活动

备注

一、揭示课题

二、学习新课

三、巩固练习

四、课堂小结

五、课堂作业

1.我们已经学过加法的运算定律,请大家回忆一下,是怎样的?

2.加法交换律用字母公式如何表示?加法结合律呢?(板书)

3.请大家大胆地猜测一下:乘法有

怎样的运算定律?(学生猜测)

4.大家猜的非常好,的确乘法也有

交换律和结合律?这节课我们一起来研究一下乘法的交换律和结合律。(板书课题)

1.学习例1

(1)出示例1

(2)小组合作,想一想:怎样求出邮票的总张数?

(3)组织交流:①43=12(张)②34=12(张)

(4)思考:这两种算法都是求什么的?结果怎样?从中你体会到了什么?(板书:43=34)

(5)这两个算式有什么相同和不同的地方?

2.其他的算式是不是也有着这样的特点呢?出示第81页上的有关题目。学生先计算再比较。

3.从这些算式中,你体会到了什么?谁能来归纳一下。你能用字母公式来表示吗?(根据学生所讲,板书ab=ba)。

4.学习乘法交换律的应用。

乘法交换律我们以前有没有碰到过?你能举个例子吗?

完成练一练的第1题。指名一人板演,其余学生做在练习本上。

5.学习乘法结合律。

(1)出示计算题。①(1412)5②14(125)

(2)学生按运算顺序计算,指名两人板演。

(3)比较两个算式的结果,你可以得出怎样的结论。

(4)板书:(1412)5=14(125)。比较这两个算式有什么相同的地方和不同的地方?

6.其他的算式是不是也有着这样的特点呢?出示第83页上的有关题目。学生先计算再进行比较。

7.从中你发现了什么?谁能来归纳一下?你能用字母公式来表示吗?[板书:(ab)c=a(bc)]

8.谁能根据字母公式,来说一说乘法有着怎样的运算定律?

1.在□里填上合适的数,并说说这样填的理由。

(1)9635=35□4827=□48

(1615)4=16(□□)

25(218)=(25□)□

(3)判断:哪些等式应用了乘法运算定律?应用了什么定律?

153=315

2124=4212

7(86)=7(68)

(32)1=3+(2+1)

(434)15=43(415)

今天这节课我们一起学习了什么内容?你有什么收获?

练习十七第1题、第4题

课后感受

学生由于已经有了加法运算定律的积累,所以今天的课上的很顺,学生大多能正确地进行迁移、应用。少数同学会在回答概念时,把乘法口误成加法。

乘法交换律教案【篇10】

教学目标:

1、理解掌握乘法交换律(用字母表示)会运用这个定律,使一些计算简便。

2、培养学生的抽象概括能力。

教学过程:

(一)口算

30400690048070

40030900670480

分组口算出结果,然后观察比较,每一组有什么特征?

(二)教学新知

1、例题教学

(1)感知定律。

23()321150()501130200()20xx0

观察上面三组题的特征,填上左右两个两个积的大小关系,然后计算出结果进行验验证,完成后校对结果。请学生也用等号连接,然后,教师板书。

(2)总结定律:观察以上各组等式,你发现了什么规律?学会总结后看书填空,并尝试用字母a、b表示这组关系。

(3)巩固定律:练一练第1题,练完后校对。

2、运用定律。

(1)计算,并比较一下哪一种方法简便,为什么?

17234

23417

学生计算后四人小组讨论,接着指名回答。然后教师板书17234。这个算式可以选择上面的哪种竖式进行计算?依据的什么?最后教师总结:运用乘法交换律使一些计算简便?

(2)应用。

课本试一试提问:怎样摆竖式计算简便,为什么?学会回答后计算。

(三)巩固练习

1、简便方法计算练习

练一练第2题。

学生摆竖式计算,教师巡回纠错,完成后校对讲评。

2、比较练习。

练一练第3题。

先口答,上面三题分别怎样摆竖式计算简便?教师总结。

(四)总结

这节课我们学习了乘法交换律,它用文字和字母表示分别的怎么样的?在什么情况下可以运用乘法交换律使运算简便?

(五)作业

《作业本》[9]

乘法交换律教案【篇11】

乘法交换律、乘法结合律以及相关的简便运算

教学内容:p.61~62

教材简析:

这部分内容是在教学了加法的运算律及其相关简便运算后学习的。对于乘法的交换律,学生学习表内乘法时有了初步体验,知道根据同一幅图能列出两个乘法算式,知道互换乘数位置得数相同。在学习两位数乘两位数的验算方法时,知道互换乘数的位置,积不变。教材对乘法交换律的编排与加法交换律类似,也是由生活情境中的数学问题,引出一组算式,让学生初步理解两个乘数交换位置,积不变;再让学生通过举例,经历分析、综合、抽象的过程,得出乘法交换律并用字母表示。乘法结合律的编排与加法的结合律相似,但对学生探索的要求有多提高。

教学目标:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验

教学重点:理解并掌握乘法交换律和结合律

教学准备:光盘

教学过程:

一、学习新课:

1、学习乘法交换律:

演示例题图,谁能用数学语言说说图意?

(一组5人踢毽子,3组一共有多少人?)

把算式写在自己的本子上,全班交流:

(1)35=15(人)(2)53=15(人)

观察这两个算式,有什么相同和不同的地方?

(乘数相同,位置不同,积相等)

因为积相等,我们就可以把这两个算式合写成一个等式,谁能把它写出来?

(35=53)

读一读,这个等式,问:类似的等式你还能说几个吗?

说得完吗?那你有什么好办法?

板书:ab=ba

指出:这是乘法运算中的一个规律,知道叫什么吗?(板书:乘法交换律)

2、学习乘法结合律:

演示例题:华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参加比赛?

请学生独立列式解答。全班交流,可能有的结果:

(1)6523(2)5236

=3023=1156

=690(人)=690(人)

(3)6(523)(4)6235

=6115=1385

=690(人)=690(人)

评讲这几种方法:

方法一先算的是多少个班级,再算全部

方法二先算的是一个年级参加的人数,再算全部

方法三也是先算多少个班级,再算全部

方法四先算623意义不好说,所以不提倡

比较方法一和方法二,这两个算式之间有什么联系呢?(交换了6和23的位置,用到了刚学的乘法交换律)

比较方法一和方法三,它们有什么联系呢?(三个乘数没变,位置没变,但乘的顺序变了,积没变。)

想一想,这又是乘法中的什么规律呢?

随学生回答板书:乘法结合律

谁能用字母来表示这一规律?abc=a(bc)

3、学习试一试

你能用简便方法计算吗?

(1)23152(2)5372

学生先独立计算,指名板演。

讲评时注意书写的规范,并要学生能说出各是用了什么运算律?

二、完成想想做做的部分练习

1、先填空,再想想应用了什么运算律(题略)

注意最后一题:13跑到了前面,那肯定是用到了乘法交换律,本来是没有括号的,那就是先前面的,后面的算式在后面多了个括号,那就变成了先算后面的,这就用到了乘法结合律

2、比较上下两题,你更愿意算哪题?算一算

3、你能很快说出每束气球上三个数连乘的积吗?

先是同桌互说,再是指名说。其中最后一束,要让学生比较多种方法都比较简便的时候,选择最简便的方法

三、布置作业:

第4、6题

课后小记:

这课在教学的时候感觉比较顺,学生很容易接受。在作业中发现,类似于想想做做第1题最后1题的题目,学生做不好,往往是只写了一种运算律,或者是两种都写到了,但写成了乘法交换结合律这需要老师在课堂上有必要的示范与提醒。

乘法交换律教案【篇12】

【教学内容】

西师版四年级下册数学教材第17~18页例1~2,练习四第1题。

【教学目标】

1.经历在计算中探索发现乘法交换律、结合律的过程。

2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。

3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。

【教学重难点】

在具体情景中探索发现乘法交换律、乘法结合律。

【教学过程】

一、复习旧知

1.以前学过的加法运算律有哪些?

加法交换律和加法结合律(学生回答)

2.说一说,下面的等式用了什么运算律?

80+a=a+80()20+30+40=20+(30+40)()

3.通过预习,你知道下面的等式用了什么运算律吗?

2×3=3×2()(2×3)×4=2×(3×4)()

引出课题:乘法运算律。

二、新课讲授

1、讲解

2×3=3×2

观察并思考:

(1)等号左边的算式和右边的算式有什么联系?

(2)从上面的观察与分析中,你能发现什么规律?

学生发现:两个因数交换位置,积不变。

师引导学生得出乘法交换律。

教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)

教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)

随堂练习:计算下面各题,用交换因数位置的方法进行验算。

34×16 26×37

学生独立做,请两名学生上台板演。

2讲解

(2×3)×4=2×(3×4)

观察并思考:

(1)等号左边的算式和右边的算式有什么联系?

(2)从上面的观察与分析中,你能发现什么规律?

学生发现:每个算式只是改变了运算顺序,每排左、右两个算式计算结果相等,

三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。

教师:谁知道这个规律叫什么?

教师板书:乘法结合律。

教师:如果用a、b、c表示3个数,可以怎样表示这个规律?

教师板书:(a×b)×c=a×(b×c)。

教师:这个规律就叫乘法结合律。

小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。

三、课堂活动

1.练习四第1题:学生独立完成,全班交流,说出依据。

2.连线。

(学生独立完成)

23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)

四、课堂小结

今天这节课你都有哪些收获?还有什么问题?

五、作业

练习四第1、2题。

乘法交换律教案【篇13】

教学内容

苏教版小学数学四年级上册第59-60页例题,及60-61页想想做做的第1-5题。

设计思路

对于乘法定律的教学,不应仅仅满足于学生理解、掌握乘法定律和运用乘法定律进行一些简便计算,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这才是教学的重点及难点。教学中,通过创设情境猜谜语导入,激发学生的学习兴趣,让学生在玩中发现问题,提出猜想、进行验证、总结应用的思路进行的,应该说这样的思路是符合当今新教学理念的。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

教学目标

1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

3.增强合作意识,激发学生学习数学的兴趣。

教学重点

引导学生概括出乘法结合率,并运用乘法结合率进行简便计算。

教学难点

乘法结合率的推导过程是学习的难点。

教学准备

幻灯片。

教学过程

一、猜谜引入,揭示课题

师:猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。

生:(积极举手,低声喊)纽扣。

师:你为什么会想到是纽扣

生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。

师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

师:用字母如何表示加法交换律、结合律呢

板书:a+b=b+aa+b+c=a+(b+c)

师:乘法有没有类似的规律今天我们就来学习乘法的一些运算定律。(板书课题)

[设计意图:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]

二、猜测验证,教学新知

(1)教学乘法交换率。

师:(猜一猜)乘法可能有哪些运算定律?

生1:乘法可能有交换律。

生2:乘法可能有结合律。

生3:

师:乘法是否具有你们猜测的规律呢怎样确认自己的猜测看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

[设计意图:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]

交流。

生1:我们小组经过讨论认为乘法有交换律。比如:24=42,013=130等等。两个乘数的位置变了,但它们的积不变。

生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。

师:有没有不同意见(指名让刚才说乘法没有交换律的学生发言。)

生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如20xx=8200。

师:你能用自己的语言描述一下乘法交换律吗

结论:两个数相乘,交换乘数的位置,积不变。

师:谁能用字母来表示呢?

生:ab=ba(板书)

[设计意图:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。]

师:最近学校要开展冬季三项比赛,每个班的学生都在练习,看!这是老师在校园里看到的景象。(出示图片:踢毽子)

师:你能看图把下面的等式填写完整吗?

35=()()

师:这就是乘法交换率。

[设计意图:出示例题,巩固所学的新知。让学生在自己的探索中学习,体现了新课程下的自主学习。]

(2)教学乘法结合率。

生4:我们发现乘法也有结合律。如:(32)4=3(24)。

生5:我们也同意这种观点。

师:我们一起来证明一下这个结论是正确的吗?出示例题2。

华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参见比赛?

小组讨论,你们是怎样计算的?

生1:先算出一个年级参加的人数。

(235)6=1156=690(人)

生2:先算出全校有多少个班。

23(56)=2330=690(人)

师:你会把上面的两道算式写成一个等式吗?

(235)6=()

师:比较等号两边的算式,有什么相同点和不同点?

生:我觉得右边的算式计算简便,可以直接口算出答案。

师:非常好,我们在计算的时候,可以根据运算定律来简便计算,这样能节省时间。

[设计意图:让学生自己感受交换两个乘数的位置,计算起来比较简便,为下面学习试一试部分奠定基础。]

师:请同学们也写几组这样的等式,把你的发现在小组里交流。能用自己的语言描述一下乘法结合律吗

结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

师:你说得很准确,有什么好方法帮助记忆

生:我把加法结合律里的加换成乘,把和换成积,其余的不变。

生:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指*在一起,表示先把前两个数相乘,第三个手指*过来表示再和第三个数相乘;它等于先把后两个手指*在一起,再把第一个手指*过来。

师:这个记忆方法确实很好,我们大家一起来试一试。

师:怎样用字母表示乘法结合律

板书:(ab)c=a(bc)

[设计意图:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]

(3)教学试一试(用简便方法计算)。

师:刚才我们已经学习了乘法的运算定律,现在看看同学们有没有掌握呢?出示试一试上的习题。(1)23152(2)5372

放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

师:运用了乘法的运算率,计算时你有什么体会?

生1:感觉简便了。

生2:计算的时候节约了时间,也不会算错了。

[设计意图:新授了乘法结合律与交换律之后,直接教学试一试的内容,让学生自己体会乘法结合律与交换律对计算的简便之处,有利于以后计算时能快速运用。]

三、巩固深化,应用拓展

师:回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助

生:我们验算乘法时就应用了乘法的交换律。

基本练习。想想做做的第1~3题。

发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

869=()

[设计意图:练习的层次鲜明,目标明确;促进学生构建新的知识网络。]

四、全课小结,布置作业

今天这节课你学到了什么?

课堂作业:P60~61第4、5

乘法交换律教案【篇14】

内容预览:

29湖心亭看雪

课文研讨

一、整体把握

《湖心亭看雪》是张岱的代表作,出自回忆录《陶庵梦忆》,写于明王朝灭亡以后。对故国往事的怀恋都以浅淡的笔触融入了山水小品,看似不着痕迹,但作者的心态可从中窥知一二。

文章首先交代看雪的时间、目的地、天气状况。时间是崇祯五年十二月,作者仍旧使用明代的纪年,说明在他心目中明代始终是没有灭亡的。西湖经历三天大雪后,人声鸟声俱绝,空阔的雪景使天地间呈现出一股肃杀的冷寂来。而作者偏偏选择此时去赏雪,可见他此时的心态及与众不同的情趣。

接着就记述了这次赏雪的具体经过。这天凌晨,作者划一叶小舟,独自前往湖心亭。一个独字,充分展示了作者遗世独立的高洁情怀和不随流俗的生活方式,而一人独行于茫茫的雪夜,顿生寄蜉蝣于天地,渺沧海之一粟(苏轼《赤壁赋》)的人生彻悟之感。此时湖上冰花弥漫,天与云与山与水,一片混沌。惟有雪光能带来亮色,映入作者眼帘的惟长堤一痕,湖心亭一点,与余舟一芥,舟中人两三粒而已。一痕、一点、一芥、两三粒,使用白描手法,宛如中国画中的写意山水,寥寥几笔,就包含了诸多变化,长与短,点与线,方与圆,多与少,大与小,动与静,简洁概括,人与自然共同构成富有意境的艺术画面,悠远脱俗是这幅画的精神,也是作者所推崇的人格品质,这就是人与自然在精神上的统一与和谐。

然后,作者笔锋一转,叙及在湖心亭的奇遇。此时此地此景,能够遇见游人,不能不说是奇迹,那两人也都大喜,感叹湖中焉得更有此人!酒逢知己千杯少,几人痛饮而别,同是天涯沦落人,相逢何必曾相识(白居易《琵琶行》)!作者写两人大喜,即写自己大喜,写余强饮三大白,即写两人畅饮,此处使用互文手法,使行文有变化。及写到问其姓氏,是金陵人,客此,才匆匆交代了友人的情况,这样写一方面是由于张岱是性情中人,最关注的是朋友之间在情致心灵方面的沟通,至于朋友的身份地位、官职爵里等世俗的问题并不在意;另一方面能够真实地体现作者喜极而悲的情绪变化,询问对方身份之时,也是彼此分别之时,有缘相聚实非易事,此刻一别也许就难以再见,这怎么能不叫人遗憾!最后,作者以舟子的话收束全文:莫说相公痴,更有痴似相公者!舟子说作者痴,体现了俗人之见,但痴字又何尝不是对张岱最确切的评价呢?他痴迷于天人合一的山水之乐,痴迷于世俗之外的雅情雅致,作者引用舟子的话包含了对痴字的称赏,同时以天涯遇知音的愉悦化解了心中的淡淡愁绪。

全文笔调淡雅流畅,看似自然无奇,而又耐人寻味,西湖的奇景是因了游湖人的存在而彰显了它的魅力,写景与写人相映成趣。

二、问题研究

1.文中开头说独往湖心亭看雪,后来又写到舟中人两三粒,况且文章末尾舟子还出现了,这是不是矛盾?

这里并不是作者行文的疏忽,而是有意为之。在作者看来,芸芸众生不可为伍,比如舟子,虽然存在却犹如不存在,反映出他文人雅士式的孤傲。

2.写作方面,作为一篇游记,作者是怎样处理写景、叙事、抒情的关系的?

叙事是行文的线索,须用俭省的笔墨交代,如文中写崇祯五年十二月,余住西湖,是日更定,余拿一小船,拥毳衣炉火,独往湖心亭看雪,到亭上,及下船,交待了作者的游踪。

写景是游记的表现重点,要抓住景物的特点,把景物最打动人的地方表现出来,景中含情。本文写雪景的一段,作者就抓住了夜色中雪景的特点,一痕、一点、一芥、两三粒,正是茫茫雪境中的亮点,作者以他准确的感受体会到简单背后的震撼力,宇宙的空阔与人的渺小构成了强烈的对比,景物因此有了内容。

湖心亭巧遇虽是叙事,但重在抒情。因意外遇到两个赏雪人而惊喜,短暂的相遇都很畅快,随之而来的分别不免伤感,但遇到志趣相投的人又让他释然。情绪的变化一波三折,但是都与看雪有关,是看雪行动的延伸。由从景的角度写景转变为从人的角度写景,将人与景有机地结合起来。人的参与,给有可能显得冷寂、单调的景物注入了生机。而人与景的融合,正是本文的特色。

练习说明

一、背诵课文,完成下列练习。

1.说说本文中描写西湖雪景的文字有什么特色。

2.文字简练单纯,不加渲染烘托,这种写作手法就是白描。体味本文所用的白描手法。

设题意图:背诵课文是为了培养学生学习古文的基本功,培养语感,巩固所学的文言词。要当堂完成。第1题是让学生对文言文的语言风格有所感知。第2题是为了使学生对白描这种写作手法有比较透彻的理解,教师可以不局限于本文,适当地多举几个例子,让学生明白白描手法不仅用于文言文,还可以用在现代文里,不仅可以写景,还可以写人。如果时间允许,还可以让学生当堂做白描的口头训练。

参考答案:

1.本文描写西湖雪景的文字简练自然,不事雕琢。

2.文中的白描能够抓住景物的突出特征,颇有韵味。一痕、一点、一芥、两三粒,高度抽象、概括,宛如中国画中的写意山水,寥寥几笔,传达出景物的形与神。

柳宗元的《江雪》描写的也是雪景,也写到人的活动,体会它和本文在描写手法和表达感情上的异同。

江雪(柳宗元)

千山鸟飞绝,万径人踪灭。

孤舟蓑笠翁,独钓寒江雪。

设题意图是培养学生初步的比较阅读能力。这比《三峡》一课的比较阅读要求更高了。《三峡》一课是求同比较,本课是求异比较。

在描写手法上,《湖心亭看雪》主要使用白描,西湖的奇景和游湖人的雅趣相互映照。《江雪》主要使用烘托手法,景为人设。在表达的情感上,《湖心亭看雪》表达了作者清高自赏的感情和淡淡的愁绪,《江雪》表达了作者怀才不遇的孤独感。

三、课外搜集描写西湖的诗文,并互相交流。

设题意图是通过搜集描写西湖的诗文作品,开阔学生的视野,了解有关西湖的文化,提高学习兴趣。同时,还为学习写作口语交际综合性学习──怎样搜集资料积累一些经验,教师可以对搜集资料的基本方法先做一些介绍。交流可以在完成教学内容以后进行,也可以放在课前进行,最好在课堂上完成。

春题湖上(白居易)

湖上春来似画图,乱峰围绕水平铺。

松排山面千重翠,月点波心一颗珠。

碧毯线头抽早稻,青罗裙带展新蒲。

未能抛得杭州去,一半勾留是此湖。

钱塘湖春行(白居易)

孤山寺北贾亭西,水面初平云脚低。

几处早莺争暖树,谁家新燕啄春泥。

乱花渐欲迷人眼,浅草才能没马蹄。

最爱湖东行不足,绿杨阴里白沙堤。

饮湖上初晴后雨(苏轼)

水光潋滟晴方好,山色空雨亦奇。

欲把西湖比西子,淡妆浓抹总相宜。

六月二十七日望湖楼醉书(苏轼)

黑云翻墨未遮山,白雨跳珠乱入船。

卷地风来忽吹散,望湖楼下水如天。

秋山(杨万里)

梧叶新黄柿叶红,更兼乌桕与丹枫。

只言山色秋萧索,绣出西湖三四峰。

晓出净慈寺送林子方(杨万里)

毕竟西湖六月中,风光不与四时同。

接天莲叶无穷碧,映日荷花别样红。

题临安邸(林升)

山外青山楼外楼,西湖歌舞几时休?

暖风熏得游人醉,直把杭州作汴州。

湖上(宋濂)

为爱湖光好,一步一长吟。

黄莺见人至,飞起度湖阴。

题西湖钓艇图(唐寅)

三十年来一钓竿,几曾叉手揖高官?

茅柴白酒芦花被,明月西湖何处滩?

入武林(张煌言)

国亡家破欲何之?西子湖头有我师。

日月双悬于氏墓,乾坤半壁岳家祠。

惭将赤手分三席,敢为丹心借一枝。

他日素车东渐路,怒涛岂必属鸱夷!

望海潮(柳永)

东南形胜,三吴都会,钱塘自古繁华。烟柳画桥,风帘翠幕,参差十万人家。云树绕堤沙,怒涛卷霜雪,天堑无涯。市列珠玑,户盈罗绮,竞豪奢。重湖叠清嘉,有三秋桂子,十里荷花。羌管弄晴,菱歌泛夜,嬉嬉钓叟莲娃。千骑拥高牙。乘醉听箫鼓,吟赏烟霞。异日图将好景,归去凤池夸。好事近西湖

辛弃疾

日日过西湖,冷浸一天寒玉。山色虽言如画,想画时难邈。前弦后管夹歌钟,才断又重续。相次藕花开也,几兰舟飞逐。

钱唐湖石记

白居易

钱唐湖一名上湖,周回三十里,北有石函,南有笕。凡放水溉田,每减一寸,可溉十五余顷;每一复时,可溉五十余顷,先须别选公勤军吏二人:一人立于田次,一人立于湖次,与本所由田户据顷亩,定日时,量尺寸,节限而放之。若岁旱,百姓请水,须令经州陈状刺史,自便押帖所由,即日与水。若待状入司,符下县,县帖乡,乡差所由,动经旬曰,虽得水,而旱田苗无所及也。

大抵此州春多雨,夏秋多旱,若堤防如法,蓄泄及时,即濒湖千余顷田无凶年矣。自钱唐至盐官界应溉夹官河田,须放湖入河,从河入田。准盐铁使旧法,又须先量河水浅深,待溉田毕,却还本水尺寸,往往旱甚。即湖水不充,今年修筑湖堤,高加数尺,水亦随加,即不啻足矣;脱或不足,即更决临平湖,添注官河,又有余矣。

俗云:决放湖水,不利钱唐县官。县官多假他词以惑刺史。或云鱼龙无所托,或云茭菱先其利。且鱼龙与生民之命孰急,茭菱与稻粱之利孰多,断可知矣。又云放湖即郭内六井无水,亦妄也。且湖底高,井管低,湖中又有泉数十眼,湖耗则泉涌,虽尽竭湖水,而泉用有余。况前后放湖,终不至竭,而云井无水,谬矣。其郭中六井,李泌相公典郡日所作,甚利于人,与湖相通,中有阴窦,往往堙塞,亦宜数察而通理之,则虽大旱而井水常足。

湖中有无税田约十数顷,湖浅则田出,湖深则田没。田户多与所由计会,盗泄湖水以利私田。其石函南笕并诸小笕闼,非浇田时并须封闭筑塞,数令巡检,小有漏泄,罪责所由,即无盗泄之弊矣。又若霖雨三日已上,即往往堤决,须所由巡守预为之防。其笕之南旧有缺岸,若水暴涨,即于缺岸泄之。又不减,兼于石函南笕泄之,防堤溃也。

予在郡三年,仍岁逢旱,湖之利害,尽究其由。恐来者要知,故书于石;欲读者易晓,故不文其言。长庆四年三月十日杭州刺史白居易记。

西湖七月半

张岱

西湖七月半,一无可看,止可看看七月半之人。看七月半之人,以五类看之。其一楼船箫鼓,峨冠盛筵,灯火优,声光相乱,名为看月而实不见月者,看之。其一亦船亦楼,名娃闺秀,携及童娈,笑啼杂之,还坐露台,左右盼望,身在月下而实不看月者,看之。其一亦船亦声歌,名妓闲僧,浅斟低唱,弱管轻丝,竹肉相发,亦在月下,亦看月而欲人看其看月者,看之。其一不舟不车,不衫不帻,酒醉饭饱,呼群三五,跻入人丛,昭庆、断桥,呼嘈杂,装假醉,唱无腔曲,月亦看,看月者亦看,不看月者亦看,而实无一看者,看之。其一小船轻幌,净几暖炉,茶铛旋煮,素瓷静递,好友佳人,邀月同坐,或匿影树下,或逃嚣里湖,看月而人不见其看月之态,亦不作意看月者,看之。

杭人游湖,巳出酉归,避月如仇。是夕好名,逐队争出,多犒门军酒钱,轿夫擎燎,列俟岸上。一入舟,速舟子急放断桥,赶入胜会。以故二鼓以前,人声鼓吹,如沸如撼,如魇如呓,如聋如哑,大船小船一齐凑岸,一无所见,止见篙击篙,舟触舟,肩擦肩,面看面而已。少刻兴尽,官府席散,皂隶喝道去,轿夫叫,船上人怖以关门,灯笼火把如列星,一一簇拥而去。岸上人亦逐队赶门,渐稀渐薄,顷刻散尽矣。吾辈始舣舟近岸,断桥石磴始凉,席其上,呼客纵饮,此时月如镜新磨,山复整妆,湖复面,向之浅斟低唱者出,匿影树下者亦出,吾辈往通声气,拉与同坐,韵友来,名妓至,杯箸安,竹肉发。月色苍凉,东方将白,客方散去。吾辈纵舟,酣睡于十里荷花之中,香气拍人,清梦甚惬。

湖心泛月记

林纾

杭人佞佛,以六月十九日为佛诞。先一日,阖城士女皆夜出,进香于三竺诸寺。有司不能禁,留涌金门待之。

余食既,同陈氏二生,霞轩、诒孙亦出城荡舟,为湖游。霞轩能洞箫,遂以箫从。

月上吴山,雾霭溟,截然划湖之半。幽火明灭相间,约丈许者六七处,画船也。洞箫于中流发声,声微细,受风若咽,而悄哀怨,湖山触之,仿佛若中秋。气雾消,月中湖水纯碧,舟沿白堤止焉。余登锦带桥,霞轩乃吹箫背月而行。入柳阴中,堤柳蓊郁为黑影,柳断处乃见月。霞轩著白袷衫,立月中。凉蝉触箫,警而群噪。夜景澄澈,画船经堤下者,咸止而听,有歌而和者。诒孙顾余此赤壁之续也。

余读东坡夜泛西湖五绝句,景物凄黯,忆南宋以前,湖面尚萧寥,恨赤壁之箫弗集于此。然则今夜之游,余固未袭东坡耳。夫以湖山遭幽人踪迹,往往而类。安知百余年后,不有袭我者,宁能责之袭东坡也。

天明入城,二生趣余急为之记。

教学建议

一、本文用1课时完成。可以用10分钟让学生自读和初步背诵课文,对课文有一个整体印象。用15分钟和学生一起探讨文章内容,重点在于理解,不要讲解得过于琐碎。用15分钟处理练习题,突出文章的思想内容、写作手法、语言风格。用5分钟强化背诵。

二、本课的教学重点是在深入理解写景特点的基础上熟读成诵。本文写景的特点是使用白描手法,这是一种基本的写作方法,可以写景,也可以写人,教师要结合课文中的描写惟长堤一痕,湖心亭一点,与余舟一芥,舟中人两三粒而已,把这种手法的特征讲清楚,为了便于理解,还可以和渲染手法对比说明。

三、本课的教学难点是理解作者的精神世界,把握写景与叙事、抒情的关系。为了突破这一难点,教师可以对张岱的经历作简要介绍,这样学生才能够理解文中的淡淡哀愁,但不适宜讲得过深过细,点到为止即可。叙事与写景的关系也不宜讲得过深,讲清楚文中西湖的奇景和游湖人的雅趣相互映衬就可以了。

四、课后第三题也可以作为预习内容,在讲课之前先作交流,以引起学生的兴趣。

有关资料

一、参考译文

崇祯五年十二月,我住在西湖。接连下了三天的大雪,湖中行人、飞鸟的声音都消失了。这一天凌晨后,我划着一叶扁舟,穿着毛皮衣服、带着火炉,独自前往湖心亭看雪。(湖上)弥漫着水气凝成的冰花,天与云与山与水,浑然一体,白茫茫一片。湖上(比较清晰的)影子,只有(淡淡的)一道长堤的痕迹,一点湖心亭的轮廓,和我的一叶小舟,舟中的两三粒人影罢了。

到了亭子上,看见有两个人已铺好了毡子,相对而坐,一个童子正把酒炉里的酒烧得滚沸。(他们)看见我,非常高兴地说:在湖中怎么还能碰上(您)这样(有闲情雅致)的人呢!拉着我一同饮酒。我痛饮了三大杯,然后(和他们)道别。问他们的姓氏,得知他们是金陵人,在此地客居。等到(回来时)下了船,船夫嘟哝道:不要说相公您痴,还有像您一样痴的人呢!

二、诗的小品小品的诗──读张岱《湖心亭看雪》

晚明小品在中国散文史上虽然不如先秦诸子或唐宋八大家那样引人注目,却也占有一席之地。它如开放在深山石隙间的一丛幽兰,疏花续蕊,迎风吐馨,虽无灼灼之艳,却自有一段清高拔俗的风韵。

张岱(1597-1689)继公安三袁之后,以清淡天真之笔,写国破家亡之痛,寓情于境,意趣深远,算得晚明散文作家中一位成就较高的殿军。他的代表作是小品集《陶庵梦忆》和《西湖梦寻》。

张岱出身于官宦之家,明亡以前未曾出仕,一直过着布衣优游的生活。明亡以后,他曾参加过抗清斗争,后来消极避居浙江剡溪山中,专心从事著述。《陶庵梦忆》和《西湖梦寻》即写于他明亡入山以后。书中缅怀往昔风月繁华,追忆前尘影事,字里行间流露出深沉的故国之思和沧桑之感。他在《陶庵梦忆序》中说:鸡鸣枕上,夜气方回,因想余生平,繁华靡丽,过眼皆空,五十年来总成一梦。今当黍熟黄粱,车旅螳穴,当作如何消受?遥思往事,忆即书之,持向佛前,一一忏悔。于此可见其著书旨趣及以梦名书之由。我们读《陶庵梦忆》和《西湖梦寻》,在欣赏其雅洁优美的散文形象的同时,常常感到有一层梦幻般的轻纱笼罩其上,使意境显得深杳而朦胧。这是历史投下的阴影,它反映了这位明末遗民作家的思想弱点,也赋予他的文风以特有的色彩。

张岱的小品可谓名副其实的小品,长者不过千把字,短者仅一二百字,笔墨精练,风神绰约,洋溢着诗的意趣。人们常说散文贵有诗意,这是很对的;如果拿诗来作比,我觉得张岱的小品颇似唐人绝句。它以隽永见长,寥寥几笔,意在言外,有一唱三叹之致,无捉襟见肘之窘。取饮一勺,当能知味;我们不妨择一短章──《湖心亭看雪》(见《陶庵梦忆》卷三),试作一点粗浅的品尝。

崇祯五年十二月,余住西湖。

开头两句点明时间、地点。集子中凡纪昔游之作,大多标明朝纪年,以示不忘故国。这里标崇祯五年,也是如此。十二月,正当隆冬多雪之时,余住西湖,则点明所居邻西湖。这开头的闲闲两句,却从时、地两个方面不着痕迹地引逗出下文的大雪和湖上看雪。

大雪三日,湖中人鸟声俱绝。

紧承开头,只此两句,大雪封湖之状就令人可想,读来如觉寒气逼人。作者妙在不从视觉写大雪,而通过听觉来写,湖中人鸟声俱绝,写出大雪后一片静寂,湖山封冻,人、鸟都瑟缩着不敢外出,寒噤得不敢作声,连空气也仿佛冻结了。一个绝字,传出冰天雪地、万籁无声的森然寒意。这是高度的写意手法,巧妙地从人的听觉和心理感受上画出了大雪的威严。它使我们联想起唐人柳宗元那首有名的《江雪》:千山鸟飞绝,万径人踪灭。孤舟蓑笠翁,独钓寒江雪。柳宗元这幅江天大雪图是从视觉着眼的,江天茫茫,人鸟无踪,独有一个钓雪的渔翁。张岱笔下则是人鸟无声,但这无声却正是人的听觉感受,因而无声中仍有人在。柳诗仅二十字,最后才点出一个雪字,可谓即果溯因。张岱则写大雪三日而致湖中人鸟声俱绝,可谓由因见果。两者机杼不同,而同样达到写景传神的艺术效果。如果说,《江雪》中的千山鸟飞绝,万径人踪灭,是为了渲染和衬托寒江独钓的渔翁;那么张岱则为下文有人冒寒看雪作映照。

是日更定,余拿一小舟,拥毳衣炉火,独往湖心亭看雪。

是日者,大雪三日后,祁寒之日也;更定者,凌晨时分,寒气倍增之时也。拥毳衣炉火一句,则以御寒之物反衬寒气砭骨。试想,在人鸟声俱绝的冰天雪地里,竟有人夜深出门,独往湖心亭看雪,这是一种何等迥绝流俗的孤怀雅兴啊!独往湖心亭看雪的独字,正不妨与独钓寒江雪的独字互参。在这里,作者那种独抱冰雪之操守和孤高自赏的情调,不是溢于言外了吗?其所以要夜深独往,大约是既不欲人见,也不欲见人;那么,这种孤寂的情怀中,不也蕴含着避世的幽愤吗?

请看作者以何等空灵之笔来写湖中雪景:

雾凇沆砀,天与云与山与水,上下一白;湖中影子,惟长堤一痕,湖心亭一点,与余舟一芥,舟中人两三粒而已。

这真是一幅水墨模糊的湖山夜雪图!雾凇沆砀是形容湖上雪光水气,一片弥漫。天与云与山与水,上下一白,迭用三个与字,生动地写出天空、云层、湖水之间白茫茫浑然难辨的景象。作者先总写一句,犹如摄取了一个上下皆白的全景,从看雪来说,很符合第一眼的总感觉、总印象。接着变换视角,化为一个个诗意盎然的特写镜头:长堤一痕湖心亭一点余舟一芥舟中人两三粒等等。这是简约的画,梦幻般的诗,给人一种似有若无、依稀恍惚之感。作者对数量词的锤炼功夫,不得不使我们惊叹。你看,上下一白之一字,是状其混茫难辨,使人惟觉其大;而一痕一点一芥之一字,则是状其依稀可辨,使人惟觉其小。此真可谓着一字而境界出矣。同时由长堤一痕到湖心亭一点,到余舟一芥,到舟中人两三粒,其镜头则是从小而更小,直至微乎其微。这痕点芥粒等量词,一个小似一个,写出视线的移动,景物的变化,使人觉得天造地设,生定在那儿,丝毫也撼动它不得。这一段是写景,却又不止于写景;我们从这个混沌一片的冰雪世界中,不难感受到作者那种人生天地间茫茫如太仓米的深沉感慨。

下面移步换形,又开出一个境界:

到亭上,有两人铺毡对坐,一童子烧酒炉正沸。见余,大喜曰:湖中焉得更有此人!拉余同饮。余强饮三大白而别。问其姓氏,是金陵人,客此。

独往湖心亭看雪,却不意亭上已有人先我而至;这意外之笔,写出了作者意外的惊喜,也引起读者意外的惊异。但作者并不说自己惊喜,反写二客见余大喜;背面敷粉,反客为主,足见其用笔之夭矫善变。湖中焉得更有此人!这一惊叹虽发之于二客,实为作者的心声。作者妙在不发一语,而尽得风流。二客拉余同饮,鼎足而三,颇有幸逢知己之乐,似乎给冷寂的湖山增添了一分暖色,然而骨子里依然不改其凄清的基调。这有如李白的举杯邀明月,对影成三人,不过是一种虚幻的慰藉罢了。焉得更有者,正言其人之不可多得。强饮三大白,是为了酬谢知己。强饮者,本不能饮,但对此景,当此时,逢此人,却不可不饮。饮罢相别,始问其姓氏,却又妙在语焉不详,只说:是金陵人,客此。可见这二位湖上知己,原是他乡游子,言外有后约难期之慨。这一补叙之笔,透露出作者的无限怅惘:茫茫六合,知己难逢,人生如雪泥鸿爪,转眼各复西东。言念及此,岂不怆神!文章做到这里,在我们看来,也算得神完意足、毫发无憾了。但作者意犹未尽,复笔写了这样几句:

及下船,舟子喃喃曰:莫说相公痴,更有痴似相公者!

读至此,真使人拍案叫绝!前人论词,有点、染之说,这个尾声,可谓融点、染于一体。借舟子之口,点出一个痴字;又以相公之痴与痴似相公者相比较、相浸染,把一个痴字写透。所谓痴似相公,并非减损相公之痴,而是以同调来映衬相公之痴。喃喃二字,形容舟子自言自语、大惑不解之状,如闻其声,如见其人。这种地方,也正是作者的得意处和感慨处。文情荡漾,余味无穷。

这一篇小品,融叙事、写景、抒情于一炉,偶写人物,亦口吻如生。淡淡写来,情致深长,而全文连标点在内还不到二百字。光是这一点,就很值得我们借鉴和学习!当然,它所流露的孤高自赏和消极避世的情调,我们不应盲目欣赏,而必须批判地对待和历史地分析。

乘法交换律教案【篇15】

作为一名教学工作者,往往需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么什么样的教案才是好的呢?以下是小编为大家收集的“运算律”乘法交换律、结合律数学四年级上学期教案,仅供参考,欢迎大家阅读。

教材分析

这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。

学情分析

在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。

教学目标

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。

3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。

教学重点和难点

1、引导学生概括乘法交换律、结合律。

2、乘法交换律和结合律进行简便。

教学过程

一、创设情境,发现问题

师:同学们喜欢搭积木吗?

生:喜欢

师:我们的淘气也很喜欢搭积木,而且聪明的`他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?

生:想

师:那好,就让我们一起去探索与发现。

二、探索乘法交换律

播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)

师:你知道图中有多少个小正方体吗?说说自己是怎样想的。

生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。

生:竖着数一排有4个小正方体,一共有5排,4×5=20个。

师(板书5×4=4×5)可以这样写吗?为什么?

生:可以因为积相等,(求的就是一个整体)

师:认真观察这个等式,你能发现什么奥妙吗?

生思考,汇报(数字相同,交换了位置,积不变)

师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?

生:……

师:请你帮淘气举一些这样的例子来验证一下行吗?

生举例验证

师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?

生说师板书:

a×b

"乘法分配律教案"延伸阅读